
3284
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

PAPER

A VGA 30 fps Affine Motion Model Estimation VLSI for Real-Time
Video Segmentation

Yoshiki YUNBE†, Nonmember, Masayuki MIYAMA†a), Member, and Yoshio MATSUDA†, Nonmember

SUMMARY This paper describes an affine motion estimation proces-
sor for real-time video segmentation. The processor estimates the dominant
motion of a target region with affine parameters. The processor is based
on the Pseudo-M-estimator algorithm. Introduction of an image division
method and a binary weight method to the original algorithm reduces data
traffic and hardware costs. A pixel sampling method is proposed that re-
duces the clock frequency by 50%. The pixel pipeline architecture and a
frame overlap method double throughput. The processor was prototyped on
an FPGA; its function and performance were subsequently verified. It was
also implemented as an ASIC. The core size is 5.0 × 5.0 mm2 in 0.18 μm
process, standard cell technology. The ASIC can accommodate a VGA
30 fps video with 120 MHz clock frequency.
key words: affine motion model, motion estimation, video segmentation,
real-time processing, VLSI, FPGA

1. Introduction

Video recognition is necessary for various applications such
as vehicle safety systems, robot systems, and surveillance
systems [1], [2]. Motion estimation is an important technol-
ogy for video segmentation, which is an important basis of
video recognition [3]–[5]. Affine motion model estimation
is a motion estimation technique [6]. With affine motion
model estimation, one estimated model corresponds to one
target region in an image. The estimated model with six
affine parameters can express motions of all pixels in the
target region.

Several affine motion model estimation techniques
have been proposed [6]–[8]. In general, accurate motion
model estimation is difficult if the target region includes
complex motion or multiple objects, because one motion
model can not express two or more motions. Therefore,
the Pseudo M-estimator (PSM) algorithm has been proposed
as the robust affine motion model estimation technique [7].
The PSM algorithm is a robust estimation method using the
M-estimator concept. It can estimate only a dominant mo-
tion of a target region with elimination of outlier motions by
weighting for each pixel. Therefore, a region with the dom-
inant motion can be distinguished from regions with other
motions. The PSM algorithm has been applied to video
segmentation [9]. This video segmentation algorithm gives
good results in comparison with the other methods [10],
[11].

Manuscript received September 2, 2009.
Manuscript revised June 8, 2010.
†The authors are with the Graduate School of Natural Science

and Technology, Kanazawa University, Kanazawa-shi, 920–1192
Japan.

a) E-mail: miyama@t.kanazawa-u.ac.jp
DOI: 10.1587/transinf.E93.D.3284

However, the affine motion model estimation based on
the PSM algorithm entails enormous computational costs.
The applications of the PSM algorithm require real-time op-
eration with high resolution to increase the recognition ac-
curacy. Real-time processing is impossible using software
approaches in this case. Dedicated hardware is required for
real-time operation with high resolution. A dedicated VLSI
processor for the PSM algorithm has not been proposed.

This paper describes an affine motion estimation VLSI
based on the PSM algorithm. Introduction of an image di-
vision method and a binary weight method to the original
algorithm reduces data traffic between the processor and ex-
ternal memories. Furthermore, these methods reduce the
hardware cost. In addition, a pixel sampling method can
reduce the clock frequency by 50%. Pixel pipeline archi-
tecture and a frame overlap method double throughput of
the processor. The proposed VLSI architecture can handle
a VGA 30 fps video with 120 MHz clock frequency. The
processor was prototypically implemented on an FPGA and
verified in terms of function and performance. It was also
implemented as an ASIC. The core size is 5.0 × 5.0 mm2 in
0.18 μm process, standard cell technology.

This paper is organized as follows: the following sec-
tion introduces the motion models with affine parameters,
and the robust multi-resolution method used for the esti-
mation. Section 3 describes the algorithm optimization for
VLSI implementation. In Sect. 4, VLSI architecture that
accommodates a VGA 30 fps video with 120 MHz clock
frequency is presented. Section 5 describes our VLSI im-
plementation and its experimental results. Finally, Sect. 6
contains concluding remarks. This paper is an extension
work of our previous paper [12]. An ASIC implementation
is newly presented. Simulation results and experimental re-
sults are added.

