ASTM C 1260 によるフライアッシュ含有モルタルの 安山岩に対する ASR 抑制効果の評価[†]

広野真一*鳥居和之**

An Assessment on Mitigating Effect of ASR in Fly Ash-Bearing Mortars with Andesite Stones by ASTM C 1260

by

Shinichi HIRONO^{*} and Kazuyuki TORII^{**}

Volcanic rocks such as andesite have popularly been used for aggregates in the Hokuriku District. Therefore, the andesitic aggregates have contributed to a steady occurrence of alkali-silika reaction (ASR) in concrete. Taking into account the effective utilization of local materials, so-called "Chisan-chisho", both the reduction in the environmental impact and the rationalization of natural resources, positive countermeasures for mitigating ASR by using blended cements with fly ash (FA) or blast-furnace slag (BFS) are most expected. This paper examines the mitigating effects of mineral admixtures on ASR of mortars by the accelerated mortar-bar test (ASTM C 1260). As the result of test, the replacement with FA or BFS at normal percentages recommended by JIS A 5308 decreased significantly the expansion of mortar bars using reactive andesitic aggregates in the Noto peninsula. Especially, a high-quality fine FA produced in the Hokuriku District is hopeful in its practical use of concrete mixtures. Furthermore the ASR mitigating effects by mineral admixtures are assessed with a good performance by the test method "ASTM C 1260".

Key words : Alkali-silica reaction, Mitigating effect, Fly ash, ASTM C 1260, Petrographic examination

1 緒 言

火山帯に位置するわが国には, 地質年代の新しい火山 岩類が広く分布し,安山岩などがコンクリート用骨材と して各地で活用されている.一方,このような火山岩類 は一般に、火山ガラス、クリストバライト、トリディマ イト,オパールなどを含み,アルカリシリカ反応(以下, ASRと略す)による被害を発生してきた.¹⁾北陸地方とそ の周辺においても, 安山岩をはじめとする火山岩類が広 く分布する.²⁾それらは、中部山岳地帯から流れ下る大河 川を有する地域では、豊富な砂利資源の重要な構成要素 である.とくに,砂利資源に乏しい能登半島では砕石と しても広く利用され, ここでも骨材供給の役割を果たし てきた. このように、北陸地方において安山岩は骨材資 源として,川砂利と砕石のいずれにも非常に重要である が、反面、安山岩による顕著なASRの発生が非常に多く 確認されてきた.^{3), 4)}わが国のASR 抑制対策は, アルカリ 総量規制によりコンクリートのアルカリ量を低く抑える 方法,ASR 抑制効果のある混合セメントの使用,または ASR 反応性試験の結果が「無害」と判定された骨材の使 用からなるが、「無害」と判定される骨材の使用に頼るこ とは,上述の地質を考慮すれば貴重な骨材資源を放棄す ることであり適当でない. また, 北陸地方では冬季の日本 海からの季節風や凍結防止剤の散布による, コンクリー ト中へのアルカリの浸入は避けられず³さらにASRの反 応過程で骨材からアルカリが溶出する問題もあり 5 アル

カリ総量規制は意味をなさない場合がある.したがって, 地産地消による環境負荷の低減と資源の有効利用を念頭 に置き,またコンクリートへの信頼をさらに高めるため にも,混合セメントの使用による,より積極的な ASR 抑 制対策に期待が向けられるのは必然的であった.このよ うな事情と期待を背景に,平成23年1月,産学官連携 による「北陸地方におけるコンクリートへのフライアッ シュの有効利用促進検討委員会」が設立された.本研究 は,その一環でもある.⁶

本研究では,能登半島で流通している代表的な反応性 岩種である安山岩の特徴,その反応性と,この地方で供 給可能な高品質化したフライアッシュ(分級灰)を使用 することによる ASR 抑制効果を,ASTM C 1260 による 促進モルタルバー試験で評価する.また,もう一つの代 表的な混和材として,現在広く使用されている高炉スラ グ微粉末による ASR 抑制効果も比較して評価する.さら に,これらの結果を偏光顕微鏡下での観察により確認し, 促進モルタルバー試験結果の検証とともに偏光顕微鏡観 察による ASR 判定の有効性をも検討する.

