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Feasibility Study of Partial Observability in H∞ Filtering
for Robot localization and Mapping Problem

Hamzah Ahmad and Toru Namerikawa

Abstract— This paper presents H∞ Filter SLAM, which is
also known as the minimax filter to estimate the robot and
landmarks location with the analysis on partial observability.
Some convergence conditions are also presented to aid the
analysis. Due to SLAM is a controllable but unobservable
problem, it’s difficult to estimate the position of robot and
landmarks even though the control inputs are given to the
system. As a result, Covariance Inflation which is a method of
adding a pseudo positive semidefinite(PsD) matrix is proposed
as one approach to analyze Partial Observability effects in
SLAM and to reduce the computation cost. H∞ Filter is
capable of withstand non-gaussian noise characteristics and
therefore, may provide another available approach towards
SLAM solution.

I. INTRODUCTION

A. Robotic Mapping

In achieving the task of exploration and navigation, an
autonomous robot is required to collect sufficient informa-
tion about the unknown environment and its surroundings
conditions. One of the tasks which attempts to continuously
observing landmarks and collecting information while the
robot moving through an unknown environment is referred
to SLAM(Simultaneous Localization and Mapping) problem,
which is alternatively known as CML(Concurrent Mapping
and Localization). It is believed that the SLAM problem
can fully support an autonomous robot behavior. Even if the
problem passed over two decades, the SLAM problem still
facing a lot of unsolved tasks. SLAM becomes one of the fas-
cinating research after some sequential series of seminal pa-
pers introduced in 1990’s such as Smith and Cheeseman[1].
See Fig.1 for further explanation about SLAM.

SLAM has been applied in wide areas of applications,
indoor or outdoor such as in satellite, mining, space ex-
ploration, rescue, and military. The development of SLAM
continues whether in 2D[3] or 3D applications[4] and now
expands even to home-based robot application such as the
lawn moving robot and the vacuum cleaner robot. The prob-
lem is tracked historically around 1980’s, which enhanced
from the form of Topological and Metric approaches to
Behavioral approach, Mathematical-based model approach
and Probabilistic approach[2]. The probabilistic approach
made a significant success due to its advantages, which sig-
nificantly induced a level of confidence about the estimation
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Fig. 1. Illustration for SLAM problem

instead according to the observations than the other two
methods; mathematical models approach, which require to
build a precise model, or the Behavioral approach, a method
of exploiting the sensor’s application to the system. In spite
of remarkable achievement of probabilistic approach, there
exist some shortcomings such as computational complexity.
Nevertheless, with modern development of software, a con-
siderable support and solution to this problem may exist, thus
inspire further development of SLAM problem.

Researchers around the world works to improve the SLAM
performance and attempts to propose a better solution in
various kinds of probabilistic techniques such as EKF, UKF,
EM, Fast-SLAM. Nowadays, Fast-SLAM [2] as one of
the noticeable approaches, gains a lot of attention towards
SLAM development. This technique used particles as a
representative of uncertainties in an unknown environment
and claimed to be the best estimator as it is more robust
than any other conventional approaches. If more particles
are used, then the better is the estimation. However, this
approach demands higher computational cost. Therefore, due
to such deficiencies, such a remarkable technique does not
deter the classical methods, for example, Kalman Filter and
other conventional methods.

Kalman Filter, still acts as one of the famously ever applied
filters in SLAM. Nonetheless, no matter what kind of filters
presented above, they are still familiar and fundamentally
relied on probabilistic theory. Probabilistic approaches have
gained SLAM researchers great interest nowadays to model
the system efficiently by considering the existence of uncer-
tainties. The readers are encouraged to study the development
of SLAM in [5], which significantly discussed the SLAM
problem from various aspects.



B. Why H∞ SLAM?

Uncertainties and dynamic environment hinder the robot
to perform efficiently in most applications. These factors
are the most influential terms that brought the idea of
probabilistic into SLAM problem. Unfortunately, this is the
most difficult problem in SLAM where all estimations are
based on probabilistic. Instead of guessing with a single
value, probabilistic approach introduces a set of data or
information with high density, which provide a reliable data
acquisition. Henceforth, the approach is applicable to most
SLAM problems in most situations, especially in unknown
environment with unknown noise conditions. In view to
realize the truly autonomous robots, probabilistic approach
is highly recommended as it allocate sufficient information
to the robots for making judgement while working or operate
independently in a less-human monitoring system.