2. Affine Motion Estimation Algorithm

2.1 Motion Model with Affine parameters

In affine motion estimation, a motion is expressed using
two-dimensional affine transformation. An affine motion
model A, estimated from two successive images, comprises
six affine parameters as follows.

At = (a1 a2 a3 a4 a5 a6) (1)

The combination of these parameters can express various
motions. Figure 1 shows motion expression with the affine

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

YUNBE et al.: A VGA 30 FPS AFFINE MOTION MODEL ESTIMATION VLSI FOR REAL-TIME VIDEO SEGMENTATION
3285

Fig. 1 Example of motion expression by affine parameters.

parameters. Motion vectors for each pixel are calculable as{
ui = a1 + a2xi + a3yi

vi = a4 + a5xi + a6yi
(2)

where u and v respectively signify motion vector elements
in the x and y directions. The suffix i is a pixel index. Here,
a set of affine parameters expresses an outspreading motion.

2.2 Pseudo M-estimator (PSM) Algorithm

The PSM algorithm is a robust estimation method using the
M-estimator concept. To derive a motion model, an error
function is defined as follows.

ri = J(xi + ui, yi + vi) − I(xi, yi) + ξ (3)

Therein, I and J respectively represent a current image and
the subsequent image. This equation fundamentally as-
sumes the luminance conservation law. Parameter ξ rep-
resents the global luminance change, arising irrespective of
the object motion. A motion model θ of a region F is defined
as a vector to minimize Eq. (3) over all pixels in F with the
weighted least squares method. It is expressed as follows.

θ = G−1 · Gs

=

⎛⎜⎜⎜⎜⎜⎜⎝
∑

(xi,yi)∈F
wiχ

t
iχi

⎞⎟⎟⎟⎟⎟⎟⎠
−1 ⎛⎜⎜⎜⎜⎜⎜⎝

∑
(xi,yi)∈F

χt
iδi

⎞⎟⎟⎟⎟⎟⎟⎠
⎧⎪⎪⎪⎨⎪⎪⎪⎩
θ = (At ξ) = (a1 a2 a3 a4 a5 a6)
χi = (Ix Ixxi Ixyi Iy Iyxi Iyyi 1)
δi = −It

(4)

In those equations, the luminance gradients in x, y, and t
directions at the point indexed by i are denoted respectively
as Ix, Iy, and It. The weight for each pixel is represented as
wi. The luminance gradient matrices are represented as G
and Gs.

The PSM algorithm introduces multi-resolution images
to cope with large motion. The algorithm also introduces a
weight for each pixel to estimate a motion model with elimi-
nating outlier motions. Weights for each pixel are calculated
at the bottom resolution level. Then they are propagated to
the upper resolution level. An evaluation measure for each
pixel qi is defined as follows.

qi =

∑
(xi,yi)∈ηi

‖∇I(xi, yi)‖DFD(xi, yi)∑
(xi,yi)∈ηi

‖∇I(xi, yi)‖

Fig. 2 Flowchart of the PSM algorithm.

DFD(xi, yi)

= I(xi + ui, yi + vi, t + 1) − I(xi, yi, t) + ξ (5)

Therein, ∇I represents the spatial gradient and ηi represents
the eight-neighborhood of the target pixel. Then, the weight
wi is determined with comparison of qi to a threshold value
C as follows.

wi =

{
(C2 − q2

i)2 (if |qi| < C)
0 (otherwise)

(6)

The threshold value C is selected a priori as 0 < C ≤ 20.
Figure 2 portrays a flowchart of the PSM algorithm. In-

troduction of the multi-resolution estimation scheme, which
estimates a motion model at each resolution, can handle
large movement of objects. First, multi-resolution images
are generated in a recursive fashion. Then the estimation
is started from the top resolution level. A variable l is a
level counter. A parameter L represents the uppermost level.
The motion model is calculated iteratively at each resolution
level to improve the estimation accuracy (Δθ iterations). A
variable itr is a loop counter for the Δθ iteration. A pa-
rameter λ is the maximum number for the itr. After the
motion model calculation at the bottom resolution level fin-
ishes, weight calculation begins. These steps are repeated it-
eratively (Weight iterations); then the correct motion model
is finally obtained. A variable k is a loop counter for the
Weight iteration. A parameter λ′ is the maximum number
for the k.

