
Implementation of Stereophonic Acoustic Echo
Canceller on Intel IA-32 Processors with SIMD
Capability

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/2297/18186URL

� � � � � � � � � 	
 � � �
Intel IA-32 CPU � � � � �

Implementation of Stereophonic Acoustic Echo Canceller
on Intel IA-32 Processors with SIMD Capability

������� ����� �!�"$#$% #$%'& (*),+ %.-'/0+ 1�2�3$4$+ %,5$6
Akihiro HIRANO Kenji NAKAYAMA

Division of Electrical Engineering and Computer Science
Graduate School of Natural Science and Technology, Kanazawa University

E-mail: {hirano,nakayama}@t.kanazawa-u.ac.jp

7*8:9<;>=@?�; ACBEDEFHGJIHKCLNMPOCQSR*TUWVYX*Z\[W]�^`_
Intel IA-32 acb]�dWegfChSij\k@l@monqp@rts�uwvcx@y i{z

SIMD
n|p F~}��}o�`�@� y i|�\V��W�*�Y�J� u I �\V����C�g_�E� m }PF|�C�0}{�@� i�z KE� ^��@��fEh\i np��w�|� }��

4 �E�\� _q |¡c¢ u¤£\¥ }��\� i�z
Abstract This paper presents an efficient
implementation of a stereophonic acoustic
echo canceller on Intel IA-32 processors with
SIMD (single-instruction multiple-data) capa-
bility. An efficient data and task allocation
overcomes a data alignment problem frequently
encountered in a SIMD implementation with-
out additional storage space. Compared with
a scalar implementation, this implementation
achieves more than four times faster execution
speed.

1 Introduction

Echo cancellers are used to reduce echoes in
a wide range of applications, such as telecon-
ference systems and hands-free telephones. To
realistic teleconferencing, multi-channel audio,
at least stereophonic, is essential. For stereo-
phonic teleconferencing, stereophonic acoustic
echo cancellers (SAEC’s) [1–3] have been stud-
ied.

Recent years, PC-based communication sys-
tems such as Skype and Messenger becomes very

popular. PC-based systems are useful not only
for personal communications, but also for busi-
ness systems such as teleconferencing. For real-
istic and comfortable teleconferencing, SAEC’s
should be implemented on PC-based systems.

Modern processors for PC’s have powerful in-
struction set for multimedia processing. Intel
IA-32 architectures [4] have MMX (Multi Me-
dia eXtension) and also SSE (Streaming Sin-
gle instruction multiple data Extension, Stream-
ing SIMD Extention). Four-way vector oper-
ations are supported for 32-bit floating-point
(FP) data.

In this paper, an efficient implementation of
SAEC’s on Intel IA-32 processors is discussed.
Section 2 describes SAEC’s. IA-32 processor is
briefly described in Sec. 3, followed by some im-
plementation issues. The proposed implementa-
tion is shown by Sec. 5. Section 6 compares the
performance.

2 Stereophonic Acoustic Echo Canceller

Figure 1 shows a teleconferencing using an
SAEC. This echo canceller consists of four adap-
tive filters corresponding to four echo paths from
two loudspeakers to two microphones. Each
adaptive filter estimates the corresponding echo
path.

The far-end signal xi(n) in the i-th channel at

第22回 信号処理シンポジウム�

2007年11月7日～9日（仙台）

- 293 -

x1(n)

+

+

−

−

−

−

Echo Canceller

g1

room A room B

x2(n)

s(n)

g2 h2,1

NW tap

NA tap NB tap
h2,2

h1,2 h1,1

d1(n)e1(n)

y1(n)

+

+

w
2,

1(
n)

w
1,

2(
n)

w
1,

1(
n)

w
2,

2(
n)

Figure 1: Teleconferencing using SAEC

time index n is generated from a talker speech
s(n) by passing room A impulse response gi

from the talker to the i-th microphone. xi(n)
passes an echo path hi,j from the i-th loud-
speaker to the j-th microphone and become an
echo dj(n). Similarly, adaptive filters wi,j(n)
generates an echo replica yj(n). wi,j(n) is so
updated as to reduce the residual echo ej(n).

