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Paper

A Chaotic Clonal Selection Algorithm and its Application to Synthesize
Multiple-Valued Logic Functions

Shangce Gaoa∗, Member

Qiping Cao**, Non-member

Zhiqiang Zhang*, Non-member

Zheng Tang*, Non-member

In this paper, a chaotic clonal selection algorithm (CCSA) is proposed to synthesize multiple-valued logic (MVL) func-
tions. The MVL function is realized in a multiple-valued sum-of-products expression where product is indicated by MIN

and sum by TSUM . The proposed CCSA, in which chaos is incorporated into the clonal selection algorithm to initialize
antibodies and maintain the population diversity, is utilized to learn a given target MVL truth table. Furthermore, an adap-
tive length strategy of antibodies is also introduced to reduce the computational complexity, whereas an improved affinity
function enables the algorithm to find less product terms for an MVL function. Simulation results based on a large number
of MVL functions demonstrate the efficiency of the proposed method when compared with other traditional methodologies.
 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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1. Introduction

Multiple-valued logic (MVL), whose truth values are more than
two, has been used in logic circuits and systems for many years.
Compared with the binary logic whose development of creating
digital networks technology is physically limited, the microelec-
tronic technology with MVL provides us with opportunities to
build very complex digital circuits and systems at a relatively low
cost, and provides a diversity of logic in building blocks [1,2].
MVL minimization is an important technique for reducing the area
required by a programmable logic array [3]. The decision for this
task is possible due to the minimization of logic function and
thus the algorithms depend on the functional completeness basis
in which the circuit for the given function will be realized.

Several methodologies have been proposed in the literature for
synthesis of MVL functions, such as deterministic algorithms [4],
direct cover-based approaches [5–7], back-propagation methods
(BP) [8–10], local search methods (LS) [11,12], genetic algo-
rithms (GA) [13–15], and so on. These methodologies can be
divided into two categories: the deterministic algorithms and
direct cover-based approaches belong to technology-dependent
approaches, whereas BP methods, LS methods and GA belong
to technology-independent approaches.

The basic idea in deterministic algorithms is to find all the prime
implicants of an MVL function. However, the number of prime
implicants is so large that absolute minimization of MVL functions
requires computation time on the order of days [16]. Compared
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with deterministic algorithms, direct cover-based approaches uti-
lize the cover selection which is integrated into the prime implicant
generation process and therefore not all prime implicants are neces-
sarily generated. Although direct cover-based approaches provide
a promising alternative method to minimize MVL functions, they
are still time-consuming [3]. Contrary to the technology-dependent
methods, the technology-independent approaches try to find the
optimal or near-optimal solutions for the problem. They need less
computational time and have the merits of excellent optimization
ability and robustness in various instances. In earlier days, several
error BP-based algorithms were proposed to emulate MVL func-
tions. However, during learning, many nodes and parameters such
as weights and thresholds were usually necessary to approximate
an MVL function and any knowledge which was available prior
to training was unable to be used. Compared with the BP algo-
rithms, the LS methods have easy hardware implementation and
can widely make use of the prior knowledge we have on MVL
while constructing an MVL network [11,17]. Recently, GA [18]
were also proposed to constitute an important avenue for solv-
ing such a problem. They are population-based algorithms and
have demonstrated their applicability and efficiency in synthesizing
MVL functions [14,15]. Nevertheless, none of these approaches
provides absolute optimum results for synthesizing MVL functions
since the search space is too large to be explored.

Clonal selection algorithm (CSA) [19], inspired by the basic
features of adaptive immune response to antigenic stimulus, can
exploit and explore the solution space in parallel and effectively.
CSA has been applied to pattern recognition and optimization
problems, such as image classification [20], stack filters design-
ing [21], job-shop schedules [22], traveling salesman problems
[23,24], multi-objective optimization problems [25,26], and so on.
However, the applications on MVL are rarely reported in the
literature.

 2010 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
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In this paper, CSA is utilized to synthesize MVL functions. On
the basis of the TSUM expression [27], any MVL function can be
realized in a sum-of-products form by using TSUM , MIN , window
literal operators and a set of constants. In CSA, an antibody con-
sisting of all the tunable parameters in the operators is regarded as
a solution candidate. In order to evaluate each antibody, an affin-
ity function involving two metrics of correctness and optimality is
utilized. Correctness deals with the functionality of the representa-
tion, whereas optimality deals with the quality of solution, i.e. how
many product terms are required to realize the MVL function. Fur-
thermore, since the length of the antibody is an important design
parameter and mainly determines the solution space, an adaptive
length (AL) strategy is proposed. During search, the antibody with
the higher affinity produced by CSA is corresponding to a set of
optimal parameters and based on these parameters the MVL func-
tion can be minimized. In addition, in order to maintain the diver-
sity of antibodies and improve the searching performance of CSA,
chaos is integrated to construct a chaotic clonal selection algorithm
(CCSA). The numerical simulation results based on several MVL
functions demonstrate the effectiveness of the proposed algorithm.

The remainder of this paper is organized as follows: in
Section 2, we provide a general description of the multiple-valued
logic function minimization problem. In Section 3, the clonal
selection algorithm and the chaotic system are briefly introduced,
respectively. The proposed CCSA is presented in Section 4. In
Section 5, we validate our model by applying it to a number of
MVL functions. Finally we give some general remarks to conclude
this paper.

