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Abstract: For a stochastic delay differential equation, the effects of noise and time delay are discussed in the sense

of mean square stability. Neither time delay nor noise play bad roles for the differential equations and both of them are

ubiquitous in nature. The so-called domain subdivision approach is taken to study the stability regions in terms of the

parameters of a given equation and the Ito formula is employed to deal with the fluctuation noise. An interesting result

demonstrated in this paper shows that noise with appropriate power could reduce the influence of time delay.
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1. INTRODUCTION

Delays and noises in feedback loops can be seen in

real systems such as human-machine systems, biomedi-

cal systems, process control, remote control and robots.

The retardation comes from transportation lags, and con-

duction or communication times, etc. [1]. Two famous

models, the neural control of stick balancing at the fin-

gertip and the study of the fluctuations in the center of

pressure during quiet standing, were discussed by many

researchers[2]. In general, time delay is known as a bad

factor to the stability of the control system, but the study

of human balancing shows that noise may help the sta-

bility of the control system. The challenge of this paper

focuses on the relationship between noise and time delay,

and the contribution of the noise to stabilizability in the

sense of mean square stability.

In this paper, the proof of the main result of [4] is cor-

rected. In [3] and [4], the authors showed that the influ-

ence of time delay can be reduced by noise for a scalar

stochastic delay system with particular parameters. It

means that the existence of noise may relax the stability

condition. They use the so-called domain subdivision ap-

proach together with the Ito’s formula to derive the stabil-

ity regions in terms of the parameters of a given equation

and to deal with the fluctuation noise. We also demon-

strate a result which shows that appropriate noise power

can reduce the influence of time delay and overpowered

loses its stability.

2. TIME DELAY AND NOISE

Consider a scalar system

ẋ(t) = ax(t) + bu(t), a > 0, b > 0, (1)

where u(t) is the control input. It is well known that the

system is stabilized by u(t) = −px(t) with the propor-

tional gain p if and only if a − bp < 0. It is also known

that noise and delay disturb the stability condition. In this

section, we review the effects of noise and delay, respec-

tively.

Several sufficient conditions for exponentially p-th
moment stable were given for stochastic delay differen-

tial equations[5]. Both delay and noise are taken as un-

kindly to the stability in the results of [5]. Following the

results of [1], an end-fixed inverted pendulum system was

studied in [6] and their result shows that the stochastic

system can be stabilized by noise in almost surely sta-

ble. In the sense of mean square stable[7], the solution

of a stochastic system will be discussed in section 3. Our

result shows that noise still can reduce the influence of

time delay even if it cannot help stability when there is

no delay in the stochastic system in mean square asymp-

totically stable.

2.1 Influence of time delay

When we use time delayed feedback

u(t) = −px(t− τ) (2)

for the system (1), the resulting delayed system is given

by
�

ẋ(t) = ax(t)− bpx(t− τ),

x(θ) = φ(θ), θ ∈ [−τ, 0], (3)

where τ denotes the time delay, φ(θ) : [−τ, 0] �→ R is a

continuous function.

Definition 1: The equilibrium solution x(t) ≡ 0 of (3)

is said to be exponential stable if there exist α > 0 and

β > 0 such that for all φ, the solution satisfies

�x(t, φ)� ≤ α �φ� exp(−βt). (4)

It is well known that the equilibrium solution x ≡ 0 of

(3) is exponentially stable if and only if all the infinitely

many characteristic roots of the characteristic equation

λ = a− bp exp(−λτ) (5)

have negative real parts. Clearly, a pure imaginary char-

acteristic root λ = jω, ω > 0 encloses the stability region
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Fig. 1 Trajectories x(t) of (3) for the initial state x(t) =
1,−τ ≤ t ≤ 0.

in the parameter space. To derive the boundary, by sub-

stituting λ = jω into (5), we have

a− bp cos(ωτ) = 0, ω − bp sin(ωτ) = 0. (6)

The stability boundaries (6) form ω-parameterized curves

in the parameter plane (a, b) for the change of ω for fixed

τ > 0 and p > 0, which are derived from







a = bp, b ∈ (0,+∞) for ω = 0,

a = ω
cos(ωτ)

sin(ωτ)
, b =

ω

p sin(ωτ)
for ω > 0.