Kalman Filter has been employed widely in SLAM either
in linear or nonlinear SLAM case. The most fascinating
factor to this statement is because Kalman Filter, which
theoretically based on the MMSE approach, is easy to apply
and was proved to work efficiently in most SLAM problems.
Kalman Filter heavily relies on the assumption of gaussian
noise, thereby suffers for a condition for non-gaussian noises.
Besides, it is inappropriate to depend only for a single
assumption of noise characteristics. It is a wise decision to
model a system that can take into account for a worst case
of noise or when the noise statistics are violated. Hence,
one of the families of Kalman Filter, the H∞ Filter can
provides a better choices to tolerate with such a robust
system. It assumes that the noises are bounded in certain
level of energy and the designer can tune its performance to
achieve a desired outcomes. As a result, the development of
H∞ Filter[6] is proposed in this paper for SLAM.

Throughout this paper, the H∞ Filter performance in non-
linear SLAM problem under two partial observable SLAM
cases is studied; Unstable Partially Observable SLAM and
Stable Partially Observable SLAM[7]. Partial Observability
explains that, even if the robot can be controlled to move
through environment, true conditions may not be the same
as predicted. Unstable case describes that the estimation may
go unbounded, while the stable case is able to preserve
the estimation in certain level of uncertainty. H∞ filter is
still new in SLAM[8] and its convergence properties in
SLAM have been shown in [9]. We carried out experiments
considering a small indoor environment consisting of some
point landmarks with respect to [7] and [9] to determine
the convergence properties of H∞ Filter in both partial
observability cases.

This paper is organized as follows. In Section II, the
general SLAM problem and H∞ algorithm is presented
with a brief comparison to Kalman Filter, while Section
III explains about H∞ convergence. Section IV discuss the
decorrelation strategy based on Covariance Inflation method
and Section V demonstrates experimental results of partially
observable H∞-SLAM. Finally, Section VI concludes the
paper.

II. SLAM GENERAL MODEL

SLAM consists of two models; process model that ex-
plains how the robot move through the environment and
measurement model that calculates and measures the rela-
tive distance and angle between robot and landmarks. This
section analyzes both models. An assumption of stationary
landmarks are made for convenience. Ther process model is
presented as follows.

Xk+1 = f(Xk, ωk, vk, δω, δv) (1)

where Xk ∈ R
3+2m,m = 1, 2, ...N is the augmented

state consist of the robot state∈ R
3 and landmarks state

Lm ∈ R
2m. vk, ωk are representing the controlling terms

of velocity and turning rate, and δω, δv are the correlated
noises on v, ω respectively. On behalf of the measurement
models, the following equations are presented.

zi =

[
ri
θi

]
=

[√
(yi − yvk+1

)2 + (xi − xvk+1
)2 + νri

arctan
(

yi−yvk+1

xi−xvk+1

)
− θk+1 + νθi

]
(2)

where ri, and θi is the relative distance and angle between
robot and a landmark m. Again, the noise, νriθi is the noise
of the measurement with correlated zero mean noises of the
covariance matrix Rriθi . The prediction step is defined as

X̂k+1 = f(X̂k, ωk, vk, 0, 0) (3)

Pk+1 = ∇fXPkψ
−1
k ∇fT

X +∇fωvΣ∇fT
ωv (4)

X̂k is the estimated augmented state. Σk act as the control
noise (δω, δv) covariance and fX , fωv is shown as below.

∇fX =

⎡
⎢⎢⎣

1 0 0 0
−vT sin θ 1 0 0
vT cos θ 0 1 0

0 0 0 I

⎤
⎥⎥⎦ , ∇fωv =

[∇fωv

0

]
(5)

and
ψk = (Ik +∇HiR

−1
k ∇Hi

TPk − γ−2IPk) (6)

∇Hi is the measurement model in Jacobian representation
and shown by

∇Hi =

[
0 − dx

r − dy
r

dx
r

dy
r

−1 dy
r2 − dx

r2 − dy
r2

dx
r2

]
(7)

I is the identity matrix with an appropriate dimension. dx =
xm−xr and dy = ym−yr and r =

√
xm − xr2 + ym − yr2.