2. Problem Representation

Before introducing the problem representation, some prelimi-
naries of the MVL functions are interpreted. One of the functional
completeness multiple-valued algebras for any radix is the TSUM

expression [27]. On the basis of this algebra, MVL function can
be formulated as follows. Let X = {x1, x2, . . . , xn} be a set of
n variables, where xi takes on values from R = {0, 1, . . . , r − 1}.
An n-variable r-valued function F(X) is a mapping F : Rn → R1.
The function is said to have n multiple-valued inputs, and variable
xi is said to take on one of r possible values. Each element in
the domain of the function is called a minterm of the function.
An enumeration of all minterms with the value of the function is
called a truth table.

Any MVL function can be realized based on a sum-of-products
expansion in which each input vector is individually selected, cor-
responding to the canonical sum-of-minterms realization of the
binary case. The operators utilized in the realization are TSUM ,
MIN and window literals are defined as follows:

(1) TSUM and MIN operators:

x1 ∨ x2 ∨ ... ∨ xn = TSUM(x1, x2, . . . , xn)

= MIN(x1 + x2 + . . . + xn, r − 1)

x1 ∧ x2 ∧ . . . ∧ xn = MIN(x1, x2, . . . , xn)

= the smallest value of (x1, x2, . . . , xn)

(2) Window literal operators:

xi(a, b) =
{

r-1 a ≤ xi ≤ b

0 otherwise

where xi (i = 1, 2, . . . , n) are the n r-valued variables of the set
X, ∨ (∧) denotes the TSUM (MIN) operation and xi(a, b) repre-
sents literal function. The parameters a and b are called window

Table I. Example of a quaternary function

X1/X2 0 1 2 3

0 1 0 0 1
1 1 1 0 1
2 3 3 3 1
3 0 1 0 2

parameters. In this condition, any n-variable r-valued function can
be synthesized in a sum-of-products form:

F(x1, . . . , xn) = ∨nr

j=1(ci ∧ x1(a1j , b1j ) ∧ . . .

∧ xi(aij , bij ) ∧ . . . ∧ xn(anj , bnj )) (1)

where x1, x2, . . . , xn are r-valued variables. Window literal param-
eters (aij , bij ) belongs to {0, 1, 2, . . . , r − 1} and the Constant

(also referred as biasing parameters) ci belongs to {0, 1, 2, . . . , r −
1}. In this study, the set consisting of {TSUM , MIN , Window
literal, Constant} is used. A product term can be defined as
a MIN operation on a set of window literals. For example, the
term ci ∧ x1(a1j , b1j ) . . . ∧ xn(anj , bnj ) is a product term. Initially,
there are nr product terms of an MVL function in the sum-of-
products form.

Then, the problem can be represented as follows. Given a tar-
get truth table, the objective of the MVL f unction minimization

problem is to find such an MVL function with a minimum number
of product terms (optimality) that can hit all the values in the truth
table successfully (correctness).

In order to solve this problem, the system parameters including
aij , bij and cj should be tuned with appropriate values. All these
parameters can be involved within a vector V defined as follows:

V = {a11, . . . , a1m, . . . , an1, . . . , anm,

b11, . . . , b1m, . . . , bn1, . . . , bnm, c1, . . . , cm}
Here, m is the number of product terms in the MVL function
(its value will be discussed in Section 4). For example, a target
truth table of a two-variable four-valued MVL function is given
in Table I. It has 11 non-zero minterms. F1 and F2 as shown in
Eq. (2) and Eq. (3), respectively, are two of the solutions. Both of
them can hit the truth table successfully. However, F1 which is its
canonical realization [3] having 11 product terms is regarded as
a local optimum, whereas the minimized function F2 only having
5 product terms is a global optimum solution.

F1(x1, x2) = 1 ∧ x1(0, 0) ∧ x2(0, 0) ∨ 1 ∧ x1(0, 0) ∧ x2(1, 1)

∨ 1 ∧ x1(1, 1) ∧ x2(1, 1) ∨ 1 ∧ x1(3, 3) ∧ x2(0, 0)

∨ 1 ∧ x1(3, 3) ∧ x2(1, 1) ∨ 1 ∧ x1(3, 3) ∧ x2(2, 2)

∨ 1 ∧ x1(1, 1) ∧ x2(3, 3) ∨ 2 ∧ x1(3, 3) ∧ x2(3, 3)

∨ 3 ∧ x1(0, 0) ∧ x2(2, 2) ∨ 3 ∧ x1(1, 1) ∧ x2(2, 2)

∨ 3 ∧ x1(2, 2) ∧ x2(2, 2) (2)

F2(x1, x2) = 1 ∧ x2(3, 3) ∨ 3 ∧ x1(2, 2) ∧ x2(0, 2)

∨ 2 ∧ x1(3, 3) ∧ x2(3, 3) ∨ 1 ∧ x1(0, 2) ∧ x2(0, 0)

∨ 1 ∧ x1(1, 3) ∧ x2(1, 1) (3)

Generally speaking, for any n-variable r-valued logic function,
there are nr elements in the MVL truth table and we have to adjust
(2n + 1)m system parameters for the synthesis of an MVL func-
tion. Nevertheless, there are maximum r(2n+1)·(rn) combination of
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these parameters. It is impossible to enumerate all the possible
combination in a reasonable time. Thus, an efficient minimization
method is necessary and important.