(7)

By analyzing the sign of
d

db
Reλ

�

�

λ=jω
together with the

implicit differentiation of the characteristic function with

respect to the parameters a and b in (7), we can check if

some characteristic root crosses the imaginary axis from

left to right (toward instability), or right to left (toward

stability). The stability region shrinking with increas-

ing of time delay as shown in Fig. 1. This technique is

called the domain-subdivision method (also called the D-

decomposition method)[8].

2.2 Effect of noise

When the feedback gain p is affected by noise, the sys-

tem (1) is

u(t) = −(p+ ξ(t))x(t), (8)

where ξ(t) denotes the Gaussian white noise, and at least

formally, σẇ(t) = ξ(t). Then, the resulting feedback

system is

dx(t) = (a− bp)x(t)dt− σbx(t)dw(t). (9)

Definition 2: The equilibrium solution x(t) ≡ 0 of (9)

is said to be almost surely stable (stable with probabil-

ity 1), if

Pr

�

lim
�x(0)�→0

sup
t≥0

�x(t; t0, φ)� = 0

�

= 1. (10)

The solution for the initial state x(0) = x0 is

x(t) = x0 exp

��

a− bp− (σb)2

2

�

t− σbw(t)

�

. (11)
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Fig. 2 Trajectories x(t) of the stochastic system (9) for

different σ.

Since (11) is equivalent to

lnx(t)− lnx0
t

=

�

a− bp− (σb)2

2

�

− bσ
ω(t)

t
, (12)

the stochastic system (9) is almost surely stable if and

only if a − bp − (σb)2/2 < 0. Hence, even if a − bp >
0, (9) can be stabilized by noise, as shown in Fig. 2. A

sufficient stability condition for a stochastic system with

no delay has been given by Ushida[6].

On the other hand, by using the Ito’s formula, we ob-

tain

dx2(t) =
�

2(a− bp) + (σb)2
�

x2(t)dt

− 2σbx2(t)dw(t). (13)

Furthermore, we have

E
�

x2(t)
�

= x20 exp
�

(2(a− bp) + (σb)2)t
�

. (14)

Hence, the stochastic system (9) is exponentially mean

square stable if a − bp + (σb)2/2 < 0. This example

shows that the system cannot be stabilized by noise in the

sense of moment stability but almost sure stability.

3. STABILITY CONDITION

As we reviewed in the previous section, stability con-

ditions have been investigated for time delay and noise

individually. In this section, we discuss mean square sta-

bility of a stochastic delay feedback system.

The system (1) and control

u(t) = −(p+ ξ(t))x(t− τ) (15)

results in a stochastic delay differential equation

dx(t) = [ax(t)− bpx(t− τ)] dt

− σbx(t− τ)dw(t). (16)

Definition 3: The equilibrium solution x(t) ≡ 0 of

(16) is said to be the following.

1) mean square stable, if for any ǫ > 0, there exists

δ > 0 such that

E
�

�x(t, φ)�2
�

< ǫ, (17)

whenever �φ� < δ.
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2) asymptotically mean square stable, if it is mean

square stable and for any initial function φ,

lim
t→∞

E
�

�x(t, φ)�2
�

= 0. (18)

Theorem 1: The system (16) is asymptotically

mean square stable if 2a− 2bp+ σ2b2 �= 0 and all solu-

tions of the characteristic equation

F (λ) := 2λ− 2a+ 2bpe−λτ − σ2b2e−2λτ = 0 (19)

satisfy Re λ < 0.
Proof: Using the Ito’s formula, we obtain

dx2(t) =
�

2ax2(t)− 2bpx(t)x(t− τ)