The SAEC generates the echo replica yj(n) by

yj(n) = wT
1,j(n)x1(n) + wT

2,j(n)x2(n). (1)

the residual echo ej(n) is calculated by

ej(n) = dj(n) − yj(n). (2)

Assuming the Normalized Least Mean Squares
(NLMS) algorithm [5], the filter coefficient vec-
tor wi,j(n) is updated by

wi,j(n + 1) = wi,j(n) +
µej(n)xi(n)

|xi(n)|2
(3)

where a positive constant µ is a step-size param-
eter.

3 Intel IA-32 Processors [4]

In this implementation, Intel Core microar-
chitecture, e.g. Core2 Duo, is assumed. Main
features are listed below.

• Five execution pipelines, up to fourteen
stages

– ALU, FP/MMX/SSE Move, Branch

– ALU, FP/MMX/SSE Add

– ALU, FP/MMX/SSE Multiply

– Load

– Store

• Executes up to five instructions per cycle

– Up to three ALU operations per cy-
cle

– Up to three SSE operations per cycle

• Branch prediction

• 32kB instruction + 32kB data L1 cache

• 2MB or 4MB L2 cache

• Hardware prefetchers, which predict data
access sequence and automatically load
data from external memory into cache

• Eight general-purpose integer registers

• Eight FP registers

• Eight SSE registers

The MMX and SSE instructions [6, 7] provide
some vector operations. For 32-bit floating-
point data, simultaneous calculations on four in-
dependent data sets can be carried out. There-
fore, up to four-times speed-up might be possi-
ble if data bandwidth allowed.

Intel NetBurst microarchitecture, e.g. Pen-
tium4, is also compared. A large difference be-
tween Core2 and Pentium4 is a throughput for
SSE instructions. Core2 processors can initiate
most SSE instructions one at a cycle, while Pen-
tium4 can initiate one at two cycles [8].

4 Considerations on Implementation

There are many considerations on implemen-
tation using general-purpose processors with
SIMD capability. Examples are listed below.

• Efficient Vectorization

• Data alignment for SIMD load/store op-
erations

• Implementation of tapped delay lines

- 294 -

• Memory hierarchy, especially slow exter-
nal memory

• Long latency for memory load: Core2 pro-
cessor requires additional six cycles even
for L1 cache

• Few data registers: Eight for IA-32

The vectorization and the data alignment are
common to implementation on digital signal
processors (DSP’s), while the others might be
specific for general-purpose processors. Most
DSP’s are equipped with the address generators
for the tapped delay lines, multiple data memo-
ries with no-wait access. Few data registers are
specific for IA-32 processors.

In the four-way vectorization for FIR filtering,
simultaneous calculation for k-th tap through
k + 3-th tap are common way. This causes mis-
alignment problem on the tapped delay lines.
Problems related to the data alignments and
their solutions are discussed in [9]. In order to
overcome misalignments, using multiple copies
with different alignments has been proposed.
However, four times larger memory is required
for four-way SIMD processing.

For long latency, the loop unrolling [10] is
widely used. This technique requires a large
number of data registers; n registers are needed
to overcome n-cycle latency. Eight registers
might not be sufficient for some applications.

5 Implementation of SAEC

In this implementation, vectorization is car-
ried out on the channel index rather than the
time index. The k-th tap from four adaptive
filters are calculated simultaneously. Figure 2
depicts the data alignments. No misalignments
are occurred for this vectorization.

