侵食性海岸における沿岸砂州の長期変動特性 およびその解析法に関する研究

A Field Study on the Characteristics of Sand Bar Migration under Eroding Conditions

由比政年¹·早川和宏²·棋田真也³·石田 啓⁴

Masatoshi YUHI, Kazuhiro HAYAKAWA, Shinya UMEDA and Hajime ISHIDA

Long-term variations of seabed profiles on Mikawa Coast, Japan, have been investigated using a set of field surveys collected over 46 years. The focus is placed on the migration of nearshore bars under the influence of severe erosion. The variation of the cross-shore bar location is examined in detail. It is shown that the cross-shore periodic movements have been repeated several times with about 10-year cycles. Superimposed on periodical migration, the outer bar position has a clear onshore trend in longer time scale of decades. An attempt has been made to separate the eroding trend and periodic migration of bars by using a time-varying standard profiles. On the basis of the separated results, real type empirical orthogonal function analysis is conducted to effectively capture the characteristics of sand bar migrations.

1. はじめに

沿岸砂州の時空間変動は、外浜の地形変化を特徴付け る基本要素の1つである (Wright・Short, 1984). こ のため、世界各地において、砂州の発達過程や変動特性 に関する研究が広く進められてきた (Trenhaile, 1997; Komar, 1998).近年では、砂州の長期変動に着 目し,長期間に渡る現地測量データおよびビデオ画像解 析結果に基づいて、砂州の生成・移動・消失といった一 連のサイクルを明らかにするための検討や相互比較も実 施されている (Wijnberg·Terwindt, 1995; Ruessink・ Terwindt, 2000 ; Kuriyama, 2002 ; Ruessink ら, 2003; Enckevort ら, 2004). その結果, 多くの地点に おいて、砂州が、1~20年程度の周期で沖向きの移動 を繰り返していることが確認された、このような知見の 蓄積が進む一方で、沿岸砂州の変動については、依然と して不明な点も多く残されているのが現状である(Wijnberg・Kroon, 2002). したがって, 今後も, 長期的 視点から現地観測を継続していくとともに、従来蓄積さ れてきた観測データを有効活用して、その特性に対する 検討を進めていくことが重要である.

冬期高波浪を受ける日本海沿岸においても、大規模な 沿岸砂州が発達する.現在,これら多くの海岸が,自然 的・人為的要因により,長期的な侵食傾向にある.一方, 砂州の長期変動に対する従来の研究の多くは,比較的安 定した,準平衡的な海浜を対象としたものであり,侵食 性の海岸を対象とした研究は少ない(鈴木・栗山,2004).

1	正会員	博(工)	金沢大学准教授自然科学研究科
2		修(工)	石川県土木部
3	正 会 員	博(工)	金沢大学講師自然科学研究科
4	フェロー	工博	金沢大学教授自然科学研究科

今後,侵食性海岸における沿岸砂州の変動特性を長期 的視点から検討し,砂州の時空間変動特性と周辺海浜の 変形過程との関連を明らかにして,工学的知見を蓄積す ることは,沿岸環境の持続的発展のために重要である. こうした観点から,本研究では,長期侵食傾向にある石 川海岸美川地区(図-1)を対象に,沿岸砂州の長期変動 特性を解析し,併せて,その効果的な解析法に関する検 討を実施する.

2. 石川海岸美川地区における海岸侵食

石川海岸は、日本海に面し、手取川を主要な土砂供給 源とする海岸である。沖合における波の主方向は NNW から W であり、年最大有義波高は、5~8m 程度に達 する、通年の沿岸漂砂の卓越方向は西向き(図-1 で右 から左)である(田中ら、1997).