2 実 験 概 要

2·1 使用材料

北陸地方の能登半島北部の代表的な反応性岩種である 安山岩からなる砕石3種(安山岩A,安山岩Bと安山岩C) を骨材として使用した.いずれも,北陸地方に共通する, 新第三紀中新世以降に生成した新鮮ないしやや変質した

[†] 原稿受理 平成 24 年 12 月 7 日 Received Dec. 7, 2012 © 2013 The Society of Materials Science, Japan

^{* (㈱}太平洋コンサルタント 〒285-0802 佐倉市大作, Taiheiyo Consultant Co. Ltd., Oosaku, Sakura, 285-0802

^{**} 正 会 員 金沢大学理工研究域 〒920-1192 金沢市角間町, College of Sci. and Eng., Kanazawa Univ., Kakuma-machi, Kanazawa, 920-1192

安山岩である.生成した年代は安山岩 A が最も新しく,約 900 万年前である.⁷⁰使用した安山岩砕石 3 種の採取地と,安山岩,流紋岩とデイサイトの火山岩類の北陸地方付近における分布を Fig. 1 に示す.安山岩砕石 3 種は,いずれもコンクリート用骨材として長年にわたり使用されてきたものであり,これらの骨材を使用したコンクリート 構造物での ASR 劣化の発生は,安山岩 A と安山岩 C で多く確認されているのに対し,安山岩 B では調査不十分で,その反応性が不明である.^{4,9}

使用セメントは普通ポルトランドセメント(密度: 3.16g/cm³, 等価アルカリ量: 0.55%), フライアッシュは 北陸電力七尾大田火力発電所産の分級灰である。この分 級灰は、コンクリートに使用し、その耐久性と品質を高 める実用目的で、前述の「北陸地方におけるコンクリー トへのフライアッシュの有効利用促進検討委員会」の活 動で検討してきたものであり,原料炭の選別と燃焼温度 を十分に管理することにより生産された JIS A 6201 の II 種灰を, さらにサイクロンで分級して採取された, 高品 質なフライアッシュである。一般に、フライアッシュの ASR 抑制効果については、シリカ質のガラス量と比表面積 の影響が大きいことが知られている.10 このため、北陸地 方に分布する反応性の高い安山岩に対しても, ASR を効 果的に抑制することも目的に、粒径の小さなフライアッ シュ(平均粒径:7µm)としての適用性を検討している. 分級前後のフライアッシュの偏光顕微鏡写真を Fig. 2 に 示す. 分級灰は、ほぼ粒径 22µm 以下の微粒子からなり、 JIS I 種灰相当品である。一方, 高炉スラグ微粉末は, S 社製の JIS A 6206 の高炉スラグ微粉末 4000 を使用し た. 使用したフライアッシュと高炉スラグ微粉末の物理 的性質,モルタルの活性度指数とフロー値比を Table 1 に、またそれらの化学組成を Table 2 に示す.

Fig. 1 The regional distribution of volcanic rocks and origin of aggregates.⁸⁾

Fig. 2 Photomicrographs of original fly ash (a) and classified fly ash (b : used in this study), taken under plane polarized light.

Table 1 Physical properties, activity index and ratio of flow about fly ash (FA) and ground granulated blastfurnace slag (BFS) used in this study.

Material	Density (g/cm ³)	Blaine finess (cm²/g)	Activity index (days, %)		Ratio of flow(%)
			28	91	
FA	2.43	4780	91	104	107
BFS	2.90	4120	103	108	101

2·2 試験方法

2・2・1 安山岩砕石の岩石・鉱物学的試験 促進モ ルタルバー法 (ASTM C 1260) に規定されたサイズ (4.75 ~ 0.15mm) と粒度組成に調整した安山岩砕石 3 種をエポ キシ樹脂で固化したものから, 20 × 20mm のチップを切 り出した. これをスライドグラスに接着し,厚さ 15 ~ 20μm の薄片試料を作製した. 薄片試料を偏光顕微鏡下 で観察し, それらを構成する岩石の特徴や構成鉱物を検 討した.

2・2・2 骨材の反応性と鉱物質混和材による ASR 抑制効果の検証試験 安山岩砕石 3 種につき, ASTM C 1260(温度 80℃, 1Nの NaOH 溶液に浸漬)による促進 膨張試験を行い, 骨材としての潜在的な反応性, ならび

Table 2 Chemical compositions of fly ash (FA) and ground granulated blast-furnace slag (BFS) used in this study (mass%).