3. CSA and Chaotic System

To make the paper self-explanatory, before actually interpret-
ing the CSA, the basic ideas of the clonal selection principle are
briefly explained.

The clonal selection theory developed by Burnet [28] interprets
the essential features which contain sufficient diversity, discrimina-
tion of self and non-self and long-lasting immunological memory
in the response of lymphocytes in the face of an antigenic stim-
ulus. When a biological immune system is exposed to invading
antigens, some sub-population of its bone marrow-derived cells
(B lymphocytes) can recognize the antigen with a certain affinity
(degree of match), the B lymphocytes will be stimulated to prolif-
erate (divide) and eventually mature into terminal (non-dividing)
antibody secreting cells, called plasma cells. Proliferation of the B
lymphocytes is a mitotic process whereby the cells divide them-
selves, creating a set of clones identical to the parent cell. The
proliferation rate is directly proportional to the affinity level, i.e.
the higher affinity levels of B lymphocytes, the more of them will
be readily selected for cloning and cloned in larger numbers. More
specifically, during asexual reproduction, the repertoire of antigen-
activated B cells is diversified by hypermutation and in addition
to which, a portion of the least stimulated lymphocytes is replaced
per cell generation by newcomer cells from the bone marrow and
join the pool of available antigen recognizing cells to maintain the
diversity of the population.

The CSA based on the clonal selection principle can be briefly
interpreted as follows. From an immunological standpoint, the
CSA is developed in which various immune system aspects are
taken into account such as maintenance of the memory cells,
selection and cloning of the most stimulated cells, death of non-
stimulated cells, re-selection of the clones with higher affinity
and generation of diversity. From a computational perspective, the
clonal selection idea leads to algorithms that iteratively improve
candidate solutions to a given problem through a process of
cloning, mutation and selection.

The general steps of the CSA is described as follows. First, an
antibody repertoire is generated and the affinity of each antibody
in the repertoire is calculated. A few of the highest affinity anti-
bodies from the repertoire are selected and cloned. The clonal rate
is directly proportional to the affinity level. Then the repertoire of
clones is submitted to a mutation process. Finally, some low affin-
ity antibodies in the mutated clones are replaced by new introduced
antibodies. In the original CSA, in addition to the initial antibody
repertoire generated randomly, the low affinity antibodies have to
be replaced by new random antibodies during the mutation process.
No doubt these random antibodies will reduce the complexity of
algorithm. Nevertheless, random antibodies have a bad influence
on the diversity of repertoire. As a result, the search within affin-
ity landscape will become premature and cannot produce better
solutions.

On the other hand, chaos which exhibits bounded dynamic
unstable, pseudo random, ergodic and non-period behavior enables
the search system more capable of hill-climbing and escaping from
local optima [29]. Furthermore, recent study revealed that chaos
also exits in the process of immune response [30].

In this paper, a CCSA integrating CSA and chaos is proposed.
There are several chaotic systems, such as Logistic map [31],

Ab{M}

Ab{N}

f

Chaotic initialization

Select

Clone

MutationAb

Ab

f

Reselect

Ab{N}

Chaotic new antibodies

Fig. 1. Flowchart of CCSA

mapping drawn from chaotic neuron [32], Tent mapping [33],
Lorenz System [34], Chen System [35], Lű System [36], and so
on. The first three referenced chaotic systems can show good
chaotic properties. If a designed algorithm needs the candidate
points to distribute in search space as much as possible, the three
chaotic systems can meet this need. It has been demonstrated that
these three chaotic systems display better randomness than other
systems [37,38]. We adopt the Logistic map as a studying case.
Nevertheless, it does not indicate that the adopted Logistic map
outperforms the other two systems. Further works can be consid-
ered regarding to this issue.

The Logistic map is defined by

λs+1 = 4λs(1 − λs), λs ∈ (0, 1), s = 1, 2. . . (4)

where λs is the value of the variable λ at the sth iteration.
When the initial value of λ (i.e., λ0 ∈ (0, 1)) is not equal to
{0, 0.25, 0.5, 0.75, 1}, the above system enters into a chaotic state.

4. Minimization Method by CCSA

In CCSA, both antibody repertoire initialization and new intro-
duced antibodies are generated based on chaotic systems. The
flowchart of the CCSA is illustrated in Fig. 1.

4.1. Antibody and its length In our approach, for
a given n-variable r-valued MVL function, an antibody Ab is
expressed as the vector of V, that is

Ab = {a11, . . . , anm, b11, . . . , bnm, c1, . . . , cm}

The length of Ab is L = (2n + 1)m.
The length of the antibody L is an important design param-

eter in the CCSA. It mainly determines the search space of the
problem. Since n is a constant for a given MVL function, L is
decided by m. If m is too small, the CCSA will unlikely find the
best solution, i.e. the optimal solution might not be contained in
the search space. On the other hand, if m is too larger, the search
space is enlarged and the CCSA may waste a lot of time in finding
a solution in the no-solution space. A straightforward approach is
to use the length of truth table as the length of antibody. But this
does not guarantee that the CCSA will find the best solution in an
effective way. In this study, two different lengths of antibody are
verified. One is a static length (SL) and the other is an AL. They
are defined as follows.