近年,石川海岸は自然的・人為的な複合的要因によっ て長期的な侵食傾向にある(田中ら, 1997).国土交通省 金沢河川国道事務所の資料によると、美川工区において も, 1960 年から 1969 年にかけて海浜幅が約 20~30 m 縮小している箇所があり、美川工区全体の海浜幅は、全 体に縮小傾向にあった. 1970 年から 1979 年にかけては, 同工区の海浜幅減少はさらに顕著になり、一部の堆積箇 所を除いて、全体的に 20 ~ 50 m 程度汀線が後退した. この侵食対策として10基余りの海岸構造物(離岸堤)が 建造されている.その結果,汀線近傍の侵食は緩和され, 1980年から1991年にかけて海浜幅が約40m回復した. なお、この期間内においても、20 基近くの海岸構造物 が建造された. その後, 1992 年から 2000 年にかけては, 同工区全体として,海浜幅は縮小傾向にある.また, 1960年から 2000年にかけての 40年間で考えると、美 川地区の海浜幅は、全体に顕著な侵食傾向にある.

図-1 解析対象領域(丸印は数字の測線の基点位置)

石川海岸では、国土交通省金沢河川国道事務所により、 年1回,主に秋季(10月初旬)に深浅測量が実施され てきた.本研究では,1960 年~ 2005 年の長期間に渡る 深浅測量結果に基づいて石川海岸美川地区(図-1)にお ける海底地形変化の解析を行う.対象工区の内、美川1 工区が、主要な土砂供給源である手取川河口の左岸側に 位置し、波による沿岸漂砂の下手側となる、まず、沿岸 方向約 5.2 km の範囲に約 200 m 間隔で設置された計 27 測線(1989年以降,測線数は減少し,現在は半減) のデータを用いて、美川1工区、2工区別の海岸土砂量 の変動を算出し、侵食の傾向を確認した。1960年を基 準とした変動を図-2 に示す.なお,岸沖方向の測量範 囲は, 基点から1~3km 程度であり、この内、基点か ら1km までのデータを使用した.手取川河口左岸(沿 岸漂砂の下手) 側にあたる美川1工区では, 1960年代 初頭から海浜土砂量が減少し、1990年代半ば頃から安 定する傾向にある、一方、美川2工区では、十砂量の減 少が顕著となるのは 1960 年代半ばであり、それ以降、 1980年頃にかけて、急激な侵食が進行している、美川2 工区での土砂量は、その後、1990年代半ばにかけて緩 やかな減少を続けた後、近年では、緩やかに回復する傾 向にある.美川工区全体で見ると、1960年を基準とし た海浜土砂量の変動は、1993年に -5.1×10⁶ m³と最大 の侵食量を記録した後、緩やかな増加傾向を示し、2005 年での変動量は、 $-3.4 \times 10^6 \text{ m}^3$ まで回復している。

3. 沿岸砂州の位置・形状変化に関する検討

石川海岸では大規模な沿岸砂州が発達している(大森 6,1971;武藤6,1992;二木6,2004;由比6, 2006),この砂州は,時間的に様々なスケールの変動を 示す.二木ら(2004)は,10~15年程度を1サイクルと した砂州の岸沖変動が存在することを指摘している.由 比ら(2006)は、今回の対象領域に隣接し、沿岸漂砂の上 手側に位置する石川海岸松任地区における解析を実施し、 沿岸砂州が、10年前後の周期で移動していること、お よび、沖側砂州の移動範囲は、1980年代に一時的に縮 小した後、回復する傾向にあることを示した.本研究に おいても、このような長期変動に着目して検討を行う.

図-2 1960年を基準とした海岸土砂量の変動(基点から 1000m沖合までを対象に算出,河口周辺は美川2工区に含めた)

図-3 砂州形状・位置諸元の定義

まず,砂州頂部高,トラフ底部高,基点からの離岸距 離(沖向きを正)や比高(砂州頂部高とトラフ底部高の差, 図-3 参照)の存在範囲など,個々の砂州形状に関する基 本特性を検討した.この際,初期の測量結果の一部には, 空間解像度が十分でないものが含まれることを考慮し, 地盤高データ(T.P.)をスプライン補間により再配置して 解析を行った.解析にあたっては,測量誤差を考慮して, トラフ底部と砂州頂部の差(比高)が20 cmより大きい もののみを砂州として抽出した.今回抽出したサンプル の総数は,計1525 個である.対象地域全域で砂州は一 般に多段であり,沖側砂州は最大で5 m 強の比高を持 つ大規模な形へと発達することが確認された.