Material	LOI	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO
FA	2.0	53.60	28.93	6.74	3.20	0.77	0.22	0.30	0.72	1.39	0.98	0.09
BFS	0.97	33.14	14.19	0.33	42.96	5.29	1.97	0.25	0.28	0.53	0.01	0.28

にフライアッシュと高炉スラグ微粉末による ASR 抑制効 果を検証した.ASTM C 1260 では、外部から供給され る十分なアルカリが常に反応に関与できるため、セメン トやフライアッシュ、高炉スラグ微粉末、さらに骨材中 のアルカリの形態とその量が ASR に及ぼす影響につい て、考慮する必要がないという利点がある.また、鉱物 質混和材による ASR 抑制効果を過酷な条件で早期に把 握する目的で、本研究では ASTM C 1260 を採用した.

(1) ASTM C 1260 による促進モルタルバー試験

安山岩砕石3種の反応性とフライアッシュ(略号 FA) あるいは高炉スラグ微粉末(略号 BFS)のASR 抑制効果 を確認する、FA あるいは BFS の置換率は、IIS A 5308 による ASR 抑制効果の推奨値を参考に、セメントの内割 でそれぞれ 15% あるいは 42%(現在の高炉セメント B 種 の平均的な置換率)の質量置換とした(略号 FA15%, BFS42%). これに対し、FAやBFSをセメントと置換し ない試験体を OPC と表記する. モルタルバーの作製は, 使用セメントのアルカリ量を調整せず,水:(セメント +FA, BFS): 骨材 = 0.47:1:2.25, モルタルバーの寸 法は 25 × 25 × 285mm, 打設後 24 時間で脱型した. 80℃の水中養生をさらに24時間実施後の長さを基長と した. その後, 80℃の 1N-NaOH 溶液に浸漬し, 以降を 促進養生期間として、28日間の長さ変化を計測した。 ASTM C 1260 による骨材の反応性の評価は、促進養生 期間 14 日で 0.1% 未満が「無害」, 0.1 ~ 0.2% が「不明 確(無害と有害の両者が存在する)」, 0.2% 以上が「有害」 である.

(2) 偏光顕微鏡下での ASR による劣化組織の観察

ASTM C 1260 による促進養生期間 28 日の終了後,モ ルタル試験体から,厚さ 15 ~ 20µm 程度の研磨薄片試 料を作製した.これを偏光顕微鏡下で観察し,内部組織 の ASR による劣化状態を評価した.ASR による劣化状 態の評価基準は,Katayama et al.の研究¹¹⁾を参考に Table 3 に示す分類を用いた.これは主に,ASR ゲルに 充填された膨張ひび割れの発生と発達の過程を評価する ものである.ただし,本研究では劣化状態がⅢ以上に大 きい部分の,より細分化した評価を行うために,膨張ひ び割れの最大幅でさらに分類した.

2・3 試験結果と考察

2・3・1 安山岩砕石の岩石・鉱物学的試験 安山岩 砕石3種は、いずれも安山岩のみから構成され、斑晶 (斑点状の大きな鉱物)として主に斜長石、斜方輝石と 単斜輝石を含む両輝石安山岩であった.さらに、安山岩

Table 3 The petrographic classifications of ASR stages based on Katayama et al.¹¹⁾

Stages	The progress of ASR					
0	No reaction					
Ι	The formation of reaction rims and exudation of					
	ASR sol/gel around the reacted aggregate.					
П	The formation of ASR gel-filled cracks within					
	reacted aggregate.					
Ш	The propagation of ASR gel-filled cracks from the					
	reacted aggregate into surrounding cement paste.					
IV	The formation of ASR gel-filled cracks network					
	and the migration of ASR gel into air voids.					

Aと安山岩 Bには、少量のかんらん石斑晶が認められた。 石基(斑晶の粒間の細かな部分)は、安山岩A、安山岩 Bと安山岩 C のいずれとも, 斜長石, 輝石(単斜輝石ま たは斜方輝石),クリストバライト,鉄チタン鉱物(磁鉄 鉱など)の細かな結晶と、それらの粒間を埋める火山ガ ラスから主には構成されていた. これらの構成鉱物の量 比はそれぞれで異なり, ASR 反応性を有する鉱物につい て,安山岩Aは火山ガラスを非常に多く含み,安山岩C はクリストバライトを多く含んでいた.一方,安山岩 B は火山ガラスとクリストバライトのいずれとも少量であっ た、安山岩 C は、安山岩 A や安山岩 B と比較してシリ カ分 (SiO₂) に富み, また安山岩 A は生成時に急冷され たものであった.一方,岩石の生成以降の現在にいたる 期間に輝石の変質などにより生成したスメクタイト(粘 土鉱物の一種)が,安山岩 B に多く,安山岩 A に少量 であった.スメクタイトはアルカリを吸着し,ASRの抑 制に寄与するとされている. その一方で, JIS A 1146 に よるモルタルバー法では、このスメクタイト含有の影響 により, 骨材のASR 反応性を適切に評価できないことが 知られている.12)したがって、いずれの安山岩砕石も潜在 的な反応性を有し、安山岩 Bの反応性は安山岩 A および Cと比較して低いものと考えられた. ASR との関連が大 きい鉱物の量比と、その他の構成鉱物を Table 4 に示 す. また、それぞれの安山岩について、主要な反応性鉱 物などの含有形態をFig.3に示す.

