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Discretized Markov Transformations—An Example of
Ultradiscrete Dynamical Systems—

SUMMARY  We define discretized Markov transformations and find
an algorithm to give the number of maximal-period sequences based on
discretized Markov transformations. In this report, we focus on the dis-
cretized dyadic transformations and the discretized golden mean transfor-
mations. Then we find an algorithm to give the number of maximal-period
sequences based on these discretized transformations. Moreover, we de-
fine a number-theoretic function related to the numbers of maximal-period
sequences based on these discretized transformations. We also introduce
the entropy of the maximal-period sequences based on these discretized
transformations.

key words:  discretized Markov transformations, maximal-period se-
quences

1. Introduction

It’s been nearly six decades since Ulam and von Neumann
pointed out that, given an initial value, the sequence of iter-
ating a one-dimensional ergodic transformation, for instance
a logistic transformation: 7T'(x) = 4x(1 — x), is a good can-
didate for pseudo-random numbers [1]. These sequences
are intended for Monte Carlo applications. At that time, the
availability and the use of computers are restricted.

Things have changed in the past two decades, and the
computer age has come. The computers are now very in-
expensive and ubiquitous. These situations enable us to
propose sequences of pseudo-random numbers generated
by one-dimensional ergodic transformations to be used as
spreading sequences in SSMA (spread spectrum multiple
access) communication systems [2]-[4] and as real-valued
keystreams in so called chaotic encryption systems [5]. Un-
fortunately, however, they are not available for practical use.

To begin with, Ulam and von Neumann’s idea requires
handling real numbers in its applications. On the contrary,
computers can only deal with floating point numbers. Hence
we need ergodic theory for a transformation from a finite
set onto itself to understand the behaviour of the iterates of
one-dimensional transformations implemented in comput-
ers. Unfortunately, no way is known to give a good theoret-
ical model that tells us characteristics of the execution time
for floating point numbers [6].

Recently a breakthrough has been made as follows:
Discretized Bernoulli transformations were considered and
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their applications to cryptography and SSMA communica-
tion systems were proposed [7], [8]. The discretized ergodic
transformation is a permutation of subintervals determined
by the transformation. We may say that this is an exam-
ple of ultradiscrete dynamical systems* [9]. If we use the
discretized ergodic transformations, we need not care for
floating point number computation. This is a great advan-
tage of using the discretized ergodic transformations rather
than implementing the original ergodic transformations in a
computer system.

In [8], maximal-period sequences based on discretized
Bernoulli transformations were proposed and their correla-
tional properties were numerically investigated. It is pointed
out in [8] that the maximal-period sequences based on dis-
cretized dyadic transformation were a generalization of de
Bruijn sequences. While the number of de Bruijn sequences
are well known [10], the numbers of maximal-period se-
quences based on several discretized Bernoulli transfor-
mations were numerically conjectured in [8]. Recently
discretized Bernoulli transformations with negative auto-
correlations, which are known to be optimum in terms of the
average interference parameter (AIP) (see [4] for instance),
are designed in [11].

In this report, we define discretized Markov trans-
formations and find an algorithm to give the number of
maximal-period sequences based on discretized Markov
transformations. As concrete examples, we firstly focus
on the dyadic transformation and the golden mean transfor-
mation, and define the discretized versions of these trans-
formations. Then we find an algorithm to give the num-
ber of maximal-period sequences based on these discretized
transformations. This includes a proof to Tsuneda et al.’s
numerical conjecture on the numbers of maximal-period
sequences based on discretized Bernoulli transformations.
Moreover, we define a number-theoretic function related to
the numbers of maximal-period sequences based on these
discretized transformations. We also introduce the entropy
of the maximal-period sequences based on these discretized
transformations. We note here that recently Lyapunov expo-
nents for permutations are defined in [12]. Finally we gener-
alize these two examples and define the discretized Markov
transformations and show an algorithm to give the number
of maximal-period sequences based on discretized Markov
transformations.