3. VLSI Algorithm

3.1 Image Division Method

We next consider the affine motion estimation of a VGA
30 fps video. An internal memory to store the whole VGA
image is impractical because it would require a large chip.
An external memory to store the VGA image is also diffi-
cult to implement because of the huge data traffic between

3286
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

Fig. 4 Translating tree and diverging tree test sequences.

Table 1 Comparison of data traffic and memory amount.

Original Proposed
Internal memory (kbyte) 50.4 41.6
External memory (kbyte) 787.2 0

Data traffic (Mbps) 18,855.936 82.944

Fig. 3 Three-pattern pixel sampling method of motion model calcula-
tion.

the processor and the memory. The image division method
is proposed to solve these problems. This technique divides
a large image into numerous small images; then the mo-
tions for each divided image are estimated independently.
Table 1 presents a comparison of the data traffic and mem-
ory amount between the original and proposed method. It is
assumed that the VGA image is divided into 20 (128×128)
images, and that 12 pixels are transferred from the memory
to the processor in every cycle for parallel processing. The
proposed method reduces both the memory amount and data
traffic.

3.2 Pixel Sampling Method

Computational costs of the motion model calculation de-
pend on the number of pixels. Figure 3 shows three pixel-
sampling methods: column sampling (a), row sampling (b),
and checker sampling (c). Introduction of the proposed
methods can halve the number of calculation pixels. Conse-
quently, the computational cost of motion model calculation
can be approximately halved.

3.3 Binary Weight Method

The original method shown in Eq. (6) gives large weight to
dominant motion; the weight gradually decreases concomi-
tantly with the outlier influence. The threshold value C is
selected within 0 < C ≤ 20. The maximum weight (=20)
takes 18-bit length per pixel. Weights of all pixels must be
kept in memory until completion of the motion estimation.
Consequently, enormous amounts of memory are required
to store all weights. In addition, calculation of the gradi-
ent matrix element uses the weight; thereby the bit length of
the matrix element also increases. To solve these problems,
binary weighting is proposed as

wi =

{
1 (if |qi| < C)
0 (otherwise).

(7)

3.4 Simulation Results

Test sequences of Translating Tree, Diverging Tree, and
Yosemite [13] were simulated to verify the proposed
method. The Translating Tree and the Diverging Tree are
depicted in Fig. 4. The Translating Tree is a sequence with
motion panning to the right (Fig. 4 (b)). The Diverging Tree
is a sequence with motion outspreading from the center
(Fig. 4 (c)). The Yosemite is a sequence that includes com-
plex motion, as depicted in Fig. 5. The upper part moves to
the right, the lower right part moves to the lower right, and
the lower left part moves to the lower left. In this case, one
motion model cannot express all these motions. These se-
quences were synthesized by computers; and then a correct
optical flow for each sequence is known before estimation.
The mean angle error MAE and the mean magnitude er-
ror MME are adopted to evaluate the motion accuracy. The
MAE and MME are obtained with comparison of calculated
motion vectors to correct motion vectors as

MAE =
1
N

∑
x

∑
y

(
arccos

vc · ve

‖vc‖‖ve‖
)
, (8)

YUNBE et al.: A VGA 30 FPS AFFINE MOTION MODEL ESTIMATION VLSI FOR REAL-TIME VIDEO SEGMENTATION
3287

Fig. 5 Yosemite sequence and image division method.

Table 2 Simulation result of image division method.

MAE(degree) MME(pixel)
Test Sequence Original 4 9 Original 4 9

Translating 0.145 0.237 0.917 0.016 0.020 0.057
Diverging 2.940 1.474 2.008 0.058 0.022 0.019
Yosemite 36.707 17.210 11.152 0.613 0.357 0.393

Table 3 Simulation result of pixel sampling methods.