2・3・2 骨材の反応性と鉱物質混和材による ASR 抑 制効果の検証試験

(1) ASTM C 1260 による促進モルタルバー試験

モルタル試験体の膨張挙動を Fig. 4 に示す. OPC で はいずれの安山岩砕石も,促進養生期間 14 日で 0.2% を 超える有害な膨張を示した.また,安山岩砕石の種類に

Table 4 Reactive minerals and other constituents of aggregates observed under a polarizing microscope.

			-
Aggregate	Reactive minerals	ASR mitigating minerals	Other constituents
Andesite A	Cristobalite(++),Tridymite(+),	Smectite(+)	Plagioclase, Clinopyroxene, Orthopyroxene,
	Volcanic glass(++++)		Olivine, Apatite, Quartz, Opaque mineral
Andesite B	Cristobalite(++), Tridymite(+),	Smectite(+++)	Plagioclase, Clinopyroxene, Orthopyroxene,
	Volcanic glass(+)		Olivine, Phlogopite, Quartz, Opaque mineral
Andesite C	Cristobalite(++++),	Smectite(++)	Plagioclase, Clinopyroxene, Orthopyroxene,
	Tridymite(+), Volcanic glass(+)		Quartz, Opaque mineral

Abundant ++++ \sim +++ \sim ++ \sim + Few

Fig. 3 Photomicrographs of the andesitic aggregates used in this study, taken under plane polarized light. Gls : volcanic glass ; Crs : cristobalite ; Pl : plagioclase ; Px : pyroxene ; Sm : smectite ; Opq : opaque mineral

よる膨張率の大小では、安山岩 B が最も小さく、この結 果は岩石・鉱物学的試験の観察結果とも一致していた. それに対して、FA15%では、いずれの安山岩砕石とも、 判定基準となる促進養生期間 14 日の膨張率は 0.1% 以下 で、「無害」の判定となった.また、BFS42%では「無害」 の判定は安山岩 B のみであったが、いずれの安山岩砕石 も膨張が大きく低減し、同様な ASR 抑制効果が認められ た.ただし、いずれの安山岩砕石とも、また FA または BFS の混和の有無に関わらず、促進養生期間 14 日の判 定以降も膨張は継続していた.以上より、ASTM C 1260 法は鉱物質混和材による ASR 抑制効果を早期に判定す るのに有効であることが示された.しかし、この判定結

Fig. 4 Expansion behaviors of mortar bars (ASTM C 1260).

果は,あくまでも高濃度のアルカリ溶液が常時供給され る条件下によることに注意することが必要である.また, ASTM C 1260 での評価に適さない岩種(例えばチャー ト)があることにも注意する必要がある.¹³⁾

(2) 偏光顕微鏡下での ASR による劣化組織の観察

促進養生期間 28 日終了後の,25 × 25mm 試験体断面 より作製した研磨薄片を偏光顕微鏡下で観察した結果, Fig. 5 に示すように主な膨張ひび割れは表面と平行で, NaOH 溶液に接する周縁部に中央部より顕著に観察され た.とくに FA あるいは BFS を使用した試験体では,表 面からの深さ 5mm 以深には,ほとんど観察されなかっ た.これは,両試験体でのアルカリ溶液の浸透が,表面 に限定されたことにより,この箇所に集中的に発生した ものと推察された.このため,本研究では内部と周縁を

Fig. 5 Typical crack pattern on the cross-section of mortar bar (left : OPC ; right : FA15%, BFS42%).

区別して評価した. 偏光顕微鏡下で観察された劣化組織 の一例を, Fig.6 に示す.