*Especially the notion of ultradiscrete dynamical systems was
proposed by Professor Shunji Ito.
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This report is composed of seven sections. In Sect. 2,
we point out that de Bruijn sequences are originally related
to number-theoretic sequences called normal recurring se-
quences [13]. In Sect.3, we briefly summarize de Bruijn’s
results on the number of normal recurring sequences. In
Sects.4 and 5, we focus on the dyadic transformation and
the golden mean transformation, and we define the dis-
cretized versions of these transformations. Then we find
an algorithm to give the number of maximal-period se-
quences based on these discretized transformations. We de-
fine a number-theoretic function related to the numbers of
maximal-period sequences based on these discretized trans-
formations. We also introduce the entropy of the maximal-
period sequences based on these discretized transforma-
tions. In Sect.6, we generalize these two examples and
define the discretized Markov transformations and give an
algorithm to give the number of maximal-period sequences
based on discretized Markov transformations. The report
concludes with the summary in Sect. 7.

2. Preliminaries
2.1 Normal Recurring Sequence

Let x € (0,1). We suppose x is expressed in the dyadic
expansion as
X1 x

PR
We simply write this as x = xjx; - - -

For the digit b(€ {0, 1}), we denote the number of oc-
currences of b in the first n places in x by n,,. If n,/n — p,
when n — oo, then we say that b has frequency p, in x. We
say that x is simply normal if np/n — 1/2 for each b.

A binary word (or block) is a finite binary sequence.
We denote the length of a word b by |b|. A word of length
n is called an n-word. We denote the set of all n-words over
{0, 1} by {0, 1}~

Similarly, for a binary k-word b, we denote the number
of occurrence of b in the first n places in x by ny,. If ny,/n —
1/2¥ when n — oo, then we say that b has normal frequency
in x. We say that x has normality of order k if ny/n — 1/2%
as n — oo for all b € {0, 1},

If x has normality of order k for all positive integers &
then it is said to be normal.

x€{0,1} (=12,--9). (1)

Theorem 1 (Borel [14]): Almost all numbers are normal.
Remark 1: No rational number can be normal.

For a given positive integer k, the question arises
whether there are recurring binary sequences with normality
of order k.

Theorem 2 (Good [13]): There is a recurring binary se-
quence of period 2¢ which has normality of order k.

The proof employs an analogue of Euler’s unicursal
theorem.
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2.2 Euler’s Unicursal Theorem

In graph theory, technical terminology does not seem to be
unified. Firstly we shall give some definitions of the graph
theoretic notions frequently used throughout this study.

A graph G = (V, E) is defined by a finite set V whose
elements are called vertices together with a set & of two-
element subsets of V. The elements of & are called edges. In
our definitions, multiple edges are allowed. For e = {u,v} €
& (u,v € V), we say that e is incident with u and v. The
number of edges incident with v is called the degree of a
vertex v. A walk in a graph G is defined by an alternating
sequence of vertices and edges: voejv; - - €Uy, Vi—|,Up €
YV, e ={v_,v}e& (G(=12,---,n).Ifvy = v, then
the walk is called closed. A walk in which all edges are
distinct is called a path. If a path from u and v exists for
every pair of vertices u, v of G, then G is called connected.

An Eulerian circuit in a graph is a closed path through
a graph using every edge once. If a graph G has an Eulerian
circuit, then we say that G is an Eulerian graph. The fol-
lowing theorem is celebrated for establishing graph theory:

Theorem 3 (Euler [15]): A graph G is Eulerian if and only
if it is connected and every vertex has an even degree.

2.3 An Eulerian Circuit in a Directed Graph

A directed graph G = (V,A) is defined by a finite set V
together with a set A of ordered pairs of elements of V.
These pairs are called arcs. In our definitions, multiple arcs
and loops £ = (v,v) € A (v € V) are allowed. We denote an
arc (u, v) by uv. The arc uv goes from u to v and is incident
with u and v. We also say that u is adjacent to v and v is adja-
cent from u. The out-degree of a vertex v denoted by odeg(v)
is the number of vertices adjacent from it, and the in-degree
of a vertex v denoted by ideg(v) is the number adjacent to
it. A (directed) walk in a directed graph G is an alternat-
ing sequence of vertices and arcs vpa vy - - - Uy, Ui—y,Up €
YV, a=viweA (i=12,---,n).Ifvg = v,, then the
walk is called closed. A walk in which all arcs are distinct
is called a path. A directed graph G is called strongly con-
nected if a path from u and v exists for every pair of distinct
vertices u, v of G. Every directed graph G = (V, A) natu-
rally corresponds to an ordinary graph Gy = (V, &), where
Gy has an edge incident with u and v if and only if u # v
and G has an arc from u to v or from v to u; we say that G is
connected if the corresponding graph Gy is connected.