図-4は, 朔望平均干潮位(T.P.+0.01m)を基準と した砂州頂部高とトラフ底部高の関係を示す.両者間の 回帰直線の勾配は1.47であり,松任地区での値 (=1.51)(由比ら,2006)および大森ら(1971)が日本沿岸 での平均値として示した値(1.47)に近い結果となった.

図-5 砂州離岸距離の経年変化 (表示のない年は欠測)

各測量年で観測されたすべての砂州について,砂州の 頂部離岸距離をプロットし,頂部位置の経年変化を工区 別に表示したものを図-5に示す.沖側砂州は,8~10 年前後の周期で岸沖方向に移動し,観測期間中に4~5 周期の変動が確認できる.沖側砂州の移動範囲は,両工 区で縮小傾向にあり,1990年代にかけて,特に美川1 工区側で縮小傾向が著しい.なお.同工区では,2000年 代に入って若干の回復傾向が見られる.美川2工区にお いても,河口側(測線番号が小さく,漂砂下手側)に位 置する測線で同様の傾向が見られる.沿岸漂砂上手側に 隣接する松任地区において,砂州の移動範囲が縮小から 回復へと傾向を転じたのは1990年代であり(由比ら, 2006),美川地区では,傾向の変化が少し遅れる形とな っている.

図-6は,全測線における砂州比高の経年変化を示した ものである.砂州の移動範囲や比高の分布は手取川河口 に対して非対称で,初期の段階では,いずれについても 美川1工区の方が大きい.その後,両岸の非対称性は弱 まり,近年では,逆に,美川2工区側で砂州移動範囲や 比高が大きくなる傾向も見られる.

図-7 長期・中期・短期変動の分離

4. 前処理付き EOF 解析法の適用性に関する検討

対象領域における,観測期間中の断面地形の経年変動 は,長期的侵食傾向(期間全体),砂州の周期的変動(10年 程度のサイクル),出水による一時的堆積という3点によ り特徴付けられる.本研究では,このように時間スケー ルの異なる変動が混在する地形変動の中で,砂州の周期 変動を効果的に抽出,解析する手法について検討を行っ た.従来,地形変動の統計解析法について様々なものが 提案されているが,ここでは,経験的固有関数法(EOF 法)(Winant ら,1975)に着目し,前処理として,時間ス ケールの異なる変動を移動平均操作により分離すること で、主要モードの抽出を効果的に行うことを試みた.

(1) 解析の手法

前処理として、まず、元データに対して、砂州の岸沖 移動周期(9年)に渡る移動平均操作を施し、長期変動 (Z_L)と残差変動を分離した.次に、残差変動にさらに 3年移動平均によるフィルタリング操作を加えて、中期 変動(Z_M)と短期変動(Z_S)の分離を行った(図-7). なお、欠測年について、前後のデータから線形補間を行 った後に,最初の移動平均操作を実施している.

次に,分離された個々の変動に対して実数型 EOF 解 析を実施した.経験的固有関数法では,測量結果の地盤 高を複数の固有モードの重ねあわせで表現する(例えば, Winant ら, 1975).ここで,変動に対する寄与率の大 きい順に第1モード,第2モードと順位付けを行う. 個々の固有モードは,時間の関数である時間係数と,空 間の関数である固有関数の積の形に変数分離され,海底 地形の時空間変動は以下のように表現される.

 $h_{ik} \approx \sum_{n=1}^{N} C_{nk}(t) e_{ni}(\mathbf{x}) \cdots (1)$

ここで、 h_{ik} は、i番目の測点における k回目の深浅測 量時の地盤高を表す.また、 e_{ni} は測点iの位置における第nモードの固有空間関数、 C_{nk} はk回目の調査における第nモードの時間係数である.