107 IEEJ Trans 5: 105–114 (2010)
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The SL indicates the length of truth table, i.e. the number
of all possible minterms of an MVL function. For example, for
two-variable four-valued functions, the SL is equal to 24 = 16.
According to the completeness theory [39], any MVL function
can be represented in its canonical realization form, only using
the non-zero minterms of the MVLs truth table. An example is
shown in (Eq. (2)). Following this observation, the AL can be set
as the number of non-zero values in the truth table (NM), for the
function shown in Table I is 11. Since it has been demonstrated that
the maximum number of product terms to cover any two-variable
four-valued function is 12 in reference [16], AL can be adapted
in this special case. The two length strategies are summarized in
the following.

(I) Static length (SL):

SL = nr , when MVLn,r (5)

(II) Adaptive length (AL):

AL =




NM, when MVLn,r

and n �= 2 and r �= 4
NM, when MVL2,4 and NM < 12
12, when MVL2,4 and NM ≥ 12

(6)

Here, MVLn,r denotes the n-variable r-valued logic functions
(n = 1, 2, . . . ; r = 1, 2, . . .).

4.2. Antibody population and affinity assignment
An antibody population which is an M-dimensional group of anti-
body Ab can be defined as

Ab{M} = {Ab1, Ab2, . . . , AbM }
where the positive integer M is the size of antibody population
Ab{M}.

In order to evaluate each antibody Abi , the error function is
defined as:

E(Abi ) = Ec + αE0

=
P∑
p

(Op − Tp)2 + 1

rn
E0 (7)

where Ec denotes the correctness, whereas Eo indicates the opti-
mality (actually the number of product terms). α = 1/rn deter-
mines the relationship between the correctness and the optimality.
Op and Tp represent the pth actual output value of an MVL func-
tion and the target value in the truth table corresponding to the pth
input pattern (x1, x2, . . . , xn)p , respectively. P is the number of
the total input patterns. As all the nodes with window literal param-
eters aij > bij or biasing parameter ci = 0 do not contribute to the
output and thus can be deleted from the function, Eo is calculated
by counting the number of the remaining product terms.

Furthermore, since the objective of CCSA is to maximize the
affinity of the antibody, while in MVL minimization problem it is
to minimize the error function. Thus, in our approach, we define
the affinity of the antibody is in opposition to the error, i.e.

A(Abi ) = 1

E(Abi )

where A(.) is the affinity function.

4.3. Solution space transformation Each antibody
consists of L optimization variables, from a11 to cm, and each opti-
mization variable corresponds to a chaotic variable in (4). Since
the range of optimization variables is [0, r − 1] and that of chaotic

variables is (0, 1), the mapping relationship between them must be
determined. The ergodic space of the chaos system (4) is mapped
to the solution space of the MVL function minimization problem
by (8), and thus the L optimization variables can be expressed by
the L chaotic variables.

Xi = 	rλi
, i = 1, 2, . . . , L (8)

where Xi denotes the ith optimization variable of the problem,
i.e. the ith element in the antibody, and λi generated by (4) is
its corresponding chaotic variable. The function 	.
 removes the
fractional of the independent variable and returns the resulting
integer value. In this condition, each antibody can be represented
as Ab = {a11, . . . , cm} = {	rλ1
, . . . , 	rλL
}.

4.4. Chaotic initialization The L chaotic variables are
generated by the following mapping:

λs+1
i = 4λs

i (1 − λs
i ), i = 1, 2, . . . , L; s = 1, 2, . . . (9)

where i is the serial number of chaotic variables. Initially, the
antibody population Ab{M} is generated as follows. First, let
s = 1 and given that the L chaotic variables have different ini-
tial values λ1

i (i = 1, 2, . . . , L), the first antibody in the popu-
lation can be constructed as: Ab1 = {	rλ1

1
, 	rλ1
2
, . . . , 	rλ1

L
}.
Then, let s = 2, 3, . . . , M , the other M − 1 antibodies in the
population are produced (9). After initialization, M antibodies
(Abi = {	rλi

1
, 	rλi
2
 . . . , 	rλi

L
}, i = 1, 2, . . . , M) are generated.

4.5. Elitist antibodies selection: TS According to
the clonal selection principle, a portion of the antibodies
(Ab1, Ab2, . . . , AbN ) (N < M) with higher affinity (without
loss of generality, we suppose that A(Ab1) > A(Ab2) > . . . >

A(AbM)) are selected as elitist antibodies to undergo the following
proliferation and mutation. Each antibody Abi is subjected into an
elite pool where the proliferation and mutation are carried out.
The other (M − N) antibodies are eliminated (clonal deletion or
apoptosis). This process is denoted as T S.

4.6. Proportional cloning: TC In immunology,
cloning means asexual propagation so that a group of identical
cells can be descended from a single common ancestor, such as a
bacterial colony whose members arise from a single original cell
as the result of mitosis. In this study, the proportional cloning T C

on the current population Ab{N} is defined as

T C(Ab1 + Ab2 + · · · + AbN)

= T C(Ab1) + T C(Ab2) + . . . + T C(AbN)

= {Ab11 + . . . + Ab1q1} + {Ab21 + . . . + Ab2q2 }
+ · · · + {AbN1 + · · · + AbNqN

}
where T C(Abi ) = {Abi1 + Abi2 + · · · + Abiqi

} indicates a propor-
tional cloning in each elite pool, and Abij = Abi , i = 1, 2, . . . , M ,
j = 1, 2 . . . , qi . qi is a self-adaptive parameter which determines
the clone size of the antibody Abi . The representation + is not
the arithmetical operator, but only separates the antibodies here.
qi = 0 denotes that there is no cloning on antibody Abi .