偏光顕微鏡による評価結果を Table 5 に示す.また, その評価結果とモルタルバーの膨張率との関係を Fig. 7 に示す.FA あるいは BFS を使用した場合,試験体周縁 部は OPC と大差がないが,内部での ASR 劣化が大きく 低減していたことが特徴である.さらに内部における劣 化程度の評価結果とモルタルバーの膨張率は Fig. 7 の破 線に示すように,よく対応していた.前述したように, FA あるいは BFS の混和による組織緻密化により,外部 からのアルカリ浸透が抑制された結果と考えられた.こ のように,偏光顕微鏡による観察は,骨材の構成鉱物を 識別し,その反応性を明らかにするのみではなく,モル タルあるいはコンクリートの微視的組織を同様に観察す ることにより,ASR による劣化状況,すなわち膨張率と の関係などを知ることが可能であり,ASR の評価や診断 に非常に有効であると考えられた.

研磨薄片試料中の FA と BFS の反応状態を, 走査電子 顕微鏡の反射電子像により観察した結果を Fig. 8 に示 す. FA あるいは BFS の周縁部に, アルカリ溶液との相 互作用による反応相が明確に識別できた. また, FA や BFS の近傍の空隙を埋めるようにポゾラン反応などの生 成物が成長し, 組織緻密化が進行しているものと考えら

- Fig. 6 Photomicrographs of ASR-deteriorated mortar texture observed under a polarizing microscope (AndesiteC-OPC-rim : plane polarized light).
- Table 5 Results of the petrographic classifications (ASR stages or max. crack width) about OPC and fly ash (FA) or ground granulated blast-furnace slag (BFS) admixed mortars.

Adn Aggregate	nixture	OPC	FA15%	BFS42%
AndesiteA	Core	30-50 μ m Π		5-10 μ m
	Rim	$30-50 \ \mu m$	20μ m	20-30 μ m
AndesiteB	Core	10μ m	П	П
	Rim	20μ m	20μ m	20-30 μ m
AndesiteC	Core	10-30 μ m	5 µ m	5 µ m
	Rim	30-40 μ m	40μ m	40-50 μ m

Fig. 7 Relationships between 28days expansion and the petrographic classifications.Broken line runs along core data.

れた.一方, FA や BFS の周縁部に見られる反応相の厚 さは, 促進養生期間 28 日終了後も数 µm 以下と小さく, FA や BFS の粒子表面付近に限定されていた.ポゾラン などの反応と ASR が材齢とともに進行するが,前者によ る組織緻密化やアルカリの低減が早期より発生し,¹⁴⁾骨材 よりも相対的に早く反応できる FA や BFS の粒径(比表 面積)が, ASR 抑制効果に与える影響が最も大きいこと とも整合していた.

Fig. 8 BEI of fly ash (a) and ground granulated blastfurnace slag (b) in cement paste after ASTM C 1260 (28days).

3 北陸地方での混合セメントによる ASR 対策の意義 北陸地方で供給可能な高品質の FA でセメントの 15% を質量置換した場合に,いずれの安山岩砕石も,ASTM C 1260 における判定基準で「無害」となり,FA による 実用化に向けて大きな期待がもたれた.さらに北陸地方 における ASR 抑制対策の基本的な考え方として,高品質 な FA を通常の使用量で混合することにより,反応性が 高い能登産の安山岩の ASR を十分かつ効果的に抑制可 能なことが示された.一方,実構造物が野外で ASTM C 1260 と同様な環境に置かれる可能性はきわめて小さい が,促進養生期間 14 日の判定後も膨張が継続し,最終 的には 0.2% を超えるものも見られたことから判断すると, 野外でのコンクリートの長期にわたる実態調査や ASTM C 1293 などの他の試験法による結果との対応関係を, 今後検証することも必要である.

4 結

言

(1) 試験に使用した能登半島産安山岩砕石はいずれ も,ASR反応性をもつことが岩石・鉱物学的試験により 確かめられた.また,ASTM C 1260による促進膨張試 験では、いずれの安山岩砕石も有害な膨張を示した.

(2) フライアッシュまたは高炉スラグ微粉末を通常の B種の置換率で使用することにより、いずれの安山岩砕 石も、ASTM C 1260 による膨張が大きく低減した. とく に、北陸地方で供給が可能となった高品質なフライアッ シュで 15% 置換したものでは、判定基準材齢において、 すべての安山岩砕石で「無害」となり、北陸地方の ASR 対策として実用化が期待できた. また、ASTM C 1260 法は、鉱物質混和材による ASR 抑制効果を早期に判定 するのにも有効であることが示された.