MAE(degree) MME(pixel)
Test Sequence Original Column Row Checker Original Column Row Checker

Translating 0.145 0.252 0.211 0.139 0.016 0.021 0.017 0.014
Diverging 2.940 3.170 2.990 2.934 0.058 0.065 0.069 0.058
Yosemite 36.707 36.798 37.159 36.814 0.613 0.619 0.437 0.433

MME =
1
N

∑
x

∑
y

(‖vc − ve‖). (9)

The algorithm parameters L, λ, λ′,C were 1,4,4, and 20, re-
spectively.

The simulation result of the image division method is
shown in Table 2. In the Table, 4 and 9 are the number of
divided images. Degradation of the motion accuracy in the
Translating Tree is slight. The method rather improves the
accuracy in the Yosemite and the Diverging Tree sequences.
In general, it is difficult to represent the whole complex mo-
tion in an image only by a motion model. The image di-
vision method fits a motion model to each divided image,
whose motion become relatively simple through the divi-
sion. The whole complex motion can be represented by the
set of motion models better than a motion model obtained
with the original method. The PSM algorithm also has
an advantage of estimating smooth motion at the boundary
between the divided images [7]. The PSM algorithm with
the division method does not degrade the motion accuracy
thanks to these features. Table 3 shows a comparison of the
accuracy among pixel sampling methods. Compared to the
original, the accuracy degradation for each method is slight.
Table 4 presents a comparison of the accuracy between two
methods related to the weight. The binary weight method’s
accuracy almost equals that of the original method. Compar-
ison between the original method and the proposed method
composed of the all above methods is presented in Table 5.
In the proposed method, the checker sampling is applied.
The numbers of image divisions in the Translating Tree, the

Table 4 Simulation result of binary weight method.

MAE(degree) MME(pixel)
Test Sequence Original Proposed Original Proposed

Translating 0.145 0.153 0.016 0.009
Diverging 2.940 2.940 0.058 0.046
Yosemite 36.707 35.240 0.613 0.605

Table 5 Accuracy comparison of original and proposed.

MAE(degree) MME(pixel)
Test Sequence Original Proposed Original Proposed

Translating 0.145 0.252 0.016 0.017
Diverging 2.940 1.664 0.058 0.022
Yosemite 36.707 11.624 0.613 0.452

Diverging Tree, and the Yosemite are 4,4, and 9, respec-
tively. Without accuracy degradation, the proposed method
decreases the circuit scale and the operating frequency.

4. VLSI Architecture

4.1 PSM Processor Architecture

Figure 6 shows a block diagram of the PSM processor,
which is comprised of Multi Reso. Image Creations, a Mo-
tion Model Calculation, a Weight Calculation, a sequence
controller, and memories for images and weights. Each pro-
cessing block operates pixel-by-pixel in a pipeline fashion.
The sequence controller controls a sequence of calculations.
It generates control signals connecting to other blocks and
instructs them to behave properly with the signals.

As described previously, the weight calculation uses

3288
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

the motion model; motion model calculation uses the
weight. Therefore, the dependency between these calcula-
tions causes pipeline stall, as portrayed in Fig. 7 (a). The
frame overlap method is proposed as depicted in Fig. 7 (b).
The motion model calculation of the next frame is in-
serted into idle cycles, as shown in Fig. 7 (a). By virtue
of this method, pipeline stall does not occur: the processor
throughput approximately doubles. The processor based on
the pixel pipeline architecture and the frame overlap method
estimates the motion model of a VGA 30 fps video with
120 MHz clock frequency.

The control module of the proposed processor com-
prises MR control and MW controls. The MR control con-
trols the Multi Reso. Image Creations. Also, MW control A
controls the Motion Model Calculation and the Weight Cal-
culation between the image A and B; MW control B con-
trols the same circuits between images B and C. Frame
overlap processing is controlled with mutual signaling, as
presented Fig. 8.

Fig. 6 Block diagram of the PSM processor.

(a) Conventional

(b) Frame Overlap Method

Fig. 7 Timing diagram of the PSM processor.

Fig. 8 Frame overlap control.

4.2 Multi Reso Image Creation

Multi Reso Image Creation generates multi-resolution im-
ages by sub-sampling and 5×5 Gaussian filtering as shown
in Fig. 9 (a). Figure 9 (b) shows a block diagram of the fil-
ter, which comprises adders and bit-shifting. In the truth,
shifters are not necessary because the shift numbers are
fixed. The Multi Reso Image Creation operates pixel-by-
pixel in a pipeline fashion, and calculates four pixel values
of upper level image in parallel.