Using the Jacobian notation for a case of a robot observing
one landmark, for example, an observation at point A, result
in the following equation.

∇HA = [−e −A A] (8)

Denote
HA =

[
e A

]
e =

[
0 −1

]T
(9)

and

A =

[
xm−xA√

xm−xA
2+ym−yA

2

ym−yA√
xm−xA

2+ym−yA
2

ym−yA

xm−xA
2+ym−yA

2
xm−xA

xm−xA
2+ym−yA

2

]
(10)



(xm, ym), (xA, yA) are the m− th landmark coordinate and
robot position at point A respectively. The initial covariance
P0 ≥ 0 is stated as P0 ∈ R

(n+N)×(n+N) and given by

P0 =

[
P0v 0
0 P0m

]
(11)

A. H∞ Filter-Based SLAM

This section includes a brief introduction of H∞ Filter-
Based SLAM a comparison to Extended Kalman Filter. First,
an assumption for the noise is made for each time, k.

Assumption 1: Rk
Δ
= DkD

T
k > 0

Assumption 2:
∑N

t=0 ‖ωk‖2 <∞,
∑N

t=0 ‖vk‖2 <∞
Assumption 1 states that all measurements are correlated by
noises and Assumption 2 define that both the process noise
and measurement noise are bounded to a certain level of
energy. The difference between Kalman Filter and H∞ filter
is shown as below. For Kalman Filter, the equation for its
gain and covariance are given by

Kk = Pk(I +∇HikR
−1
k ∇HiPk)

−1 (12)

Pk+1 = ∇fXkPk(I +∇Hi
T
k R

−1
k ∇HikPk)

−1∇fT
Xk

(13)

On the other hand, the equation for its gain and covariance
of H∞ filter is given by

Kk = Pk(I − γ−2IPk +∇Hi
T
k R−1

k ∇HikPk)
−1 (14)

Pk+1 = ∇fXk
Pk(I − γ−2IPk +∇Hi

T
k R−1

k ∇HikPk)
−1

×∇fT
Xk

(15)

where process noise is assumed to be small and can
be neglected. Opposite to Extended Kalman Filter(EKF),
H∞ filter(HF) depends on the covariance matrix of error
signals, Qk ≥ 0, Rk > 0 which are designed to achieve
certain desired performance. As γ values become bigger,
this equation will be the same as (12),(13) of Extended
Kalman Filter. In view to H∞ Filter convergence in SLAM,
[9] showed that if a robot continuously observing the same
landmarks, the whole covariance matrix is converging to zero
uncertainties. This seems to be unrealistic and argueable to
achieve as long as noises keep interrupting the estimation.
However, this is actually a result of finite escape time, a
phenomena that occurred in H∞ whether in the linear and
nonlinear system which describes that the solution can go
infinite in finite time[10]. Unlike EKF, HF solution may tend
to go infinite, whether the robot is stationary or moving.
Discussion about this phenomena is included in [10] therein.
Some sufficient conditions for convergence are also presented
in their results and are applicable to SLAM problem, which
will be shown later.

Equations (13), (15) have distinctly shown the mathemat-
ical descriptions of the covariance matrix for both EKF and
HF. To ensure that HF can preserve a Positive Semidefi-
nite(PsD) matrix for all time observations, (15) must satisfy
below equation.

∇Hi
T
kR

−1
k ∇HikPk − γ−2IPk ≥ 0 (16)

As it can be seen, if the above γ variable is eliminated,
the equation will be EKF equation that guarantees the
estimations are converging for some steady state[3][12]. We

then proposed below theorem about the importance of (16)
in SLAM.

Theorem 1: Given that γ > 0. A stationary robot that
sufficiently observed a landmark in 0 < k <∞, in the limit,
the covariance matrix does not exhibit a finite escape time
and bounded if and only if (16) is satisfied.