In this study, the antibody with higher affinity is reproduced
more times, viz, the antibody with higher affinity has a larger qi .
The values of qi are calculated as

qi = �Q × N − i

N
�

where Q is an expectant value of the size of the clone popu-
lation and the ceil function �.� returns a value representing the
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smallest integer that is greater than or equal to its independent
variable. After this process, all the antibodies in sub-population
{Abi1, Abi2, . . . , Abiqi

} are the result of the cloning on antibody
Abi , and have the same property as Abi . In fact, cloning on anti-
body Abi is to make multiple identical copies of Abi . The aim
is that the higher the affinity of an individual, the more times the
individual will be reproduced. So there exist more repetitions to
do search around the ‘good’ individuals and thus more chances to
find better solutions.

4.7. Hypermutation: T H A rapid accumulation of
mutations is necessary for a fast maturation of the immune
response. Hypermutation is the main mechanism. More often than
not, a large proportion of the cloned population becomes dys-
functional or develops into harmful anti-self cells after the hyper-
mutation. However, occasionally an effective change enables the
offspring cell to bind better with the antigen, hence affinity is
improved. Although the repertoire of antibodies in the immune
system is limited; through affinity maturation, it is capable of
evolving antibodies to successfully recognize and bind with known
and unknown antigens, leading to their eventual elimination.

In this study, the hypermutation is realized by randomly choos-
ing a gene position in the antibody and then changing it with a ran-
domly generated integer in the domain of [0, r − 1]. The lth gene
of an antibody Abi = (a11, . . . , anm, b11, . . . , bnm, c1, . . . , cm)

denotes the lth element in the antibody. The hypermutation T H

on the antibody Abi can be illustrated as follows.

(a11, . . . , anm, b11, . . . , bij, . . . , bnm, c1, . . . , cm)

↓
(a11, . . . , anm, b11, . . . , b′

ij, . . . , bnm, c1, . . . , cm)

Without loss of generality, we suppose bij is the lth gene in the
antibody Abi . The gene position l and mutated gene b′

ij are gen-
erated based on the following two equations, respectively.

l = 	ran01() · L
 + 1

b′
ij = 	ran01() · r


where the function ran01() returns a random number
uniformly generated in the range of (0, 1). After the
hypermutation, there are

∑
qi mutated antibodies just as

(Ab′
11, Ab′

12, . . . , Ab′
1q1

; . . . ; Ab′
Nq1

, Ab′
Nq2

, . . . , Ab′
NqN

).

4.8. Re-selection: T RS The fittest individual Bi (i =
1, 2, . . ., N) in each elite pool from among its mutated clones is
determined by:

......

Cycle

... ...

... ...Abi1 Abiqi

Ab'i1 Ab'iqi

...Ab11 Ab1q1

Ab' 11      Ab'1q1

... AbN1 AbNqN

Ab'N1 Ab'NqN

...

... ......

... ...

... ...

TS

TC

TH

TRS

TR

Chaotic
initialization

Selection

Cloning

Mutation

Ab'1' Ab'c'...Chaotic new
antibodies introduction

Ab1
(k)

Ab1
(k+1)

Abi
(k+1) AbN

(k+1)

Ab1
(k)

Abi
(k)

Abi
(k)

AbM
(k)

AbN
(k)

Fig. 2. The whole computational process of the chaotic clonal
selection algorithm

Bi = Ab′
ij , j = arg max

j=1,...,qi

{A(Ab′
ij )}

Then, the parent antibody Abi (i = 1, 2, . . . , N ) in each elite pool
is updated with the fittest individual of the clones and the proba-
bility P(Abi → Bi) is according to the role in the following.

P =
{

1 A(Abi ) < A(Bi)

0 A(Abi ) ≥ A(Bi)

4.9. Chaotic new antibodies introduction: TR In
order to maintain the diversity of the population and prevent the
search from being trapped in local optima, a portion of new anti-
bodies are introduced to replace the worst c antibodies in the
elite pools every generation. That is to say, the remaining anti-
bodies after re-selection process {AbN−c+1, AbN−c+2, . . . , AbN }
are replaced by new generated antibodies {Ab′′

1, Ab′′
2, . . . , Ab′′

c }.
Moreover, these new antibodies are also constructed based on the
chaotic system in (9) and this can be realized by setting s = M +
(k − 1)c + 1, M + (k − 1)c + 2, . . . ,M + kc, respectively. And k

(k = 1, 2, . . .) denotes the generation number of the algorithm.

4.10. General computational process Generally
speaking, the whole process of CCSA is illustrated in Fig. 2. The
termination criterion is set to be the condition that when k reaches
a pre-specified large value kmax.

Initially, each antibody is distributed in the ergodic space based
on the chaotic system. Taking full advantages of ergodic and
stochastic properties of chaotic variables, the parallel search mech-
anism of CSA is performed. The higher the affinity of an antibody
is, the more clones it produces (see Fig. 3). In Fig. 3, the high-
affinity antibody Ab1 has more clones undergoing the hypermuta-
tion and thus has more chances to find the optimal solution. On
the contrary, the low affinity antibody Ab2 has less clones. As
a result, the computational complexity can be reduced to some
extent. Furthermore, the lowest affinity antibody is eliminated and
replaced by a new antibody generated by chaos system to carry
out chaotic search in the whole solution space. Both Ab1 and Ab2

are utilized to perform local search in the high-affinity areas of the
solution space while the new introduced antibody replacing Ab3 is
employed to search in the whole solution space and maintain the
population diversity to jump out of the local optima.