以下では、美川1工区内の1測線(No.16)を取り上 げ、長期および中期地形変動に対する実数型 EOF 解析 を行った結果を例示する.岸沖方向の対象領域は、離岸 堤設置位置よりやや沖側(基点からの離岸距離 200 m) から、沖合 1000 m(水深約 10 m)の区間である.測線 16 における断面地形の経年変化を図-8 に示す.

(2) 長期変動成分に対する解析結果

まず,抽出された長期変動(9年移動平均の結果)に 対する EOF 解析を行った.第1モードの時間係数およ び空間関数を図-9に示す.このモードが長期変動の 99.6%に対応する.時間係数 C_{L1}は,1985年頃まで増 加し,その後安定した値を取っている.これは,この測 線上における土砂量の変動と対応していることが確認さ れた.一方,空間関数 e_{L1}は,解析期間内の平均地形に 対応する.第1モードの変動は, C_{L1}と e_{L1}の積により 与えられることから,このモードは,1980年代半ばに かけての海岸土砂量の減少による,領域全体にわたる顕 著な侵食を表している.また,侵食は,1970年代半ば から 80年代半ばにかけて最も加速し,その後,緩和さ れていることも確認できる.

(3) 中期変動成分に対する解析結果

図-10 に、中期変動に対する固有関数を上位3モードま で示す.第1,第2,第3モードが、それぞれ、中期変動 の42.3%,31.6%,12.1%を表している.第1,第2モ ードの時間係数,C_{M1}およびC_{M2}は、周期的な変動を示 している.両者の位相差は、およそ1/4 周期である.空 間関数 e_{M1}および e_{M2}は、一方が極大あるいは極小となる 時に、他方がゼロとなるような分布を示している.言い 換えれば、両者の空間的な位相差は、約 1/4 波長となっ ている.これら上位2モードの組み合わせで、砂州の周 期変動の基本特性を表す.第3モード空間関数は、沖側 での寄与が高く、対応する時間係数は時間が経過するに つれて、その振幅を減じている.これより、第3モード は、砂州の移動範囲縮小に対応していると解釈できる.

図-8 対象測線(No.16)における断面地形の経年変化

図-10 中期変動に対する EOF 解析結果(測線 16)

図-11 海底地盤高の長期・中期変動に対する主要 モー ドの重ね合わせ(測線 16)

図-11 は,長期変動と中期変動の主要モードを重ね合わせたものである。砂州の周期的変動や,侵食に伴う移動範囲の縮小傾向などが良く再現されており,前処理付の EOF 解析の有効性が確認できる.

5. おわりに

本研究では、長期侵食傾向にある石川海岸美川地区を 対象に、沿岸砂州の長期変動特性に対する解析を行った. その結果、沖側砂州が、8~10年前後の周期で岸沖方 向の移動を繰り返す様子が確認された.沖側砂州の移動 範囲は、美川1工区、2工区の双方で縮小傾向にあり、 2000年代に入って若干の回復傾向が見られた.このよ うな砂州移動範囲の変化は、1990年代半ば以降、対象 地区での海浜土砂量が回復傾向に転じたことと符合する が、詳細については、今後も継続的な検討が必要である. なお、回復傾向が発現する時期は、沿岸漂砂上手側に隣 接する松任地区と比べて、少し遅れる形となった.砂州 の移動範囲や比高の分布は手取川河口に対して非対称で、 観測期間の初期には、いずれについても美川1工区側の 方が大きいが、その後、両岸の非対称性は弱まり、近年 では逆転する傾向も見受けられた.

次に,長期侵食の影響下における砂州の周期変動に対 する効果的解析法を構築することを目的に,前処理付き EOF 解析を行って,その有効性を検討した.解析の結 果抽出された地形変化の主要モードは,砂州の周期的変 動や侵食に伴う砂州移動範囲の縮小傾向などを良く再現 しており,前処理付のEOF 解析の有効性が確認された. 今後,この手法に基づいて,周辺海浜の変形過程や底質 移動量との関連についてさらに検討を進める予定である.