Proof: Sufficiency: Proof can be derived based on the
HF algorithm about its covariance stated in (11). Given that
the initial covariance is P0 ≥ 0. For all k > 0 and γ > 0,
assume that (16) ≥ 0. Then from (15),

Pk+1 = ∇fXk
Pk(I − γ−2IPk +∇Hi

T
kR

−1
k ∇HikPk)

−1

×∇fT
Xk

≥ 0 (17)

As the robot is stationary, then from each update as (17) ≥
0,

Pk+1 = [P−1
k +∇Hi

T
k R

−1
k ∇HikPk − γ−2IPk]

−1 (18)

Pk+2 = [P−1
k+1 +∇Hi

T
k+1R

−1
k+1∇Hik+1Pk+1 − γ−2IPk+1]

−1

≤ Pk+1 (19)

Subsequently, the covariance matrix is converging to a
steady-state covariance. It is also understood that, for bigger
γ, above equation is approximately the same as EKF equa-
tion and finally result in the convergence of the covariance
matrix.

Necessity: Consider a case where (16) < 0. Eventually,
(17), (18) and (19) will exhibit negative covariance that is
undesired properties of SLAM problem. As a result, the
estimation cannot achieve the expected level of confidence.

We proved that if (16) is a PsD, then the covariance matrix
is converging in the limit. Therefore, the convergence results
from [9] are violated and the covariance matrix is guaranteed
to converge to a steady state covariance. Furthermore, by
(13) and (15), in the limit, the covariance matrix of HF is
expected to be a slightly bigger than EKF.

Above condition is important to avoid finite escape time.
However, there exists other alternative methods to avoid the
problem by applying the time variant γ into the algorithm.
Further explanations are included in [10]. From this point
on, we demonstrates a method that able to overcome the
phenomena by adopting the covariance inflation method into
the filter. We believed that using this approach, the finite
escape time can be avoided and at the same time realizing
the reduction of cost computation for SLAM problem from
O(N2) to O(N). Next section discussed further about it.

III. DECORRELATION USING COVARIANCE INFLATION

Correlations are important[13]. To decorrelate a system,
some minor changes on the covariance matrix must be done.
One of the available approaches is said to be the Covariance
Inflation. This method is used to study the effect of partial
observability in two categories as follows;

• O(N) but unstable partially observable H∞-SLAM
• O(N) and stable partially observable H∞-SLAM

Decorrelation using covariance inflation is a method that
adding pseudo-noise to the system. We states the mathemat-
ical description for the covariance inflation for convenience.



For H∞ Filter, addition of pseudo noise ΔP to the HF
algorithm result in

Pk+1|k = ∇fXPk|kψ−1
k ∇fT

X +ΔPk (20)

ψ have been shown in (7) and we assume small process
noise error to the system. For 2-D realizations, based on
Covariance Inflation, we have for d > 0,

ΔPk =

[
dP 12 −P 12

−P 21 P 12

d

]
(21)

ΔPk is chosen to drive a smaller value of the covariance
matrix, Pk. Additional details are discussed in [7]. This paper
try to uncover generally the theoretical means of ΔP , which
is not shown distinctly in [7][11] and can be applying both
in EKF and HF. For each update, a PsD covariance matrix
is given by,

Pk+1 = Pk +ΔPk

where the covariance is added by a pseudo noise, ΔPk . For
the next update, it is understood that

Pk+2 = Pk+1 +ΔPk+1

= (Pk +ΔPk) + ΔPk+1

= Pk +ΔPk +ΔPk+1

≈ Pk + nΔPk

Lemma 1: An addition of full rank pseudo noise, ΔP to
a PsD covariance matrix has no effect to the initial form
of covariance update. Nevertheless, it increases the lower
bound of the steady state covariance matrix by ΔP where
n = 1, ..., N .

The above lemma show the same result obtained by
Theorem 1 in [7]. The analysis are then proceeds to under-
stand its effect to HF algorithm. From the results of [9], the
covariance matrix of a stationary robot observing one time
step of one landmark at the point A is given by,

P1 =

[
Pvv Pvm

Pmv Pmm

]
(22)

where
Pvv = [P−1

0v +HT
AR

−1
A HA − γ−2I −

HT
AR

−1A(ATR−1
A A− γ−2I)−1ATR−1

A HA]
−1

Pvm = PvvH
T
AR

−1
A A(ATR−1

A A− γ−2I)−1

Pmv = (ATR−1
A A− γ−2I)−1ATR−1

A HAPvv

Pmm = (ATR−1
A A− γ−2I)−1 +

(ATR−1
A A− γ−2I)−1ATR−1

A HAPvv

×HT
AR

−1
A A(ATR−1

A A− γ−2I)−1

Each elements in (22) have been mentioned before in section
II. Equation (22) exhibit one more condition in HF to
be satisfied. The conditions are shown in next proposed
theorem.