The characteristics (or contributions) of the proposed approach
can be described as follows. First and foremost, the applicability of
the clonal selection-based algorithms in synthesizing MVL func-
tions are demonstrated. Besides, chaotic dynamics are embedded
into the CSA. Both the antibody initialization and introduction of
new antibodies are generated based on chaotic systems. Taking full

A
ff

in
ity

Ergodic space of antibodies

Ab2 Ab1 Ab3

Optimal

Fig. 3. Conceptual graph of the proportional cloning in the
ergodic space of the MVL minimization problem
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advantage of the ergodic and stochastic properties of chaotic vari-
ables, the global search ability and diversity of the population are
improved. Furthermore, an adaptive length strategy of antibodies is
proposed to reduce the computational complexity of the algorithm.
Last but not least, an improved affinity function, in which both the
correctness and the optimality of solutions are taken into consider-
ation, enables the algorithm to find higher affinity antibodies with
less product terms in the minimized MVL function.

5. Experiments and Discussions

In this paper, we applied the proposed CCSA to a series of
randomly generated MVL functions as an example. All the simu-
lations were implemented in C++ on a personal computer (Pentium
4 2.8 GHz). The characteristics of CCSA were analyzed from the
following four aspects. First, the parameter sensitivity of CCSA
was discussed. Especially, the two length strategies of antibody
were compared. Then, compared with the error function utilized in
the BP [10] and LS methods [11,12], the proposed affinity func-
tion that enabled the search to find minimized MVL functions
with less product terms was verified. Moreover, the effect of the
chaotic system taking on the CSA was also demonstrated. Finally,
the performance of CCSA was verified by comparing with other
traditional methodologies.

5.1. Parameter sensitivity analysis The performance
of the CCSA was sensitive to the control parameter choices. In
order to evaluate the sensitivity of the user-defined parameters in
CCSA, after limited simulation experimentation, the parameters
listed in Table II were adopted. All the algorithms with different
parameters were separately tested on 20 two-variable four-valued
MVL functions which were randomly generated. In this simula-
tion, the initial average number of non-zero minterms of those
functions was 12.15. Other simulation results are shown in Table
III. The results that we recorded for each user-defined parameter
were the value of the parameter, the correctness (Ec), the optimal-
ity (Eo), the affinity (A(.)) of the final antibody, the number of
generations (G) when the correctness reached zero, and the com-
putational time. All the values in Table III are the average results
of the 20 trails.

As seen from Table III, we can easily find that the parameters
kmax, M , N , Q, c and m possessed obvious features. For the max-
imum number of generation kmax, it can be easily concluded that
the bigger the value of kmax, the better solution can be acquired
while requiring more computational time. A trade-off scheme was
setting kmax = 1000. M was the number of initial candidate solu-
tions, and it just utilized once to produce M chaotic solutions. The
computation times of different values of M were almost the same.
From Table III, we can obtain that the accretion of M can rebound
to the searching ability. Larger value of M indicated larger search
space that the algorithm can explore. As a result, a sufficient large
value of M = 100 was adopted. As to the parameter N which

Table II. Parameters used in the simulation

Initial population number M = 100
Elite pools N = 32
Expectant clone population Q = 32
Number of new introduced antibodies c = 2
Initial number of product terms m

Maximum number of generation kmax = 1000
Note: m is determined according to the AL strategy in (6), i.e. m varies with different

functions.

Table III. Parameter sensitivity (two-variable four-valued
functions)

Value Ec Eo A(.) G T

kmax 100 1.35 5.85 0.78 93.6 0.95
500 0.1 7.0 2.14 237.3 4.68

1000 0 7.0 2.31 264.5 9.33
2000 0 7.0 2.31 266.6 18.60

M 32 0.05 7.05 2.22 293.0 9.31
50 0 7.15 2.26 263.95 9.32

100 0 7.0 2.31 264.5 9.33
200 0 7.0 2.31 251.95 9.35

N 16 0.1 7.1 2.12 435.7 5.58
32 0 7.0 2.31 264.5 9.33
48 0 7.0 2.31 274.85 13.12
64 0 7.0 2.31 136.05 17.36

Q 16 0.05 7.0 2.21 360.4 5.42
32 0 7.0 2.31 264.5 9.33
48 0 7.0 2.31 207.2 14.12
64 0 7.0 2.31 202.9 18.66

c 0 0.05 7.05 2.22 335.4 9.31
1 0 7.0 2.31 252.8 9.32
2 0 7.0 2.31 264.5 9.33
5 0.05 7.05 2.19 292.5 9.45

m Static 0 7.1 2.29 283.1 11.23
Adaptive 0 7.0 2.31 264.5 9.33

decided the antibodies whether enter into the cycle, we affirmed
that the bigger value of N , the better solution can be acquired.
The similar observation can also be found based on Q. Since N

and Q determined the computational complexity of each genera-
tion, lower values of them significantly lowered the computational
time. The optimal solution was observed when double the number
of dimensions of the problem was taken as the number of them.
As the current problem is 24 = 16 dimensional, 32 antibodies and
32 clonal size were used. The parameter c increased the diver-
sity of the solution through introducing new chaotic antibodies.
No introduction of new antibodies (c = 0) might made the search
easily trapped into the local optimal solutions. However, a too fre-
quent introduction of new antibodies (c = 5) caused the algorithm
to discard the improved solutions quickly and cannot acquire a
satisfying solution. Therefore, c = 2 was adopted in this study.