+σ2b2x2(t− τ)
�

dt

− 2σbx(t)x(t− τ)dw(t). (20)

To integrate (20) from 0 to t and take the expectation,

since E
�

� t

0
2σbx(s)x(s− τ)dw(s)

�

= 0, we have

dE
�

x2(t)
�

=
�

2aE
�

x2(t)
�

− 2bpE {x(t)x(t− τ)}
+σ2b2E

�

x2(t− τ)
��

dt. (21)

By differentiating (21), we obtain

d

dt
E
�

x2(t)
�

=2aE
�

x2(t)
�

− 2bpE {x(t)x(t− τ)}

+ σ2b2E
�

x2(t− τ)
�

. (22)

If (22) has a steady-state solution K∗ := E
�

x2(t)
�

=
E {x(t)x(t− τ)} = E {x(t− τ)x(t− τ)}, K∗ must

satisfy

0 = 2aK∗ − 2bpK∗ + σ2b2K∗. (23)

Hence, if 2a− 2bp+ σ2b2 �= 0, the steady-state solution

must be zero, i.e., K∗ = 0. With this condition and the

existence of the steady-state solutionK∗, the system (16)

becomes mean square asymptotically stable, i.e.,

lim
t→+∞

E
�

x2(t)
�

= K∗ = 0. (24)

Next, when we assume that there exist nontrivial so-

lutions of the form E {x(t)x(s)} = ceλ(t+s) with a con-

stant c, we obtain the characteristic function (19) from

(22).

Remark 1: When τ = 0, the characteristic equation

(19) has a single solution λ = a− bp+ σ2

2 b
2. Hence, if

a < pb− σ2

2
b2, (25)

the system (16) is asymptotically mean square stable

when τ = 0.
Theorem 2: All solutions of the characteristic

function (19) satisfy Re λ < 0 if the following conditions

are held.

p
√
τ > 2σ, (26)

(a, b) ∈ Ω0 ∩ Ωω (27)

0

a

b

b
0

a
0

(a
0
,b

0
)unstable

stable

unstable

Fig. 3 The stability region of the intersection of (28) and

(29). The solid line (35) and the dotted line (30)(31).

where

Ω0 =

�

(a, b) | 0 < a < pb− σ2

2
b2
�

(28)

Ωω = {(a(ω), b) | b < b(ω) for ω ∈ [0, ω0/τ)} (29)

where

a(ω) = ω cot(2ωτ) +
p

4σ2

p−Q(ω)

cos2(ωτ),
(30)

b(ω) =
1

2σ2

p−Q(ω)

cos(ωτ),
(31)

Q(ω) =
�

p2 − 4σ2ω cot(ωτ), (32)

and ω0 is a minimal positive solution of

4ωσ2 cos2(ωτ) cot(2ωτ) + p(p−Q(ω)) = 0. (33)

The stability region given by Theorem 2 is depicted in

Fig. 3.

Proof: When the stability is violated by changing pa-

rameters a, b, and so on, there exists at least one solu-

tion λ of (19) on the imaginary axis. That is, there exists

ω ≥ 0 satisfying F (jω) = 0. To separate the real and

imaginary parts of F (jω) = 0, we obtain
�

σ2b2 sin(2ωτ)− 2bp sin(ωτ) + 2ω = 0

2a− 2bp cos(ωτ) + σ2b2 cos(2ωτ) = 0.
(34)

Then, the pair (a(ω), b(ω)) satisfying (34) provides the

boundary between the stable region and the unstable one.

When (34) has a solution ω = 0, it is equivalent to

a = pb− σ2

2
b2, b ∈ (0,+∞). (35)

0

0

a

b

Fig. 4 Boundaries of domain subdivision formed by

(34). The central rectangle represents Fig. 3.
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Fig. 5 The stability region Ω0 (28)

for ω = 0.