4.3 Motion Model Calculation

Figure 10 shows a block diagram of the Motion Model Cal-
culation, which calculates the gradient matrix elements with
all pixels of the current frame in the raster scan order. First,
a destination coordinate after moving is calculated using the

Fig. 9 5 × 5 Gaussian filter.

YUNBE et al.: A VGA 30 FPS AFFINE MOTION MODEL ESTIMATION VLSI FOR REAL-TIME VIDEO SEGMENTATION
3289

Fig. 10 Block diagram of the motion model calculation.

Fig. 11 Timing diagram of the motion model calculation.

Fig. 12 Block diagram of the make matrix.

motion model by Coordinate. Next, the luminance and the
weight of the destination at the decimal coordinate are in-
terpolated using IPL and IPW. Luminance gradient Ix, Iy,
and It are calculated by Gradient in parallel using the inter-
polated luminance from the IPL. The luminance gradients
feed into Make Matrix. All elements of the matrices G and
Gs are calculated by the Make Matrix in parallel. Inverse
Matrix calculates the inverse matrix InvG from the gradient
matrix G, and Motion Model calculates an incremental mo-
tion model from InvG and Gs. Finally, Update updates the
motion model.

The timing chart of the motion model calculation is
presented in Fig. 11. The gradient matrix is calculated pixel
by pixel in a pipeline fashion. This calculation uses most
of the cycles. The inverse matrix calculation, the motion
model calculation, and the motion model update are done
only once for every iteration.

4.4 Make Matrix

Figure 12 shows a block diagram of the Make Matrix. The
circuit is composed of 5 pipeline stages. The circuit cal-

Fig. 13 Inverse matrix arithmetic circuit.

culates all elements corresponding to 1 pixel every 1 clock
cycle in parallel. Common multipliers among the elements
are shared in the early stages of the pipeline to reduce the
circuit scale.

4.5 Inverse Matrix

The Motion Model Calculation has an Inverse Matrix cir-
cuit based on the Gauss-Jordan algorithm. This algorithm
produces N × 2N matrix GI by concatenating two N × N
matrices G and I. The corner elements GI(i, i) of the matrix
GI are called pivots. First, for i = 0, each element GI(i, j) of
the row including the current pivot (pivot row) is calculated
as

GI(i, j) = GI(i, j)/pivot. (10)

The element GI(i, i) becomes 1 by Eq. (10). Next, each ele-
ment GI(i′, j) of the row i′ other than the pivot row is calcu-
lated as follows.

GI(i′, j) = GI(i′, j) − GI(i, j) × GI(i′, i) (11)

The elements GI(i′, i) becomes 0 by the Eq. (11). These cal-
culations are repeated until i = N −1 with incrementing i by
1. Finally, the G part of the matrix GI is transformed into
I; the I part of the matrix GI is transformed into the inverse
matrix InvG.

The proposed circuit comprises a reciprocal calculation
circuit, an inverse calculation circuit, and a matrix element
array, as presented in Fig. 13. First, the reciprocal calcu-
lation circuit calculates the reciprocal number of a pivot.
Next, the inverse calculation circuit calculates one-column
elements by one cycle. The elements GI(i, j) of the pivot
row i are calculated according to the Eq. (10). The elements
GI(i′, j) of the row i′ other than the pivot row are calculated
according to Eq. (11). These calculations are repeated over
all columns. Each element of the obtained columns is moved
up by one row and is stored in the row of the matrix element
array. Using this mechanism, the next pivot row i + 1 is al-
ways stored in the top row of the matrix element array. The
uppermost circuit in the inverse calculation circuit always
computes Eq. (10). The other lower circuits always com-
pute Eq. (11). Each circuit need not switch the calculations

3290
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

Fig. 14 Register reduction technique.

Fig. 15 Timing chart of the inverse matrix arithmetic circuit.