Theorem 2: For γ > 0, the covariance matrix of H∞
Filter is converging to a steady state if and only if (22)≥ 0.
Moreover, the following equation must be satisfied,

γ2I ≥ R (23)
Proof: Equation (22) shown the update of a HF and

illustrate that all the elements must be a PsD for each

respected update. This means that, below two equations must
be satisfied.
P0v ≥ HT

AR
−1A(ATR−1

A A− γ−2I)−1ATR−1
A HA

−HT
AR

−1
A HA + γ−2I (24)

ATR−1
A A− γ−2I ≥ 0 (25)

If one of these equations is not a PsD, then the covariance
matrix will have a negative covariance. For a case of a
stationary robot, (25) yield

R−1
A ≥ γ−2I (26)

γ2I ≥ R (27)

Equation (22) also clearly stated the importance of choosing
the right value of γ to obtain better estimation results for each
state and (27) generally indicates that γ must be selected to
be bigger than the square roots of observation noise.

We now understand about some conditions to ensure HF
converges, which are stated in Lemma I and Theorem 2
for some steady state value. The outcomes also exhibits
opposite results to [9]. Besides, in linear case SLAM,
(27) must be satisfied. However, it is difficult to analyze
in the nonlinear system where the A matrix is changing
rapidly for each different observations. Let’s discuss about
Covariance Inflation. This method adds a pseudo noise at
time k, of ΔPk ≥ 0 to the process model. Equation (20)
has demonstrated the behavior of Covariance Inflation while
Theorem 1 and Theorem 2 have sufficiently shown the results
of HF convergence under some conditions. Even so, how
actually the pseudo noise affects the estimations? The study
now analyze its effects to HF estimation.

Theorem 3: For γ > 0 and d > 0, the steady-state
covariance matrix, P is unboundedly increased if a full-rank
pseudo noise ΔP is added recursively at each update.

Proof: In HF, if a covariance matrix is added by a full
rank pseudo noise, then following equations are obtained.

Pk = (P−1
k−1 +HT

k−1R
−1
k−1Hk−1 − γ−2I)−1 (28)

Pk+1 = Pk +ΔPk ≥ Pk (29)

Clearly, the covariance matrix is increasing at time k + 1
and bigger than covariance at time k. Utilizing the PsD
properties of any submatrix of PsD is also a PsD, the map
covariance matrix subsequently holds the same criteria as
above equation and ends up to the following equation.

Pk+1mm
= (P−1

k+1mm
+HT

k R
−1
k Hk − γ−2I)−1 (30)

+ΔPk+1mm
≥ Pk+1mm

Equations (29), (30) illustrates that the covariance inflation
method may drive the covariance matrix to be unbounded and
thus violating the results in [10] and Theorem 1 mentioned
above. Consequently, the built map becomes more erroneous
as the uncertainties increase and finally ended with unreliable
estimations for both robot and landmarks location. This is the
case of unstable partially observable SLAM in HF.
Even though Covariance Inflation may reduce the computa-
tion cost, the estimation may not achieve expected results.
In order to prevent such a problem shown in Theorem 3, and
concerning about [7][11], we proposed next theorem.



Theorem 4: Given γ > 0 and d > 0. If a pseudo-noise
ΔP is added only to the landmark’s covariance of H∞
Filter at each respective update, then in the limit, the state
covariance matrix is converging to

P∞ ≈
[
Pvv Pvm

Pmv P∞
mm

]
(31)

where
P∞
mm = (ATR−1

A A− γ−2I)−1ATR−1
A HAPvv

×HTR−1
A A(ATR−1

A A− γ−2I)−1 + dPvm (32)
Proof:

To ensure the boundedness of covariance matrix, robot
correlation to the landmarks must be maintained while at
the same time, some of the submap is set to be independent
of each other. For a stationary robot observing a landmark
at point A, after one-step, its covariance matrix is given by
(22) with the ignorance of variable A−1R−1A − γ−2I for
convenience(if n → ∞, then [A−1R−1A − γ−2I]−1 → 0).
Theoretically, when the covariance inflation is applied for
one-step at the landmark’s covariance, above equation is
updated to the following.