Hence, if the characteristic function (19) does not have

the solution λ = 0, (a, b) never satisfy (35). In addition,

(35) separates two regions Re λ < 0 and Re λ > 0 in

the complex plane. To determine which direction corre-

sponds to Re λ < 0, we will check the sign ofRe
dλ

da

�

�

�

λ=0
.

To do so, by differentiating (19) by a, we obtain

dλ

da
− 1− bpτe−λτ dλ

da
+ σ2b2τe−2λτ dλ

da
= 0. (36)

From this, we have

Re
dλ

da
= Re

1

1− bpτe−λτ + σ2b2τe−2λτ .
(37)

Since under (26)

1− pτb+ σ2τb2 ≥ 1− p2

4σ2
τ > 0, (38)

we obtain

Re
dλ

da

�

�

�

λ=0
=

1

σ2τb2 − pτb+ 1
> 0. (39)

Hence, we can conclude that (25) specifies the region Re

λ < 0. Together with a > 0, the set Ω0 (28) will provide

a condition for (a, b) so that the characteristic function

(19) has solutions Re λ < 0.

Next, we consider case where (34) has a solution λ =

jω with ω ∈ (0,
π

2τ
), (

π

2τ
,
π

τ
), (

π

τ
,
3π

2τ
), · · · . Then, by

solving (34) with respect to a and b, we have

b =
p sin(ωτ)±

�

p2 sin2(ωτ)− 2ωσ2 sin(2ωτ)

σ2 sin(2ωτ)

=
p+Q′(ω)

2σ2 cos(ωτ)
(40)

a = bp cos(ωτ)− bp sin(ωτ)− ω

sin(2ωτ)
cos (2ωτ)

= bp cos(ωτ)− bp cos(2ωτ)

2 cos(ωτ)
+ ω cot(2ωτ)

= bp

�

cos(ωτ)− 2 cos2(ωτ)− 1

2 cos(ωτ)

�

+ ω cot(2ωτ)

= p
p+Q′(ω)

4σ2 cos2(ωτ)
+ ω cot(2ωτ), (41)

where

Q′ =

�
�

p2 − 4ωσ2 cot(ωτ) (42)

−
�

p2 − 4ωσ2 cot(ωτ) (43)

The pair (a, b) satisfying (40) and (41) forms the stability

boundaries. However, the boundary formed by (a, b) sat-
isfying (40) and (41) with Q′ (42) does not intersect Ω0.

Therefore, we ignore (42) hereafter. Hence, we consider

(a, b) with (43), that is, we have (30) and (31). Here,

when we regard a as a function of ω, (30) is a monotonic

decreasing function. Hence, there exists a solution ω0

satisfying

0 = ω cot(2ωτ) +
p

4σ2

p−Q(ω)

cos2(ωτ),
(44)

equivalently, (33). Then, a > 0 for ω < ω0/τ and a ≤
0 for ω ≥ ω0/τ . Hence, we do not need consider the

solution λ = jω for ω ≥ ω0/τ .
Since lim

ω→0
ω cot(ωτ) = τ−1, letting ω → 0 in (30),

we obtain the limit value of a and b as

a0 =
1

2τ
+

p

4σ2

�

p−
�

p2 − 4σ2τ−1
�

, (45)

b0 =
1

2σ2

�

p−
�

p2 − 4σ2τ−1
�

. (46)

Since they also satisfy (35), we can regard (a0, b0) as an
intersection of (35) and (30). (46) gives the upper bound

of a.
When the characteristic function (19) have no solution

λ = jω for ω ∈ (0, ω0/τ ], a and b have different value

form (30) and (31) for ω ∈ (0, ω0/τ ]. In addition, the

curve formed by (30) and (31) as ω changes in the inter-

val ω ∈ (0, ω0/τ ] separates two regions Re λ < 0 and

Re λ > 0 in the complex plane. To determine which di-

rection corresponds to Re λ < 0, we will check the sign

of Re
dλ

db

�

�

�

λ=0
. To do so, by differentiating (19) by b, we

obtain

dλ

db
+ pτe−λτ − bpτe−λτ dλ

db

− σ2bτe−2λτ + σ2b2τe−2λτ dλ

db
= 0. (47)