It is worth noting that Good proved Theorem 2 by using
the notion of so-called edge shift in symbolic dynamics’.
We give here the sketch of Proof of Theorem 2:

Let kK > 1. Any binary (k — 1)-word is defined as a
vertex. For two vertices of the forms u = ayay---ay_y,
v = apa;---a;, the binary k-word a = aja;---q; is de-
fined as an arc from u to v. We obtain 2 distinct arcs

*In symbolic dynamics, the arc defined here is called the edge
[18].
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Fig.1  Graphs of G; and G3.
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from 2! vertices. We denote the set of all vertices and
the set of all arcs by V, = {0, 1}*"! and A, = {0, 1}* re-
spectively. Thus we obtain a directed graph Gy = (Vi, Ay).
Graphs of G, and G3 are shown in Fig. 1. For every ver-
tex v, we have odeg(v) =ideg(v) = 2. The directed graph
G is connected since for any two vertices aja; - - - a;_1 and
biby---by_y aword aya; - - - ar_1b1by - - - by corresponds to
awalkay - ar_(ay @y, a2 bi)az - a1 by -

- -(ag-1b1 -+ bg_p,by - - -br_1)by - - - by_1. Thus there exists
an Eulerian circuit in the directed graph Gy, which provides
a recurring binary sequence of period 2 which has normal-
ity of order k.

3. De Bruijn Sequences

A (binary) cycle of length k is a sequence of k digits
aia; - - - ai taken in a circular order. In the cycle aja; - - - gy,
a, follows a;, and ay---azay,---,ara; - - - ax—q are all the
same cycle as aa; - - - a.

A (binary) complete cycle of length 2" is a cycle of
binary 2"-words, such that the 2" possible ordered sets of
binary n-word of that cycle are all different. Any binary n-
word occurs exactly once in the complete cycle. A complete
cycle of length 2" has normality of order n.

Example 1: We give examples of complete cycles of
length 2":

n=1, 01,

n=2, 0011,

n=3, 00010111,
00011101.

Because of the following theorem, the complete cycles
are sometimes called de Bruijn sequences.

Theorem 4 (de Bruijn [10], Flye Sainte-Marie [17]):  For
each positive integer n, there are exactly 2% 'n complete
cycles of length 2".

In fact this theorem is a corollary of
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Fig.2  An example of a directed graph G and its arc digraph G*.

Theorem 5 (de Bruijn [10]): Let G be a directed graph
with m vertices such that odeg(v) =ideg(v) = 2 for every
vertex v. If G has exactly M complete cycles, then its arc
digraph G* has exactly 2™~ ! M complete cycles.

This theorem was proved using combinatorial methods.
Theorem 4 enables us to determine the number of k-ary
complete cycles:

Remark 2:I Fo]r each positive integer n, there are exactly
{(k = DY k¥~ complete cycles of length k.

To prove Theorem 4, de Bruijn introduced the arc di-
graph of an given digraph®.

Let G be a directed graph with vertices vy, v2, -+, Uy,
and with aj arcs leading from v; to v; (j,k = 1,2,---,n).
We write
o= aj = odeg(v)); )
k=1
7= ) ay = ideg(vy). 3)
j=1

Definition 1: (de Bruijn [10], Harary and Norman [16])
The arc digraph G* is a directed graph with Z;f:l o vertices,
one for each arc of G; a vertex of G*, which corresponds to
an arc from v; to v in G, will be denoted A j;. G* has exactly

0 or 1 arcs leading from Ay to Ay, according as k # j or
k=7j.

An example of a directed graph G and its arc digraph
G* is shown in Fig. 2.

There may be several vertices of G* with the same
name A j, but they will be regarded as distinct. G has
2%, oyt arcs.