In order to cope with a long latency for mem-
ory access, reducing the number of data loading
is a simple solution. It is also efficient for DSP’s
with load-store architecture [11]. The data load
can be reduced by changing the order of (1) and
(3). Calculating

wi,j,k(n) = wi,j,k(n − 1)

+ δj(n − 1)xi(n − k − 1) (4)

w1,1,k+1(n)w2,1,k+1(n)w1,2,k+1(n)w2,2,k+1(n)

w1,1,k(n)w2,1,k(n)w1,2,k(n)w2,2,k(n)

(a) Filter coefficients

x1(n−i−1)x2(n−i−1)

x1(n−i)x2(n−i)

(b) Tapped delay lines

Figure 2: Data alignment

and

sumj(n) = sumj(n) + wi,j,k(n)xi(n − k) (5)

in the descending order of the tap index k could
reduce the number of load operation for both
wi,j,k(n) and xi(n − k). In (4) , δj(n − 1) is
defined by

δj(n − 1) =
µej(n − 1)

|xi(n − 1)|2
. (6)

wi,j,k(n) is a k-th element of wi,j(n). The num-
ber of load operation for xi(n−k) can be reduced
because xi(n−k) in (eq:convolution2) can be re-
used in (4) for the next k = k − 1.

Figures 3 and 4 demonstrate the data-flow for
the coefficient update and the convolution, re-
spectively. xi(n−k−1) in Fig. 3 is a re-use data
from xi(n − k) in Fig. 4 for k = k + 1. wi,j,k(n)
in Fig. 3 will be used in Fig. 4. Therefore,
NW load operations and NW store operations
for wi,j,k(n), NW load operations for xi(n−k) is
required.

To cope with the latency, two vectors are
treated in a single loop. The number of vectors
in a loop is restricted by the number of data

- 295 -

w1,1,k(n−1)w2,1,k(n−1)w1,2,k(n−1)w2,2,k(n−1)

w1,1,k(n)w2,1,k(n)w1,2,k(n)w2,2,k(n)

Reg 1 x1(n−k−1)x2(n−k−1)x1(n−k−1)x2(n−k−1)

Reg 2 δ2(n−1) δ1(n−1)δ1(n−1)δ2(n−1)

Reg 3

Reg 3

RAM

RAM

Copy
from
Prev.
Tap

Figure 3: Data-flow for coefficient update

x1(n−k)x2(n−k)

sum1,1(n)sum2,1(n)sum1,2(n)sum2,2(n)

w1,1,k(n)w2,1,k(n)w1,2,k(n)w2,2,k(n)

RAM

x1(n−k)x2(n−k)Reg 1

Load

Reg 1

? ?

x1(n−k)x2(n−k)x1(n−k)x2(n−k)

Copy

Reg 4

Reg 3

Copy
for

Next
Tap

sum1,1(n)sum2,1(n)sum1,2(n)sum2,2(n)Reg 4

Figure 4: Data-flow for convolution

registers, rather than the efficiency. Since the
longest latency in this implementation is seven
cycles, eight vectors per loop might be good
choice for the efficiency. However, it might re-
quire four times larger number of data registers.

In the implementation of the tapped delay
lines, the circular buffer operation is required.
Without a dedicated address unit, additional
operations including a conditional branch per
tap or extra storage space might be necessary.
Though conditional branches generally degrades
the pipeline performance, the branch prediction
capability and the branch unit operating in par-

Table 1: Specifications of SAEC

Sampling frequency 16kHz
Number of taps 3200

Reverberation time 200ms
Adaptation NLMS
Precision 32-bit floating point

Table 2: Specifications of Platform

Core2 Duo Pentium4
Type E6600 2.8GHz

Core Clock 2.4GHz 2.8GHz
FSB Clock 1033MHz 800MHz

L1 Data Cache 32kB 8kB
L1 Inst. Cache 32kB 12kB

L2 Cache 4MB 512kB
Chipset Intel G965 Intel 865G

allel with ALU’s and SSE units would reduce the
performance degradation. The effect of the con-
ditional branch will be examined through the
evaluation of the implemented SAEC’s.