From the above, we have

Re
dλ

db
= Re

−pe−λτ + σ2be−2λτ

1− bpτe−λτ + σ2b2τe−2λτ .
(48)

By substituting λ = jω into (48), we obtain

Re
dλ

db

�

�

�

�

λ=jω

=Re
−pe−ωτj + σ2be−2ωτj

1− bpτe−ωτj + σ2b2τe−2ωτj

=Re
nr(ω) + jni(ω)

dr(ω) + jdi(ω)
(49)

where

nr(ω) = −p cos(ωτ) + σ2b cos(2ωτ)

ni(ω) = p sin(ωτ)− σ2b sin(2ωτ)

dr(ω) = 1− bpτ cos(ωτ) + σ2b2τ cos(2ωτ)

di(ω) = bpτ sin(ωτ)− σ2b2τ sin(2ωτ). (50)
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Furthermore, we have

Re
dλ

db

�

�

�

�

λ=jω

=
f(ω)

d2r(ω) + d2i (ω),
(51)

where

f(ω) =nr(ω)dr(ω) + ni(ω)di(ω)

=σ2b cos(2ωτ)− p(1 + 2σ2b2τ) cos(ωτ)

+ (σ4b2 + p2)τb. (52)

Since f(ω) > 0 due to Lemma 1 in Appendix,

Re
dλ

db

�

�

�

�

λ=jω

> 0. (53)

Hence, we conclude that b < b(ω) specifies the region Re

λ < 0. The set Ωω (29) will provide a condition for (a, b)
so that the characteristic function (19) has solutions Re

λ < 0.

4. NUMERICAL EXAMPLES

To illustrate our result, we will apply the Euler-

Maruyama method [9] to the stochastic delay differential

equation (20) with an initial function φ = 1,−τ ≤ t ≤ 0,
and parameters a = 0.4, b = 0.3, p = 2, τ = 2, σ = 1.4.
These parameters satisfy conditions in Theorem 2 as fol-

lows. 2a − 2bp + σ2b2 = −0.2236 �= 0, and p
√
τ =

2.8284 > 2σ = 2.8, and satisfies the conditions in Theo-

rem 2 as

0 < a = 0.4 < a0 = 0.8633, (54)

0.2248 < b = 0.3 < 0.3694. (55)

The Euler-Maruyama method gives us an approximation

of true solution of (20) as the Markov chain x2(tj) de-

fined by

x2(tj)

=x2(tj−1) +
�

ax2(tj−1)− bpx(tj−1)x(tj−m)

+σ2b2x2(tj−m)
�

δ − 2σbx(tj−1)x(tj−m)∆w(tj)
(56)

where δ := tj − tj−1 is the small time interval,m = τ/δ

and ∆w(tj) = w(tj) − w(tj−1) =
√
δN(0, 1) which is

generated from a discretized Brownian path. A typical

simulation result by the method is shown in Fig. 6. Al-

though the system (20) is unstable when σ = 0, x2(t)
approaches to 0 when σ = 1.4. However, when the

power of noise exceeds the critical value σcr =
p

2

√
τ ,

the stochastic system will be unstable. The critical

value is derived from the equation bp − σ2

2
b2 − a =

− 3p

4σ2

�

p2 − 4σ2τ−1 = 0 which is obtained by substi-

tuting (30) into (35), and letting ω → 0. In the example,

the critical value is σcr =
√
2 ≈ 1.414. When σ exceeds

the critical value, the boundaries cannot be determined.
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0 5 10 15 20
−2

0

2
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−50

0

50
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x
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(t

)

σ=1.4

σ=2

σ=0

Fig. 6 Trajectories x2(t) of (56) for different σ.