Let G, = (V,, A,) (n > 1) be a directed graph intro-
duced by Good. Thatis V, = {0, 1}*! and A, = {0, 1}", and
an arc aya; - - - a, € A goes fromaya; -+ - a,-; to aas -+ - a,.
The most important part of de Bruijn’s proof lies in the
recognition of a relation between the graphs G, and G, 1:

Gui1 = Gy, “

n

In symbolic dynamics, the arc digraph is called the 2nd higher
edge graph [18].
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Fig.3  Anexample of discretized dyadic transformations. (m = 6)

where Gj, is the arc digraph of G,. From this relation and
the fact that G, has exactly one complete cycle, the theorem
follows by induction on »n from Theorem 5.

4. Discretized Dyadic Transformations
4.1 Markov Partition

LetT : [0,1] — [0, 1]. Let P be a partition of [0, 1] given by
thepointO =apg <a; <---<agp=1.Fori=1, - ,#P, let
I; = (a;-1, a;) and denote the restriction of T to I; by T';. If
T|;, is a homeomorphism from /; onto some connected union
of intervals of P, then T is said to be Markov. The partition
P = {I,-}ff] is referred to as a Markov partition with respect
toT.

4.2 Discretized Dyadic Transformations

As the simplest example of discretized Markov transforma-
tions, we focus on discretized dyadic transformations. Let
T : [0,1] = [0, 1] be the dyadic transformation: T(x) =
2x (modl), x€][0,1].

Let P, be a partition of [0, 1] given by the point

O0<1/2m<22m<---<1-1/2m< 1.

Fori = 1,---,2m,let I, = ((i — 1)/2m,i/2m). Thus the
partition P,, = {I; }2 | is a Markov partition with respect to
T.

Definition 2: For each m, the discretized dyadic transfor-
mation T is defined by a permutation T : P,, — P,, with
T) c T (I)fori=1,---,2m.

We denote the set of all discretized dyadic transforma-
tions by 7.

Example 2: We give an example of discretized dyadic
transformations (m=6):

T L L L Iy Is Is I Iy Iy Iy
L L Is I; Ib I, I I I Iy

I Ip
Lo I )’
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Figure 3 shows the discretized dyadic transformation T.
This permutation can be represented by binary 6-word

100001 corresponding to the relation between I; and T(Ii)
fori=1,2,---,6.

Let us consider a code of discretized dyadic transfor-
mations. Let T € 7,,. Note that #7,, = 2™. We define a
bijection ¢ : 7, — {0, 1}" by &(T) = aja> - - - a,, where

1 for T(Il) = 12,‘, .
a,—{o for T(Ii)ZIZi—]s i=1,2,---,m. (5
For a given binary m-word a, we simply write ¢" (a) =

LetT e T 'm. Consider a sequence of subintervals from
Pt (T"(1)Z, where TO(I) = Iy and T*(Iy) = T(T™(I}))
for n > 1. We transform this sequence into a binary se-
quence a = aay - - -a, - - - as follows. Define a binary func-
tion o : P, — {0, 1} by

_ )1 for Lc(1/2,1), ._
o) = { 0 for Lc(01/2, ‘=hLZom (©)
We write a, = o(T""'(I;)). Thus we obtain a binary se-
quence:

a=aa---a,

o (1), o(TUN(TY)) - - (T (L)) - - -

1l

This sequence is periodic. If the least period of the sequence
is 2m, then the sequence is called the maximal-length se-
quence or the full-length sequence. Note that the obtained
binary recurring sequence a = a;ds - - - a, - - - only depends
on T. Hence we denote the maximal-length sequence by T.
If 2m = 27, then the maximal-length sequence is a complete
cycle of length 2".

4.3 The Number of Maximal-Length Sequences

For 2m =27, then Theorem 4 by de Bruijn tells us that there
are exactly 22"~ maximal- -length sequences in 7. For
2m # 2", how many maximal-length sequences are there in
7w [817 To answer this question, we require further results
in graph theory.

Let G be a directed graph with vertices vy, v, -+, Uy,
and with aj arcs leading from v; to v, (j,k = 1,2,---,n).
The matrix A = (a /k)” . 1s called the adjacency matrix.
Let D = dlag(odeg(ul) odeg(vy), - - -, odeg(v,)). The ma-
trix C = D — A is called the matrix of admittance. An
oriented spanning tree of G with root v; is a set of n — 1
arcs aj,az, - -ap—) such that for k = 1,2,---,n, there is a
directed path along these arcs from v to v;. The following
theorem is well-known as the matrix tree theorem.