6 Performance Comparison

The standard SAEC has been implemented
and tested on two different platforms. The spec-
ifications of the implemented SAEC is shown in
Tab. 1. Table 2 depicts the specifications of the
platforms. The critical part of the SAEC, a loop
containing (4) and (5), has been programmed in
an assembly language. Instructions have been
scheduled for highest speed on Core2 proces-
sors. For performance comparison, a program
in C language with FPU is used. SSE-based
programs with and without extra delay storage
are also compared.

Table 3 compares the performance. The cal-
culation times for 120seconds of input data have
been measured. By using SSE instructions,
more than four times speed-up is achieved com-
pared with the FPU version. The implemen-
tation of the tapped delay lines has almost no
difference on the execution speed. This suggests
the effective work of the branch prediction.

- 296 -

Table 3: Performance Comparison

CPU Unit Delay Ex Branch Time
Core2 FPU Yes No 77.50

SSE Yes No 15.65
SSE No Yes 15.84

Pentium4 FPU Yes No 98.71
SSE Yes No 20.08
SSE No Yes 20.28

The comparison between Core2 Duo and Pen-
tium4 suggests that the performance is deter-
mined neither by the core clock speed nor by
the throughput of the SSE instructions. Even
after optimization of the load operations, the
data access speed might be the bottleneck.

7 Conclusion

This paper presents an efficient implementa-
tion of SAEC’s on Intel IA-32 processors with
SSE. The vectorization for the channel index
results in an efficient data allocation. No addi-
tional storage space is required in order to over-
come both the data alignment problem and the
circular buffer operations. More than four times
faster execution speed compared with the FPU
version is achieved.

8 Acknowledgments

The authors would like to express special
thanks to Drs. Akihiko Sugiyama, Toshiyuki
Nomura and Akira Inoue of Common Platform
Software Research Laboratories, NEC Corpora-
tion for collaboration on and support to this re-
search, and also for valuable comments on this
paper.

References

[1] M. M. Sondhi and D. R. Morgan, “Stereo-
phonic acoustic echo cancellation — an
overview of the fundamental problem,”
IEEE SP Letters, vol. 2, no. 8, pp. 148–
151, Aug. 1995.

[2] A. Sugiyama, Y. Joncour, and A. Hi-
rano, “A stereo echo canceler with correct

echo-path identification based on an input-
sliding technique,” IEEE Trans. SP, vol.
49, no. 11, pp. 2577–2587, Nov. 2001.

[3] A. Hirano, K. Nakayama, and K. Watan-
abe, “Convergence analysis of stereophonic
echo canceller with pre-processing — re-
lation between pre-processing and conver-
gence —,” Proc. of ICASSP ’99, pp. 861–
864, Mar. 1999.

[4] “Intel 64 and IA-32 architectures software
developer’s manual volume 1: Basic archi-
tecture,” May 2007.

[5] J. Nagumo and A. Noda, “A learning
method for system identification,” IEEE

Trans. AC, vol. 12, no. 3, pp. 282–287, Mar
1967.

[6] “Intel 64 and IA-32 architectures software
developer’s manual volume 2a: Instruction
set reference, a-m,” May 2007.

[7] “Intel 64 and IA-32 architectures software
developer’s manual volume 2b: Instruction
set reference, n-z,” May 2007.

[8] “Intel 64 and IA-32 architectures optimiza-
tion reference manual,” May 2007.

[9] B. Juurlink A. Shahbahrami and S. Vassil-
iadis, “Performance impact of misaligned
accesses in SIMD extensions,” Proc. of

ProRISC 2006, pp. 334–342, 2006.

[10] David A. Patterson and John L. Hennessy,
“Computer organization and design,” .

[11] A. Sugiyama A. Hirano and S. Ikeda, “DSP
implementation and performance evalua-
tion of sparse-tap adaptive fir filters with
tap-position control,” Proc. of ICASSP

’96, vol. 3, pp. 1295–1298, May 1996.

- 297 -