As for the two different length strategies of antibodies, we found
that better solutions can be obtained and less computational time
was required when m utilized the AL strategy.

5.2. Effect of the proposed affinity function The
traditional error function defined in the references [11,12] was
showed in the following.

E = Ec =
P∑
p

(Op − Tp)2

It was a part of the error function in (7). The disadvantages of
the traditional error function were that there was no information
incorporated in the error function and once the network outputs
hit the target truth table successfully (i.e., Ec = 0), search would
stop regardless how many product terms in final MVL function.

In practice, the objective of the MVL function design was not
only the degree of the correctness which exposed how the system
outputs and the target values in the truth table matched with each
other but also the amount of the product terms in the final MVL
function. Therefore, in this study both of them were taken into
consideration.

In (7), Ec was designed to be the most important factor and Eo

to be the second one. In order to realize this primary and secondary
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relationship between Ec (∈ (0, (r − 1)2rn]) and Eo (∈ (0, rn]), we
set α = 1/rn to make αEo belong to the range of (0, 1] in our
approach. When Ec ≥ 1 the landscape of the error function E

was almost dominated by the correctness function Ec, while when
Ec < 1, the optimality function Eo would take the main effect.

In this section, the effect of the proposed error function (or
affinity function) was observed by analyzing three typical final
solutions for the given MVL truth table in Table I as an example.
The solutions were F2 in Eq. (3), F3 in Eq. (10) and F4 in Eq. (11),
respectively.

F3(x1, x2) = 3 ∧ x1(0, 1) ∧ x2(2, 2) ∨ 1 ∧ x1(1, 1) ∧ x2(2, 3)

∨ 1 ∧ x1(0, 1) ∧ x2(1, 2) ∨ 2 ∧ x1(3, 3) ∧ x2(3, 3)

∨ 1 ∧ x1(0, 0) ∧ x2(0, 2) ∨ 3 ∧ x1(0, 2) ∧ x2(2, 2)

∨ 1 ∧ x1(3, 3) (10)

F4(x1, x2) = 1 ∧ x1(0, 0) ∧ x2(0, 2) ∨ 1 ∧ x1(1, 1) ∧ x2(1, 3)

∨ 1 ∧ x1(3, 3) ∨ 3 ∧ x1(0, 2) ∧ x2(2, 2) (11)

The properties of the three solutions can be summarized as follows.
(I ) In (Eq. (3)), Ec = 0, Eo = 5, E(F2) = 5/16 = 0.3125,

A(F2) = 3.2 and F2 was a global optimal solution;
(II ) In Eq. (10), Ec = 0, Eo = 7, E(F3) = 7/16 = 0.4375 and

A(F3) ≈ 2.286 and F3 was a local optimal solution;
(III ) In Eq. (11), Ec = 1, Eo = 4, E(F4) = 1 + 4/16 = 1.25

and A(F4) = 0.8 and F4 was a local optimal solution;
Compared with F4, both F2 and F3 were more attractive areas

during searching since they had higher affinities. It was because
that the correctnesses (Ec) of both F2 and F3 were better than that
of F4. Nevertheless, as the correctness of F3 was zero, the search
would stop by using the traditional error function. It was obvious
that the minimized function F3 was not so satisfactory because it
still had seven product terms. This problem would worsen when
dealing with actual large MVL circuits and systems. Fortunately,
by utilizing the modified error function described above, F2 and F3

both of which could meet the target truth table successfully (i.e.,
Ec = 0) were separated with different affinities. In this condition,
F2 would be the only global optimal solution having the highest
affinity.

Furthermore, a typical searching process based on a randomly
generated MVL function is depicted in Fig. 5.2.. In Fig. 5.2., the
horizontal axis indicated the generation of the algorithm whereas
the vertical axis denoted the values of Ec, Eo and A(.), respec-
tively. Initially, there were 13 elements of the obtained function
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Fig. 4. A typical searching process of CCSA

different from the target truth table (Ec = 13). Then at the 507th
generation, the search found a solution hitting the truth table suc-
cessfully. If using the traditional error function, the search would
stop. However, at the 842th generation, a higher affinity antibody
with less number of product terms was found.

Generally speaking, during all the functions with the same cor-
rectness (Ec), the less amount of the product terms (Eo) it had,
the function would be synthesized more possibly after searching.
As a result, less average number of product terms was required
to realize a given MVL function by using the proposed affinity
function.

5.3. Effect of the chaotic system taking on the CSA
In order to see how the chaotic system works on the CSA, compar-
ison about the population diversity and the searching performance
between CSA and the combined algorithm (CCSA) were observed.