Theorem 6 (Tutte [19]): The number of oriented spanning
trees of G with root v; is the cofactor of C;; in the matrix of
admittance C.

Example 3: Let us consider a directed graph shown in
Fig. 4. Its matrix of admittance is given by
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Fig.4 A directed graph.

1 -1 0 0 O
0O 2 -1 -1 0
c=|-1 0 2 0 -1
o 0 -1 2 -1
o 0 o0 -1 1

The cofactor of Cy; in C is 3. We can easily confirm the
number of oriented subtrees of the graph in Fig. 4 is also 3.

Theorem 7: (van Aardenne-Ehrenfest and de Bruijn [20])
Let G = (V,A) be a directed graph with odeg(v) =ideg(v)
for every vertex v € A, and let G’ be an oriented spanning
tree of G. Let r be the root of G’ and let a(v) be the arc of
G’ with initial vertex v. Let a; be any arc with initial vertex
r. Then voaiv1 -+ Gmbm, Uo = 1v; €V, a; = vi_1V; €
A (i=1,2, ---,m)is an Eulerian circuit if it is an oriented
path for which

1) no arc is used more than once.

ii) a(v) is not used in aj,ay,- - -, ay, unless it is the only
choice consistent with rule (i).

iii) rajv; - - - Uy terminates only when it cannot be con-
tinued by rule (i).

By virtue of this theorem together with the matrix tree
theorem, we obtain

Corollary 1: For every m, the number of maximal-length
sequences in 7, is given by the cofactor of C; in the matrix
of admittance C of the directed graph with m vertices and 2m
arcs corresponding to the discretized dyadic transformation.

4.4 A Number-Theoretic Function v

We may introduce a number-theoretic function associated
with the numbers of maximal-period sequences based on
the discretized dyadic transformations as follows. For m =
1,2,---, v(m) is defined by the number of maximal-length
sequences in 7,,. A short table of values of v(m) is in the
following:

m: 1 2 3 4 5 6 7 8 9 10
vem): 1 1 1 2 3 4 7 16 21 48

By the fundamental theorem of arithmetic, we can
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write m = ¢2° where 2 ¥ g¢. If an integer a is divisible
by another integer b (# 0), we denote it by b | a. Unless a
is divisible by b, we denote it by b ¥ a. Thus Theorem 5
leads to

v(g2") = v(g)27* 7D,

A short table of values of v(q) is as follows:

35 7 9 11 13 15 17
7 21 93 315 675 3825

‘ g 1
vig): 11 3

4.5 Entropy of the Discretized Dyadic Transformations

We may also introduce

Definition 3: The entropy A, of the discretized dyadic
transformations is defined by

hy = i log v(m), @)

where L,, = 2m is the the least period of the maximal-length
sequence.

Remark 3: Choose a positive odd integer g. For m = ¢2°,
we obtain

1
hy — ElogZ (s = o0), ®)

This value can be interpreted as the complexity of the dou-
bling process from a given directed graph G to its arc di-
graph G*.

5. Discretized Golden Mean Transformations
5.1 Markov Partition of Golden Mean Transformation

LetT : [0, 1] — [0, 1] be the golden mean transformation:

T(x) =Bx (modl), xe€][0,1],

where f is the golden mean number # To construct a
Markov partition with respect to T, consider a set of binary
n-words in which the word 11 does not appear as a subword,

and denote it by B,,.
Example 4: Examples of B,,:

B, ={0,1},

8B, ={00,01, 10},

B; = {000,001, 010, 100, 101},

8,4 = {0000,0001, 0010, 0100, 0101, 1000, 1001, 1010}.

Note that #8, is the Fibonacci numbers which is the
sequence of numbers (#8,,),eny With #8 = 2, #8, = 3, and

#Bn+2 = #Bn+l + #Bn

Let B, be equipped with a total order relation < de-
fined by the following: for any n-words a = aja, -+ - a,, a’ =
ajay---a, € By,as<aiff
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1 2 3 4 5 6 T 8 9 18 1 12 13

Fig.5  An example of discretized golden mean transformations (n = 5).

ta, < d\fT N +a BT+ +d,

(llﬁm—l +a2ﬁ"'2+- .
Thus we can number all the elements in B,,:

d® < gl < ... < g#BD

Let #,, be a partition of [0, 1] given by the point

O=po<pr<pr<--<psg,-1 <1,
where
| N - A
- ﬁ—n(aﬁw vl a),
i=012,---,#8,—- 1. Fori=1,- #B,,,letl = (pi-1, pi)

where psg, = 1. Thus the partition SD,, ={[; } B is a Markov
partition with respect to 7.