Fig. 16 Block diagram of the weight calculation.

of Eqs. (10) and (11). Consequently, the circuit scale is re-
duced. The original algorithm processes 2N columns to one
pivot. However, the calculation and reservation of N ×N el-
ements are unnecessary, as indicated in Fig. 14. Thereby the
matrix element array registers are halved. Figure 15 por-
trays a timing chart of the inverse matrix calculation. The
reciprocal and inverse calculations are executed in parallel
to reduce idle cycles. The proposed circuit calculates the
inverse matrix of 7×7 in 77 cycles.

4.6 Weight Calculation

Figure 16 shows a block diagram of the Weight Calculation.
In this block, the weight is calculated at every pixel of the
bottom resolution level using an estimated motion model.
First, a destination coordinate after moving is calculated by
Coordinate. Next, a luminance value of the destination at the
decimal coordinate is interpolated by WIP, and GradientW
calculates the luminance gradients using the interpolated lu-
minance values. Subsequently, the weight evaluation mea-
sure qi is calculated; the weight wi is determined by Weight.
Finally, Weight Propagate propagates the calculated weights
to the upper resolution level. One pixel weight on the upper
level is calculated by the rounding operation of four pixel
weights on the lower level. The Weight Calculation calcu-
lates four pixels in parallel and operates in a pipeline fash-
ion. Figure 17 shows an overlap method of weight calcula-
tion and weight propagation. Using this method, the weight
calculation and the weight propagation can be processed in
parallel.

4.7 Memory Composition

The luminance gradient at the destination coordinate after
moving must be calculated. In most cases, the destination
coordinate is decimal, so the luminance at the decimal coor-

Fig. 17 Weight calculation procedure.

Fig. 18 Necessary pixels for calculation of luminance gradient.

Fig. 19 16 Divisions of image memory.

dinate is interpolated using the surrounding pixels. There-
fore, 12 pixels around the target pixel must be read as pre-
sented in Fig. 18. For higher performance, a memory com-
position that can read several pixels from the arbitrary part
simultaneously is desirable. The random access capabil-
ity is crucial because the destinations for each pixel mutu-
ally differ. Figure 19 depicts the proposed memory division
method. The necessary 12 pixels are legible from the ar-
bitrary part by dividing the image memory into 16, as pre-
sented in Fig. 19.

5. VLSI Implementation

5.1 FPGA Implementation

An affine motion estimation processor that can handle an
(128×128) 30 fps image sequence based on the proposed ar-
chitecture was implemented on an FPGA board. The FPGA
board (RC2000; Celoxica Inc.) includes an FPGA (Virtex-
4 XC4VLX160; Xilinx Inc.). External memory is divided
into six banks on the board. Table 6 shows the result of
the FPGA implementation. Usages of LUT, 18 kB RAM,
and an 18×18 Multiplier are, respectively, 47%, 44%, and
98%. Furthermore, the maximum operation frequency is
36.7 MHz. This frequency is much higher than 6.5 MHz

YUNBE et al.: A VGA 30 FPS AFFINE MOTION MODEL ESTIMATION VLSI FOR REAL-TIME VIDEO SEGMENTATION
3291

Table 6 Resource utilization of FPGA.

Resource Utilization Precentage
4 input LUT 63,779 out of 135,168 47%

18×18 Multiplier 95 out of 96 98%
Block RAM 128 out of 288 44%

(a) Hardware Construction

(b) Software Construction

Fig. 20 Real-time verification system.

which is required for the 30 fps motion estimation.
Figure 20 (a) presents a block diagram of a verification

system for real-time motion estimation including image cap-
ture and display. The camera (SV642M; Silicon Video) and
an image capture board (PIXCI SI Digital Frame Grabber)
were used. In this system, the images taken by the cam-
era are transferred to the FPGA through the image capture
board under control of a PC as shown in Fig. 20 (b). The
FPGA estimates the motion model using these image data.
The estimated motion model and the weight data are trans-
ferred from the FPGA to the PC. Then the PC calculates
motion vectors of all pixels from the motion model and the
weight data. The motion vectors superimposed on the orig-
inal image are displayed on the PC monitor in real-time.