P1 =

[
Pvv Pvm

Pmv Pmm + Pvm

]
(33)

with d = 1 is set for convenience. The elements of above
matrix are same to (20). Then by utilizing Matrix Inversion
Lemma, the matrix inversion can be found. As the pseudo
noise is added at every update with the assumption that robot
has a higher initial belief than landmarks, finally the state
covariance matrix consists of following matrix.

P∞
11 = Pvv (34)

P∞
12 = Pvm (35)

P∞
21 = Pmv (36)

P∞
22 = (ATR−1

A A− γ−2I)−1ATR−1
A HAPvv ×

HTR−1
A A(ATR−1

A A− γ−2I)−1 + Pvm (37)

Again, each elements in above matrix is shown in (22). It
has been shown that from the above equations, only the map
state covariance is increased to some value while the robot
state covariance is maintained whenever the robot moving
through the environment.

Above theorem proved that the robot state covariance is
converged if and only if the robot state covariance is not
decorrelated. These results also shows explicitly that in the
limit the covariance matrix is not converging to zero as
proposed in [9]. In other perspectives, it proves that the
decorrelation help to avoid the finite escape time phenomena
in HF and guarantee that covariance matrix is converging to
a steady state.

IV. EXPERIMENTAL RESULTS OF H∞SLAM

The results of EKF-SLAM for both two cases have been
studied on [7][12]. Thus, two cases of H∞ SLAM with
γ = 0.9 are studied here to understand the covariance
inflation effect to H∞ SLAM. The experiments are run in
an indoor environment using an Epuck robot. Epuck robot
moves through the environment while taking simultaneous

TABLE I

EXPERIMENTAL PARAMETERS

γ 0.9
Process noise, Q 0.000001 ∗ I3

Observation noise, R 0.001

Random noise observation,R

⎡
⎢⎣

Rθmax = 0.05
Rθmin

= −0.05
Rdistancemax = 0.2
Rdistancemin

= −0.2

⎤
⎥⎦

Initial Covariance Pvv, Pmm 0.00001, 10000

observations around its surrounding. Table 1 shows the
experiments control parameters.

A. Unstable Partially Observable H∞ SLAM

The experimental results for this case showed consistent
results to [7][11](see Figs.2-3). However, the constructed
map, distinguished that the unstable H∞ SLAM exhibits
an initial stage of finite escape time. The covariance is
unbounded and indicate a negative definite covariance that
is unacceptable in SLAM even though its seems producing
a good map. This result proves Theorem 3. Due to the
correlation’s elements and the selection of γ, the recursive
update result in an impractical solutions.

As been discussed in Theorem 2, it is difficult to analyze
the behavior of the nonlinear system as the observations are
different for each landmark when the robot moves. Even
though the γ can be set to have bigger value, it is afraid that
in the limit, there is no difference between HF performance
and KF.

B. Stable Partially Observable H∞ SLAM

Results are shown on Figs.4-5 for the case of stable
partially observable H∞ SLAM. Although the built map has
bigger uncertainties than the previous case, no finite escape
time is observed in this case. This interestingly guaranteed
that this case is one of the available approaches to confront
the finite escape time phenomena. We perceived that HF
can estimate the robot trajectory fairly. A slightly rough
estimation for the landmarks can be identified. Nevertheless,
it is shown that in the limit, the map covariance is converging
to some steady state covariance.
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Fig. 2. Unstable partially observable H∞ SLAM of map construction
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Fig. 3. Robot covariance while observing landmarks of unstable partially
observable SLAM
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Fig. 4. Stable partially observable H∞ SLAM of map construction

V. CONCLUSION

We have shown that the decorrelation algorithm may
reduce the computation cost and may result in unbounded
convergence as shown by the unstable partially observable
SLAM problem. On the other hand, preserving the robot
correlations with the landmarks while some of the submaps
are decorrelate from others, may decrease the uncertainties
and ensure the convergence and may avoid the finite-escape
time phenomena if some conditions are fulfilled.

A. Future Works

Further analysis of HF condition in the nonlinear system
to achieve a steady state covariance is one of the important
things to make HF as another available solution for SLAM
problem.
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