A diversity index for the population of the solutions [40] is
defined in the following. First, we define the distance between
two solutions A and B as:

dis(A, B) =
{

0, Eo(A,B) = 0
Eo(A,B)−f (A,B)

Eo(A,B)
, otherwise

where Eo(A,B) = min{Eo(A),Eo(B)} indicates the minimum
value of the product terms between A and B, whereas the function
f (.) returns the number of the common product terms between
two solutions. For instance, dis(F3, F4) = 0.75. In a generation,
if the fittest solution is noted as A0 and the others are noted as
Ai (i = 1, 2, . . . , N − 1), the diversity of the population can be
defined as:

DIV =
∑N−1

i=1 dis(A0, Ai)

N − 1

where DIV denotes the diversity of the population. It belongs to
[0,1], and its main property is that the larger value of DIV, the
better the diversity of the population.

We depicted the diversity versus the generation and their cor-
responding searching performances between CSA and CCSA in
Figs 5 and 6, respectively. The difference between CSA and CCSA
is the chaotic system. The initialization and new antibody introduc-
tion processes in CSA are based on random mechanisms, i.e. the
candidate solutions are generated from uniform random numbers
in [0,1]; while in CCSA they are based on the chaotic system. The
comparison in Fig. 5 made it evident that CCSA had better diver-
sity of the population and therefore stronger the ability of finding
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Fig. 5. Diversity of the population versus the generation
between CSA and CCSA
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Fig. 6. Comparison of the searching performance between
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Table IV. Experimental results during LS, SDLS, GA
and CCSA algorithms

MVL2,4 MVL4,4 MVL2,16

LS Best Ec 1 38 417
Average Ec 6.19 46.32 600.98
Average Eo — — —
T (s) 3.05 135.89 89.58

SDLS Best Ec 0 (9) 30 355
Average Ec 4.41 45.76 593.54
Average Eo 7.56 — —
T (s) 3.25 155.62 125.05

GA Best Ec 0 (78) 9 118
Average Ec 1.42 18.12 245.50
Average Eo 7.17 — —
T (s) 16.87 577.20 385.56

CCSA Best Ec 0 (196) 3 25
Average Ec 0.02 12.50 80.65
Average Eo 6.95 — —
T (s) 9.33 331.28 212.01

The symbol ‘—’ means there is no value recorded for the result.

new product terms for an MVL function. On the other hand, from
Fig. 6 we also found that the searching performance (convergence
speed) of CCSA was better (faster) than that of CSA. As a result,
we can say that the chaotic system enabled the clonal selection
algorithm to better maintain the diversity of the population and
improve the searching performance.

5.4. Comparison with other traditional methodolo-
gies Finally, we compared the experimental results of the four
algorithms involving LS [11], SDLS [12], GA [15] and CCSA.
In order to reduce the stochastic effect of the algorithms and
make statistic comparisons, all the results were averaged over 20
randomly generated MVL functions and each function was run
ten replications. Table IV summarized the results based on three
groups of MVL functions.

In Table IV, the best and average correctness, the average num-
ber of product terms of the final solution and the computational
time for each algorithm were recorded, whereas the values listed
in the bracket were the times, during the 200 trails, that the cor-
rectness of the algorithm reached zero. It should be noted that the
average number of product terms (optimality) was only recorded
on condition that the correctness reached zero. From Table IV, we
observed that, for the relatively small problems MVL2,4, CCSA
can learn the target MVL truth table successfully with a only
exception of four times. For large MVL functions (MVL4,4 and
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Fig. 7. Comparison of the searching performance during LS,
SDLS, GA and CCSA algorithms

MVL2,16), CCSA was able to perform near-optimal solutions. In
general, CCSA was able to perform better solutions than the other
algorithms within a reasonable computational time. The compari-
son results during the average Eo further confirmed the importance
of the proposed affinity function.

Furthermore, in order to see how the algorithms performed solu-
tions, we took MVL2,4 as an example for detailed analysis of
the searching performance. Similar analysis can be done for other
functions. In Fig. 7, we plot the best correctness in a generation
for each algorithm as a function of the number of generations.
In the initial stage of searching, GA and CCSA can perform bet-
ter solutions because they had a population of candidate solutions,
whereas LS and SDLS only manipulated a single solution. In addi-
tion, when the difference between GA and CCSA is concerned, the
two algorithms differ from the view point of inspiration, vocabu-
lary and sequence of steps [41]. In particular, in GA the population
is evolved using sexual crossover and mutation, whereas in clonal
selection process the proportional cloning (T C) operator is asexual
and each child antibody produced by a cell is exact copy of its
parent. It is evident that this operator can map a problem in a low
dimension space to a high one, then project the results to the orig-
inal space after solving, and therefore the problem can be solved
more efficiently [42]. From Fig. 7, it can be easily found that
CCSA outperformed the other algorithms in terms of the solution
quality and convergence speed.

6. Conclusions

In this paper, a CCSA was proposed to synthesize MVL func-
tions. On the basis of the clonal selection algorithm, chaotic
dynamics were utilized to improve the global search ability of
the algorithm and maintain the diversity of the population. Fur-
thermore, two other improvements involving the affinity function
and the AL strategy of antibodies enabled the algorithm to find
better solutions and reduce the computational complexity, respec-
tively. The performance of the proposed algorithm was evaluated
by synthesizing a number of randomly generated multiple-valued
functions and comparing the results of those of several traditional
algorithms. The simulation results indicated that the proposed algo-
rithm can synthesize the MVL function effectively and efficiently.

In future, we plan to combine the technology-dependent
approach with the proposed algorithm to construct a hybrid system
for synthesizing the MVL functions.
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