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Abstract: We discuss the stability of an adiabatic stepwise-charging
circuit with advanced series capacitors, which is effective for the reduc-
tion of the applied voltage to each capacitor. SPICE simulation shows
that this circuit is stable even if the initial voltages are lower than zero.
For the analytical discussion, we derive a matrix that connects charge
and voltage in the circuit and show that the matrix is a positive-definite
symmetric one. Therefore, the step voltage is generated spontaneously.
We also derive energy dissipation analytically using tank capacitor volt-
age. Using this formula and SPICE simulation, we clarify that energy
dissipation decreases monotonically as a function of time and finally
reaches the minimum value.
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1 Introduction

Reducing the power dissipation of circuits is an important issue. A charge
recycling regenerator with a switched capacitor circuit is one of the most
promising solutions and has been researched for adiabatic logic [1, 2, 3, 4]. In
a previous article [5], we proposed a switched capacitor circuit with advanced
series capacitors and showed by SPICE that the tank capacitor voltage con-
verges to the step voltage spontaneously when the initial voltages are larger
than or equal to zero. However, it is not clear whether the circuit is stable
when they are negative (i.e., below the value of GND), which is often caused
by external noise.

In this article, we confirm by SPICE that the circuit is stable even if
the initial voltages are negative and that the circuit reaches the stable state
five times as rapidly as the conventional one [1]. The stability of this circuit
is proved generally by an analytical method. We also discuss the energy
dissipation as a function of time. It is clarified that, although the voltages
of the tank capacitor change variously (sometimes increase and sometimes
decrease), the energy dissipation always decreases monotonically and finally
reaches the minimum value.

2 Stability of the regenerator with series capacitors

The conventional switched capacitor regenerator circuit and the regenerator
with the advanced series capacitors are shown in Figs. 1 (a) and (b). This
series capacitors circuit is advanced compared to the previous series one [3]
because, in the four-step case, the number of tank capacitors Ci decreases
from 4 to 3, which is the same as in Fig. 1 (a). Therefore, we can reduce

Fig. 1. Switched capacitor circuit. (a) Conventional cir-
cuit. (b) Advanced series capacitors circuit.
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the number of capacitors by using the advanced one. In Figs. 1 (a) and (b),
CL is load capacitance, V is the power supply voltage, Vout is output voltage,
and VCi is the voltage of the node connected to the upper plate of Ci. The
switching transistor is a parallel connection of pMOSFETs and nMOSFETs.
T0, T1, T2, T3, T4, T3, T2, and T1 turn on successively and this operation
is repeated.

The circuit simulation results are shown in Fig. 2. We used the 0.25-μm
design rule. Threshold voltages were 0.4 and −0.4V in the nMOS and pMOS
transistors, respectively. C1, C2, and C3 were the same value: 100 pF. CL was
0.4 pF. The period of the four-step waveform cycle was 0.2μs. The initial
VC1, VC2, and VC3 values were set to −0.4 V. The gate width was 6 μm. The
gate length and V are 0.25 μm and 2 V in Fig. 2 (a), and 0.5μm and 4 V in
Fig. 2 (b), respectively. In Fig. 2, the blue and red lines show the advanced
series circuit and the conventional one, respectively. In both cases, after
200 μs, VCi becomes iV/4 spontaneously. From the results, it is clear that
the advanced series circuit is very stable even if the initial VCi is negative due
to external noise and that it reaches the stable state five times as rapidly as
the conventional one. Another feature of the advanced series circuit is that
the voltage of the capacitors is smaller than V/4 due to the series connection.
On the other hand, for the conventional one, the maximum voltage of the
capacitors is 3V/4. This difference is a serious problem when we use an
electric double layer capacitor (EDLC). The endurance voltage of the EDLC
is 2.5 V so that we cannot use the conventional circuit with V = 4 V because
VC3 in Fig. 1 (a) reaches 3 V as shown in Fig. 2 (b).

Fig. 2. Voltage change of VCi when V is (a) 2 and (b) 4 V.
The blue and red lines are for the advanced series
circuit and conventional one, respectively.