5.2 Experimental Results

Figure 21 shows the operation results of the real-time verifi-
cation system. Figure 21 (a) and (b) depict image examples
taken by the system. Those images are successive in time.
While the camera zooms in, the human moves to the right.
The image background has a dominant motion outspreding
from the center. Figure 21 (c) shows a subtraction image
between the two images. Both the background and the hu-
man are shown in the image. Figure 21 (d) shows the optical
flow derived from the affine motion model obtained by the
estimation. The background is estimated as a region of a
dominant motion. The weight in the human contour is 0,
and the motion vectors in the part are not displayed. The
silhouette of a human is extracted well. The experimental
results show the dominant motion of the dynamic scene can

(a) Image #0 (b) Image #1

(c) Subtraction Image (d) Optical Flow

Fig. 21 Experimental results of real-time system.

be estimated in real-time. The proposed processor will be
applied to real-time video segmentation.

5.3 ASIC Implementation

The PSM processor LSI was designed using 0.18 μm pro-
cess technology. A main purpose of our ASIC implemen-
tation was to show its practicalness, including low cost fea-
ture. We completed its layout design using common 0.18 μm
technology and estimated the chip area for the purpose. We
also estimated the operating frequency to show the real-time
performance for VGA 30 fps video.

There is no difference between the FPGA implementa-
tion and the ASIC implementation in architecture, excluding
the Image B memory. The implementation eliminates the
Image B memory for weight calculation shown in Fig. 6 to
reduce chip area. We chose the memory because the number
of times for weight calculation is fewer than that for motion
model calculation. Pixels in the Image B are read from the
external. The amount of data traffic is still within the data
bandwidth.

Figure 22 shows a LSI layout of the processor. Table 7
shows the LSI specification. The core size is 5.0× 5.0 mm2.
The estimated operating frequency is 120 MHz.

Comparison of throughput performance among differ-
ent implementations is presented in Table 8. The throughput
performance of a general purpose CPU with 3.15 GHz fre-
quency is lower than the PSM processor implemented on
the FPGA with 30 MHz frequency. The ASIC implementa-
tion with 120 MHz frequency can achieve the throughput of
VGA 30 fps. Such high performance cannot be achieved by
the CPU because it requires about 400 GHz frequency.

3292
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.12 DECEMBER 2010

Table 8 Comparison of throughput performance.

Frequency Throughput 128×128 VGA
(MHz) (pixels/s) (fps) (fps)

CPU(Intel Xeon) 3,150 74,056 4.52 0.24
FPGA(Xilinx XC4VLX160) 30 2,304,000 140.63 7.50
ASIC(0.18 μm SC) 120 9,216,000 562.50 30.00

Fig. 22 PSM processor LSI layout.

Table 7 Specification of PSM processor.

Technology CMOS 0.18 μm 6 metals
Logic Gates 559,263
Memory Image Level0:8×1 K×48

Image Level1:8×256×48
Weight Level0:2×2 K×8
Weight Level1:2×512×8

Core Size 5.0 × 5.0 mm2

Frequency 120 MHz
Throughput VGA 30 fps

6. Conclusion

An affine motion estimation processor for real-time video
segmentation based on the PSM algorithm was described
in this paper. Introduction of the image division method
and the binary weight method to the original algorithm re-
duces the data traffic and the hardware cost. In addition,
the proposed pixel sampling method halves the necessary
clock frequency. The processor throughput was approx-
imately doubled using pixel pipeline processing and the
frame overlap method. The proposed VLSI architecture can
handle a VGA 30 fps image sequence with 120 MHz clock
frequency, which divides a VGA image into 20 (128×128)
images. The processor was implemented on an FPGA and
verified in terms of function and performance. The experi-
mental results show that the proposed processor is applica-
ble to real-time video segmentation. The processor was also
implemented as an ASIC. The core size is 5.0 × 5.0 mm2

in 0.18 μm process, standard cell technology. Application
of the processor to real-time video segmentation is a future
work.

Acknowledgements

This research was supported by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Scientific Re-
search (C), 19560339, 2007-2008. This work was supported
by the VLSI Design and Education Center (VDEC) and The
University of Tokyo, in collaboration with Celoxica, Ltd.
and Synopsys, Inc.

References

[1] B. Siciliano and O. Khatib, Springer Handbook of Robotics,
Springer-Verlag, Berlin Heidelberg, 2008.