(3) フライアッシュまたは高炉スラグ微粉末を使用した場合,試験体周縁部に対して内部でのASR劣化の低減が大きく,これがモルタルバーの膨張率とよく対応していた.したがって,両者によるASR抑制効果は組織緻密化に伴う,外部からのアルカリ浸透の抑制によるものが大きいと推察された.

(4) 反射電子像により観察された,フライアッシュまたは高炉スラグ微粉末の反応相は,促進養生期間28日終了後も粒子表面付近に限定され,それらの粒径(比表面積)のASR抑制効果に与える影響が非常に大きいことと整合していた.また,両者の粒子近傍の空隙を埋めるように反応生成物が成長し,組織緻密化が進行しているのが確認された.

本研究は、金沢大学大学院の蟹谷真生氏(現,北陸電 力(株)、京都大学大学院の西澤彩氏、金沢大学の山戸博 晃主任技術職員の多大な御協力により実施されたもので す.ここに記して、深く感謝の意を表します。

参考文献

- K. Torii, "How should we cope with the recent ASR problem? –testing, diagnosis and preventive measures–", Cement and Concrete, No.696, pp.1-9 (2005) (in Japanese).
- N. Yamada, T. Sakamoto, T. Nozawa and T. Enda, "1/500,000 Geological map Kanazawa 2nd edition" (1974) Geological Survey of Japan. (in Japanese).

- 3) T. Katayama, M. Tagami, Y. Sarai, S. Izumi and T. Hira, "Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan", Materials Characterization, Vol.53, pp.105-122 (2004).
- 4) T. Minato and K. Torii, "ASR-deteriorated bridges and rock type of reactive aggregate on Noto expressway", Journal of the Society of Materials Science, Japan, Vol.59, No.10, pp.781-786 (2010) (in Japanese).
- 5) K. Torii, M. Nomura and Y. Minami, "Alkali-silica reactivity and alkalis releasing property of river sands produced in Hokuriku district", Cement Science and Concrete Technology, No.60, pp.390-395 (2006) (in Japanese).
- 6) K. Torii, "Ruggedization of concrete by using fly ash –effort and imformation for ASR problem in the Hokuriku District-", Electric Power Civil Engineering, No.357, pp.11-15 (2012) (in Japanese).
- K. Shibata, H. Sato and M. Nakagawa, "K-Ar ages of Neogene volcanic rocks from the Noto Peninsula", Journal of Mineralogy, Petrology and Economic Geology, Vol.76, pp.248-252 (1981) (in Japanese).
- T. Daidai, "A study on alkali-silica reactivity of concrete aggregate from river and maintenance procedure of ASRaffected bridges", Kanazawa University Dissertation (2009) (in Japanese).
- K. Torii, M. Miyamura, T. Minato and G. Nishikawa, "Deterioration of ASR-affected foundation structures on Noto expressway and its countermeasures", Concrete Journal, Vol.46, No.4, pp.27-33 (2008) (in Japanese).
- Y. Kawabata and H. Matsushita, "Evaluation of character of fly ash related to suppressing effect on alkali-silica reaction", JSCE, Journal of Materials, Concrete Structures and Pavements E, Vol.63, No.3, pp.379-395 (2007) (in Japanese).
- 11) T. Katayama, T. Oshiro, Y. Sarai, K. Zaha and T. Yamato, "Late-expansive ASR due to imported sand and local aggregates in Okinawa Island, southwestern Japan", Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), pp.862-873 (2008) Trondheim, Norway.
- 12) K. Torii, M. Nomura and A. Honda, "Petrographic features of alkali-silica reactive aggregates in Hokuriku district and comapatibility between various test methods determining alkali-silica reactivity of aggregate", JSCE, Journal of Materials, Concrete Structures and Pavements, No.767/V-64, pp.185-197 (2004) (in Japanese).
- 13) E. Iwatsuki and K. Morino, "Expansion behavior and microstructure of ASR mortar-bar by ASTM C 1260 and JIS A 5308 method", Proceedings of the Japan Concrete Institute, Vol.24, No.1, pp.687-692 (2002) (in Japanese).
- 14) S. Nagataki, H. Ohga and T. Inoue, "Effect of fly ash in controlling expansion due to alkali-aggregate reaction and its mechanism", JSCE, Journal of Materials, Concrete Structures and Pavements, No.414/V-12, pp.175-184 (1990) (in Japanese).