Next, we investigate the reason for the stability generally by using an
analytical method. Here, we assume that Ci � CL. The yi is the node
connected to the upper plate of Ci. Let Qti be the transferred charge quantity
from yi to CL at the ith step voltage [Fig. 3 (a)] and Qri be the restored charge
from CL to yi [Fig. 3 (b)]. We define Qi as the amount of charge stored in
the capacitor plates connected to yi. Then, assuming that the number of the
steps is N , VC0 = 0, and VCN = V , ΔQi (the change of Qi) after charging
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and restoring can be written as [3]

ΔQi = −Qti + Qri = CL(VC(i−1) − 2VCi + VC(i+1)), (1 ≤ i ≤ N − 1). (1)

Here, we define Vi as Vi = VCi − iV/N . Using Vi and (1), we have

ΔQi = CL(Vi−1 − 2Vi + Vi+1), (1 ≤ i ≤ N − 1). (2)

Next, we define vi as the voltage difference between the capacitor plates
[Fig. 3 (a)]. Then, using VCi = v1 + v2 + · · · + vi−1 + vi, we have

⎡
⎢⎢⎣

VC1

...
VC(N−1)

⎤
⎥⎥⎦ = B

⎡
⎢⎢⎣

v1

...
vN−1

⎤
⎥⎥⎦, where B =

⎡
⎢⎢⎣

1 0
...

. . .
1 · · · 1

⎤
⎥⎥⎦. (3)

Fig. 3. Definitions of charge and voltage in the regenera-
tor. (a) Qti is transferred from yi to CL at the ith
step. (b) Qri is restored from CL to yi at the ith
step.

From Fig. 3, we have

⎡
⎢⎢⎢⎢⎢⎣

Q1

Q2

...
QN−1

⎤
⎥⎥⎥⎥⎥⎦

=D

⎡
⎢⎢⎢⎢⎢⎣

v1

v2

...
vN−1

⎤
⎥⎥⎥⎥⎥⎦
, where D=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C1 −C2 0
C2 −C3

. . . . . .
CN−2 −CN−1

0 CN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

Then, using (3) and (4), and considering the difference in Qi and VCi after
one cycle operation, we have

⎡
⎢⎢⎣

ΔQ1

...
ΔQN−1

⎤
⎥⎥⎦ = DB−1

⎡
⎢⎢⎣

ΔVC1

...
ΔVC(N−1)

⎤
⎥⎥⎦, (5)

where ΔVCi is the change of VCi after charging and restoring. Using (5) and
ΔVCi = ΔVi, we have

⎡
⎢⎢⎣

ΔQ1

...
ΔQN−1

⎤
⎥⎥⎦ = F ·

⎡
⎢⎢⎣

ΔV1

...
ΔVN−1

⎤
⎥⎥⎦, where F = DB−1. (6)c© IEICE 2010
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The B−1 is calculated as in ref. 3. Therefore, we have

F =DB−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 + C2 −C2

−C2 C2 + C3 −C3

−C3
. . . . . .
. . . CN−2 + CN−1 −CN−1

−CN−1 CN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Using (7), we have

xtFx = C1x1
2 + C2(x1 − x2)2 + · · · + CN−1(xN−2 − xN−1)2, (8)

where x is one of any vector. While the F is different from that in ref. 3, we
easily find that it is a positive-definite symmetric matrix so that step voltage
is generated spontaneously using the theory in ref. 3.

3 Time variation of energy dissipation

Next, we investigate how the energy dissipation changes as a function of time.
In the four-step case, the work done by the regenerator during charging W1 is
written as [6]

W1 = VC1ΔQ1 + VC2ΔQ2 + VC3ΔQ3 + VC4ΔQ4

= CL[VC1VC1 + VC2(VC2 − VC1) + VC3(VC3 − VC2) + VC4(VC4 − VC3)]. (9)

The work done by the regenerator when restoring W2 is written as

W2 = −VC1ΔQ2 − VC2ΔQ3 − VC3ΔQ4

= −CL[VC1(VC2 − VC1) + VC2(VC3 − VC2) + VC3(VC4 − VC3)]. (10)