[2] S.A. Velastin and P. Remagnino, Inteligent Distributed Video
Surveillance Systems, The Institution of Electrical Engineers,
London, United Kingdom, 2006.

[3] D.A. Forsyth and J. Ponce, Computer Vision A Modern Approach,
Pearson Education, USA, 2003.

[4] Al Bovik, Handbook of Image and Video Processing, Elsevier Aca-
demic Press, USA and UK, 2005.

[5] Y.-J. Zhang, Advances in Image and Video Segmentation, IRM Press
(an imprint of Idea Group Inc.), USA and UK, 2006.

[6] J.R. Bergen, P. Anandan, K. Hanna, and R. Hingorani, “Hierarchi-
cal model-based motion estimation,” Proc. ECCV-92, pp.237–252,
1992.

[7] J.M. Odobez and P. Bouthemy, “Robust multiresolution estimation
of parametric motion models,” J. Vis. Commun. Image Represent.,
vol.6, no.4, pp.348–365, Dec. 1995.

[8] M.J. Black and P. Anandan, “The robust estimation of multiple mo-
tions: Parametric and piecewise-smooth flow fields,” Computer Vi-
sion and Image Understanding, vol.63, no.1, pp.75–104, Jan. 1996.

[9] J.M. Odobez and P. Bouthemy, “Direct incremental model-based im-
age motion segmentation for video analysis,” Signal Processing 66,
pp.143–155, 1998.

[10] S.M. Smith and J.M. Brady, “ASEET-2: Real-time motion segmen-
tation and shape tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.17, no.8, pp.814–820, Aug. 1995.

[11] S. Araki, T. Matsuoka, N. Yokoya, and H. Takemura, “Real-time
tracking of multiple moving object contours in a moving camera im-
age sequence,” IEICE Trans. Inf. & Syst., vol.E83-D, no.7, pp.1583–
1591, July 2000.

[12] Y. Yunbe, M. Miyama, and Y. Matsuda, “A VGA 30 fps affine
motion estimation processor for real-time video segmentation,”
IASTED Circuits & Systems, no.625-010, Kailua-Kona, Hawaii,
USA, Aug. 2008.

[13] ftp://ftp.csd.uwo.ca/pub/vision, John Barron the University of West-
ern Ontario Department of Computer Science.

YUNBE et al.: A VGA 30 FPS AFFINE MOTION MODEL ESTIMATION VLSI FOR REAL-TIME VIDEO SEGMENTATION
3293

Yoshiki Yunbe was born in Toyama, Japan,
on January 7, 1985. In 2007, he received the
B.S. degree in Department of Electrical and
Electronic Engineering from Kanazawa Univer-
sity, where he is currently working toward the
M.S. degree in Division of Electrical and Com-
puter Engineering. His research interests in-
clude VLSI algorithms and architecture for real-
time video segmentation.

Masayuki Miyama was born on March
26, 1966. He received a B.S. degree in Com-
puter Science from the University of Tsukuba in
1988. He joined PFU Ltd. in 1988. He received
an M.S. degree in Computer Science from the
Japan Advanced Institute of Science and Tech-
nology in 1995. He joined Innotech Co. in 1996.
He received a Ph.D. degree in electrical engi-
neering and computer science from Kanazawa
University in 2004. He is an assistant profes-
sor at Kanazawa University Graduate School of

Science and Technology. His present research focus is VLSI designs for
real-time image processing.

Yoshio Matsuda was born in Ehime, Japan,
on October 26, 1954. He received the B.S.
degree in physics and the M.S. and Ph.D. de-
gree in applied physics from Osaka University
in 1977, 1979, and 1983, respectively. He joined
the LSI Laboratory, Mitsubishi Electric Corpo-
ration, Itami, Japan, in 1985. He was engaged in
development of DRAM, advance CMOS logic,
and high frequency devices and circuits of com-
pound semiconductors. Since 2005, he has been
a professor of Graduate School of Natural Sci-

ence and Technology at Kanazawa University, Japan. His research is in the
fields of integrated circuits design where his interests have includes multi-
media system, low power SoC, and image compression processors.