Example 5: We give an example of discretized golden
mean transformations (n = 5):

T: I| 12 13 14 15 Iﬁ 17 [8 19 Ill 112
L Iy I, Ig Iy Iy Ip I Is I

Figure 5 shows the discretized golden mean transformation
T.

Note that the subintervals 1,9 and /;3 are excluded from
Pst.

This permutation can be represented by binary 3-word
101 corresponding to the relation between [; and T(I,-) for
i = 1,3,4. And hence for n = 5 the total number of the
discretized golden mean transformations is 8.

5.2 Eulerian Subgraph Spanning G and Discretized
Golden Mean Transformations

A directed graph H = (W, B) is said to be a subgraph of
the directed graph G = (V, A)ift W Cc Vand B c A. In
this case we write H C G. The directed graph H is called
a spanning subgraph of G if ‘W = V. Furthermore, if H
is Eulerian, it is called Eulerian subgraph spanning G. We
are interested in the spanning Eulerian subgraph of G with
maximal number of arcs. Figure 6 shows an example of
a directed graph and its spanning Eulerian subgraph with
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O BORNO==0

Fig.6  An example of a directed graph and its spanning Eulerian sub-
graph with maximal number of arcs.

maximal number of arcs.

Let k > 1. Any binary (k — 1)-word in B;_,is defined
as a vertex. For two vertices of the forms u = aja; - - - ax—;,
U = apa;y - - - ai, the binary k-word a = aja; - - - g is defined
as an arc from u to v. We obtain #8B; distinct arcs from
#8B,;,_1 vertices. We denote the set of all vertices and the set
of all arcs by V; = B,_; and A, = By respectively. Thus
we obtain a directed graph G, = (Vy, Ay), which has the
following property:

Property 1: For every vertex v, we have

odeg(v) = ideg(v) =2 if v =003 1420,
odeg(v) =ideg(v) =1 if v= 1oz -vp-2l,
as well as

odeg(v) = 1, ideg(v) =2 if v=~0v03: - 1321,

odeg(v) = 2, ideg(v) =1 if v = lvpvs: - vp-20.

By virtue of Theorem 2 by Good, we obtain

Lemma 1: Exclude all arcs in the form of a =
lasas - - - ay-1 1 from Ay and denote the set of the rest of arcs
in A; by &, then the directed graph H, = (Vy, &) is the
spanning Eulerian subgraph of G, with maximal number of
arcs.

Note that #&, = #8B; — #B,-3 (k > 3) and the sequence
(#Ex)24 1s also the Fibonacci numbers with #5; = 4 and
#84 = 6

Obviously P, and A, are in one-to-one correspon-
dence. Let Q, be the partition which corresponds to &, un-
der this one-to-one correspondence. We take &, as the index
set to its corresponding partition @,. Then we can define the
discretized golden mean transformations as follows.

Definition 4: For each n, the discretized golden mean
transformation T is defined by a permutation T:Q, > Q
with T(]b) c Ty, (Ip) for b € &,.

We denote the set of all discretized golden mean transfor-
mations by 7.

Note that #7, = 2*53 where B8, = Oand B_| = 1.
LetT € T . We define a bijection ¢ : 7, — {0, 1 }#Bn-3 by
&(T) = byby - - byg, . as follows.

"This fact was pointed out in [21].
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Forn =2,
by = 0 if  T(Ioo) = Ioo,
! 1 if Ty = Io.
Forn > 2,

b' _ O lf T(100a3a4~~~am,l_10) = 10a3a4~~a#3n71007
i . T
1 lf T(100a3a4~-~a#5,,,10) = 10(1304"-(1#3"_1015

i=1,2,---,#8, 3.
For a given binary #8, 3-word b, we simply write
¢7'(b) = Tp.