謝辞:本研究で使用した測量データは,国土交通省北陸 地方整備局金沢河川国道事務所より提供いただいた.ま た,本研究の一部は,日本学術振興会科学研究費補助金 の補助を受けた.本稿で使用したデータ整理にあたり, 山根大史君(当時金沢大学大学院学生)に協力していた だいた.ここに記して謝意を表する.

参考文献

大森昌衛・茂木昭夫・星野通平(1971):浅海地質学,東海大 学出版会,445 p.

- 鈴木高二郎・栗山善昭(2004):住吉海岸におけるバーの長期 変動について,海岸工学論文集,第51巻,pp.521-525.
- 田中茂信・佐藤慎司・川岸真一・石川俊之・山本吉道・浅野 岡(1997):石川海岸における漂砂機構,海岸工学論文集, 第44巻, pp.661-665.
- 二木 渉・高橋 至・高木利光・有村盾一・高木 栄(2004): 石川海岸徳光地先の大型離岸堤の効果追跡調査,海岸工 学論文集,第51巻,pp.481-485.
- 武藤和宏・字多高明・島 敏明・岡本俊策(1992):高波浪に よるバーの大規模変動の観測―石川海岸の離岸堤・人工 リーフ沖の地形変化―,海岸工学論文集,第39巻,pp. 446-450.
- 由比政年・山田文彦・楳田真也・石田 啓(2006):石川海岸 松任地区における沿岸砂州の長期変動特性,海岸工学論 文集,第53巻, pp.566-570.
- van Enckevort, I. M. J., B. G., Ruessink, G. Coco, K. Suzuki, I. L. Turner, N. G. Plant and R. A. Holman, (2004) : Observations of nearshore crescentic sandbars, J. Geophysical Research, Vol. 109, C06028, doi:10.1029/2003JC002214.
- Komar, P. A. (1998) :Beach Processes and Sedimentation, Second Edition, Prentice-Hall Inc., 544 p.
- Kuriyama, Y. (2002) :Medium-term bar behavior and associated sediment transport at Hasaki, Japan. J. Geophysical Res., Vol. 107, No. C9, 3132, doi:10.1029/2001JC000899.
- Pruszak, Z. (1993) : The analysis of beach profile changes using Dean's method and empirical orthogonal functions, Coastal Engineering, Vol. 19, pp. 245-261.
- Pruszak, Z., G. Rozynski. and R. B. Zeidler (1997) :Statistical properties of multiple bars, Coastal Engineering, Vol. 31, pp. 263-280.
- Ruessink, B.G. and J.H.J. Terwindt (2000) :The behavior of nearshore bars on the time scale of years: a conceptual model, Marine Geology, Vol. 163, pp. 289-302.
- Ruessink, B. G., K. M. Wijnberg, R. A. Holman, Y. Kuriyama, and I. M. J. van Enckevort (2003) : Intersite comparison of interannual nearshore bar behavior, J. Geophysical Research, Vol. 108, No. C8, 3249, doi: 10.1029/2002 JC 001505.
- Trenhaile, A. S. (1997) :Coastal Dynamics and Landforms, Oxford University Press, 366 p.
- Winant, C. D., D. L. Inman, and C. E. Nordstrom (1975) Description of seasonal beach changes using empirical eigenfunctions, J. Geophysical Res., Vol. 80, No. 15, pp. 1979-1986.
- Wijnberg, K.M. and J.H.J. Terwindt (1995) : Extracting decadal morphological behavior from high-resolution, long-term bathymetric surveys along the Holland coast using eigenfunction analysis, Marine Geology, Vol.126, pp. 301-350.
- Winberg, K.M. and A. Kroon (2002) Barred beaches, Geomorphology, Vol. 48, pp. 103-120.
- Wright, L. D. and A. D. Short(1984):Morphodynamic variability of surf zones and beaches: a synthesis, Marine Geology, Vol. 56, pp. 93-118.
- Yuhi, M., F.Yamada, and H.Ishida (2007) :Pre-conditioned EOF Study for Long-Term Morphodynamics on Eroding Coast, Proc. 30th Int. Conf. Coastal Eng., ASCE, pp. 3529-3541.