5. CONCLUSION

In this paper, we have shown that noise with appro-

priate power may enhance the stability of a time delayed

system. Our results show that the delayed systems can be

stabilized by noise if the power of noise is appropriate.
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APPENDIX

Lemma 1: When 0 < ωτ < ω0τ < π/2,

f(ω) > 0 for b(ω) =
1

2σ2

p−Q(ω)

cos(ωτ)
. (57)

Proof: We introduce a new variable y = ωτ . Then,

f(y) =σ2(2 cos2 y − 1)b− p(1 + 2σ2b2τ) cos y

+ σ4τb3 + τp2b, (58)

b(y) =
1

2σ2

p−Q(y)

cos(y)
, (59)

Q(y) =
�

p2 − 4σ2ω cot(y)/τ , (60)

By differentiating f(y) to y with b(y), we obtain

df(y)

dy
=σ2(2 cos2 y − 1)

db

dy
− 4σ2b cos y sin y

+ p(1 + 2σ2τb2) sin y − 4σ2pτb cos y
db

dy

+ 3σ4τb2
db

dy
+ τp2

db

dy
, (61)

where

db(y)

dy
=

1

τQ(y)

sin y cos y − y

sin2 y cos y
+
p−Q(y)

cos2 y

sin y

2σ2
. (62)
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Note the condition (26), we derive

df(y)

dy
2Q(y)τσ2 sin3 y cos4 y

=4σ4 sin2 y cos6 y + 2σ2p2τ sin4 y cos4 y

+ 2σ4 sin2 y cos4 y + 4σ2p2τ sin4 y cos2 y

+ 4p2τ2 sin4 y cos2 y + σ2p2τ sin2 y cos4 y

+ 5σ4y2 cos2 y + 4σ2p2τy sin5 y cos y

+ 8σ2p2τy sin3 y cos y − 4σ4y sin y cos5 y

− 8σ4y sin3 y cos5 y − 4σ4y sin3 y cos3 y

− 12σ4y2 sin2 y cos2 y − 8σ4y sin y cos3 y

+ 4σ2τpQ(y) sin2 y cos4 y + 3σ2τpQ(y)y sin y cos y

+ 4σ2τpQ(y)y sin3 y cos3 y + 3τ2p3Q(y) sin4 y

− σ2τpQ(y) sin4 y cos2 y − 4σ2τpQ(y)y sin y cos4 y

− 3σ2τpQ(y) sin2 y cos2 y − τ2p3Q(y) sin4 y cos2 y

− 9σ2τpQ(y)y sin3 y cos y

>σ4 cos(y)H1(y) + pτQ(y) sin(y)H2(y), (63)

where

H1(y) =4 sin2 y cos5 y + 8 sin4 y cos3 y + 6 sin2 y cos3 y

+ 16 sin4 y cos y + 5y2 cos y + 16y sin5 y

+ 32y sin3 y − 4y sin y cos4 y − 8y sin3 y cos4 y

− 4y sin3 y cos2 y − 12y2 sin2 y cos y

− 8y sin y cos2 y, (64)

H2(y) =4 sin y cos4 y + 3y cos y + 4y sin2 y cos3 y

+ 8 sin3 y + sin5 y cos2 y − sin3 y cos2 y

− 4y cos4 y − 3 sin y cos2 y − 9y sin2 y cos y.
(65)

When 0 < y < ωτ < π/2, sin y > 0, cos y > 0,
H1(y) > 0 andH2(y) > 0 (we also show thatH1(y) > 0
and H1(y) > 0 in Fig. 7). Hence

df(y)

dy
> 0. (66)

Using (46) and (52), we have

lim
ω→0

f(ω) = (σ2b0 − p)(σ2τb20 − pτb0 + 1) = 0. (67)

Hence, f(ω) > (67) = 0.
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