5.3 Maximal-Length Sequences

Let T € T;. Consider a sequence of subintervals from
Q. (T o)), where T%(Io..0) = Io.o and T*(Jp..0) =
T(ﬂ‘l(lo...o)) for k > 1. We transform this sequence into
a binary sequence a = aja;---a;--- as follows. Define a
binary function o : @, — {0, 1} by

1 for I, c(1/B8,1),

o(ly) ={ 0 for I,c(0,1/3, P& ®)

We write @z = o-(T% ' (Iy..¢)). Thus we obtain a binary se-
quence:

a = alaz...ak...
o(Ip-0), (T o) (T*(Up..0)) -
(T Y gg)) - -

This sequence is periodic. If the least period of the sequence
is #&,,, then the sequence is called the maximal-length se-
quence or the full-length sequence. Note that the obtained
binary recurring sequence a = a4, - - a - - - only depends
on T. Hence we denote the maximal-length sequence by T.

Corollary 2: For every n, the number of maximal-length
sequences in 7, is given by the cofactor of C;; in the matrix
of admittance C of the Eulerian subgraph H, spanning G,
with maximal number of arcs, where G, = (B,_;, B,) is the
directed graph corresponding to the discretized golden mean
transformation.

We denote the the number of maximal-length sequences in

Tn by M,.
A short table of values of M,,:
nn 1 2 3 4 5 6 7 8 9

M,: 1 1 1 1 2 2 28 216 65200

We need the relation between M,, and M,,,; to obtain an
explicit formula for the nth term. Unfortunately, however,
we cannot apply Theorem 5 by de Bruijn since H, iH,,H.

5.4 Entropy of Discretized Golden Mean Transformations

We may introduce
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Definition 5: The entropy h, of the discretized golden
mean transformations is defined by

1

Calry

log M,,. (10)

A short table of values of 4,

n: 3 4 5 6 7 8 9
h,: 0 0 0.0693 0.0433 0.1281 0.1279 0.1630

Conjecture 1: We may expect

1

n

lim

n—oo

logM, = élogﬁ(: 0.2546...). (1)

If this conjecture is proved, then this result can be gen-
eralized to the class of shifts of finite type considering a se-
quence of higher arc (edge) graphs.

6. Discretized Markov Transformations

In this section, we generalize the above-mentioned two ex-
amples of discretized transformations and define the dis-
cretized Markov transformations.

For an irreducible, aperiodic Markov transformation 7',
given a Markov partition P with respect to T, corresponding
each subinterval I € P to one arc a(l), we obtain the set A
of arcs. For each ordered pair (/, J) of elements of P, one
vertex v(I, J) adjacent from a(/) and to a(J) is allowed ex-
actly when J ¢ T|;(I). Thus we obtain the directed graph
G = (V, A) representing the Markov transformation. Gen-
erally, this is not Eulerian. Further, we need the following
notions in Graph theory.

A directed graph H = (W, B) is said to be a subgraph
of the directed graph G = (V,A) if W c V and B c A.
In this case we write H C G. The directed graph H is called
a spanning subgraph of G if W = V. Furthermore, if H
is Eulerian, it is called Eulerian subgraph spanning G. We
are interested in the spanning Eulerian subgraph of G with
maximal number of arcs.

Under the above-mentioned one-to-one correspon-
dence between P and A, we obtain the partition Q which
corresponds to B. Then the discretized Markov transfor-
mation 7 is defined by a permutation T : Q — Q with
7:(1) c Ti(I) for all I € Q. Eventually, the number of
maximal-length sequences in the discretized Markov trans-
formation is given by the cofactor of C;; in the matrix of
admittance C of the Eulerian subgraph H spanning G with
maximal number of arcs.

7. Conclusion

In this study, we defined discretized Markov transformations
and found an algorithm to give the number of maximal-
period sequences based on discretized Markov transforma-
tions. As concrete examples, we focused on the discretized
dyadic transformations and the discretized golden mean
transformations. Then we found an algorithm to give the
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number of maximal-period sequences based on these dis-
cretized transformations. Moreover, we defined a number-
theoretic function related to the numbers of maximal-period
sequences based on these discretized transformations. We
also introduced the entropy of the maximal-period se-
quences based on these discretized transformations.
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