W2 is negative, which means the regenerator gets energy from CL. Using the
energy conservation law, we have

W1 = Ediss1 + U, (11)

where Ediss1 is the energy dissipation during charging and U is the electro-
static energy of a load capacitor. We also have

U = −W2 + Ediss2, (12)

where Ediss2 is the energy dissipation during restoring. Therefore, using (11)
and (12), we have

W1 + W2 = Ediss1 + Ediss2 = Ediss , (13)

where Ediss is the total energy dissipation during one cycle. Then, using (9)
and (10), we have

Ediss = CL

[
VC1

2 + (VC2 − VC1)2 + (VC3 − VC2)2 + (VC4 − VC3)2
]
. (14)c© IEICE 2010
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The minimum of Ediss is calculated using the method of Lagrange multipliers.
We denote q1, q2, q3, and q4 as

q1 = VC1, q2 = VC2 − VC1, q3 = VC3 − VC2, q4 = VC4 − VC3. (15)

Then, we have q1 + q2 + q3 + q4 = V . We define L as

L = Ediss − λ(q1 + q2 + q3 + q4 − V ). (16)

By calculating ∂L/∂qi = 0 and ∂L/∂λ = 0, we have q1 = q2 = q3 = q4

easily, which means VCi = iV/4. Therefore, it is clarified that Ediss takes the
minimum when the step voltage is generated. Regarding the time variation
of Ediss , we can calculate this value using SPICE.

The simulation result is shown in Fig. 4 (a). The lower lines show Ediss

of the advanced series circuit (blue) and the conventional one (red) with the
condition in Fig. 2 (a). The upper ones show those with almost the same
condition but with VC1 = 2.4, VC2 = −0.4, VC3 = 1.0 V, and C1, C2, and
C3 values of 100, 50, and 100 pF, respectively. First, we discuss the lower
lines. When t = 0 s, Ediss/CL is equal to 5.9, which is valid from the initial
condition. When t = 200 μs, Ediss/CL is equal to 1, which is also valid from
the final state such that VCi = iV/4. The Ediss in the advanced series circuit
decreases more rapidly than in the conventional one. This means that the
circuit reaches the stable state more rapidly than the conventional one.

Next, we consider the upper lines. The change of VCi with this condition
is shown in Fig. 4 (b). The blue and red lines in Fig. 4 (b) are VCi of the ad-
vanced series circuit and the conventional one, respectively. In the upper lines
in Fig. 4 (a), Ediss in the conventional circuit (red) decreases more rapidly
than in the advanced series one (blue) at this time. However, this initial VCi

is a very rare case and would hardly ever occur. Normally, the initial VCi is
around zero as in Fig. 2 (a), at which we can easily confirm that Ediss in the

Fig. 4. (a) Time variation of energy dissipation during
one cycle in the circuit with advanced series capac-
itors (blue) and with the conventional ones (red).
(b) Change of VCi in the advanced series circuit
(blue) and the conventional one (red) when the
initial VC1, VC2, and VC3 are 2.4, −0.4, and 1.0 V,
respectively.
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advanced series circuit decreases more rapidly than that in the conventional
one. This means the stable state in the advanced series circuit is generated
more rapidly. We can say that this is the merit of the advanced series circuit.

Regarding the time variation of Ediss , interestingly, Ediss in both circuits
decreases monotonically and reaches the minimum value, even if the voltages
change variously as in Fig. 4 (b). This means, in other words, that the voltage
state in the circuit proceeds in a direction such that the energy dissipation
becomes smaller and finally reaches the minimum value. This phenomenon
in the circuit reminds us of the other principle in the electromagnetic the-
ory; namely, that the steady-state current distribution in a conductor always
satisfies the condition such that the energy dissipation (Joule energy) is the
minimum value.

4 Conclusion

In summary, we analyzed an adiabatic circuit with advanced series capacitors.
We confirmed by SPICE that this circuit is stable even if the initial voltages
are negative and proved its stability generally by an analytical method. We
also clarified that the voltage state in the circuit proceeds in a direction such
that the energy dissipation becomes smaller and finally reaches the minimum
value.
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