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The detection of radicals on a chip is demonstrated. The proposed method is based on electron spin resonance (ESR) spectroscopy
and the measurement of high-frequency impedance of the microinductor fabricated on the chip. The measurement was by using a
frequency sweep of approximately 100 MHz. The ESR spectra of di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) dropped
on the microinductor which is fabricated with CMOS 350-nm technology were observed at room temperature. The volume of the
DPPH ethanol solution was 2 μL, and the number of spins on the micro-inductor was estimated at about 1014. The sensitivity is
not higher than that of the standard ESR spectrometers. However, the result indicates the feasibility of a near field radical sensor
in which the microinductor as a probe head and ESR signal processing circuit are integrated.

1. Introduction

Electron spin resonance (ESR) spectroscopy or electron
paramagnetic resonance (EPR) spectroscopy is a widely used
way of measuring and characterizing electronic materials
[1, 2]. It is also used in biomedical analysis and imaging
[3, 4] because radicals can be identified and quantitatively
determined. The ESR phenomenon occurs based on the
Zeeman effect of the unpaired electron in radicals, which
can be observed by the resonance absorption of the magnetic
wave at the specified frequency. The ESR frequency of the
magnetic wave is proportional to the applied DC magnetic
field. The ESR spectrum is provided by a frequency sweep
of the magnetic wave or a sweep of the DC magnetic field
strength. However, sweeping the DC magnetic field is widely
used in most cases because the resonator which is designed
to make resonance at the specific frequency is used to detect
the small absorption of the electromagnetic power in the
resonance [5]. In ESR spectroscopy on the frequency axis, the
control system of the DC magnetic field can be eliminated,
and this enables development of the radical sensors which
integrate the ESR measurement circuit.

In this paper, we demonstrate ESR measurement with a
microinductor to show the possible integration of ESR signal

processing on a chip. The ESR spectroscopy was done by a
frequency sweep of around 100 MHz in the fixed magnetic
field.

2. Principle of Measurement

The configuration of the measurement system is shown in
Figure 1. The high-frequency current in the microinductor
generates a high-frequency magnetic wave. The DC magnetic
field is perpendicularly applied to the microinductor. The
magnetic permeability of the sample put on the microinduc-
tor is affected by the ESR, and the variation of the magnetic
permeability is then detected as a variation of the impedance
of the microinductor. The high-frequency magnetic field
generated by the microinductor includes the vertical and
the horizontal component against the DC magnetic field on
the surface of the microinductor. The magnetic permeability
is strongly affected by the perpendicular component of the
high-frequency magnetic field [6], which is concentrated in
the proximity of the metal wire to constitute the microinduc-
tor. The spatial range of the measurement depends on the
intensity of the high-frequency current and the width of the
metal wire.
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Figure 1: Structure of measurement system.

The relative permeability μ(ω) is expressed as a function
of the frequency as shown by:

μ(ω) = μr(ω)− jμi(ω), (1)

where j is an imaginary unit, μr and μi are a real and an
imaginary part of the magnetic permeability. The impedance
of the microinductor affected by the paramagnetic materials
is expressed as follows (2):

Z(ω) = R0 + jω
{

1 + αμ(ω)
}
L0, (2)

where R0 and L0 are a resistance and an inductance of the
microinductor, which is not affected by the sample material.
Here, α is a filling factor which is a parameter of the contri-
bution of the sample material to the magnetic permeability.
From (1) and (2), (3a) is derived,

Z(ω) = (R0 + ωαμiL0
)

+ jω
(
L0 + αμrL0

)
, (3a)

def= (R0 + RESR) + jω(L0 + LESR). (3b)

Here, RESR and LESR are a resistance component and an in-
ductance component which are derived from the permeabil-
ity of the sample material and proportional to the inductance
of the microinductor. The impedance Z(ω) can be calculated
from the measurement of the S-parameters of the microin-
ductor by using

Z(ω) = Z0
1 + S11 − S12S21/(1 + S22)
1− S11 + S12S21/(1 + S22)

. (4)

Here, Z0 is the characteristic impedance of the ports of the
measurement instruments. The characteristic impedance of
the commercially available measurement instruments and
connectors is normally 50 ohm.

3. Measurement Results

The microinductor of a 2-port configuration was fabricated
with CMOS 350 nm technology. This microinductor was
designed to have a higher self-resonance frequency than a
measurement band. The wire metal was aluminum with a
thickness of 570 nm and covered by the Si3N4 passivation
layer. A photograph and specification of the microinductor
are shown in Figure 2 and Table 1, respectively. The mea-
sured resistance (R0) and inductance (L0) are 16.2 ohm and
15.8 nH at a frequency of 100 MHz, respectively.

240µm

Port 1 Port 2

Figure 2: Photograph of microinductor.

Table 1: Specification of microinductor.

Shape
Inner diameter

[μm]
Number
of turns

Line width
[μm]

Line
spacing

[μm]

Rectangular spiral 240 6 10 1

The measurement results for di(phenyl)-(2,4,6-trinitro-
phenyl)iminoazanium (DPPH) are shown in Figure 3. DPPH
is the popular standard of the position (g-marker) and inten-
sity of EPR signals. The RESR and LESR were calculated from
the measured S-parameters by using (3b) and (4). The 2-
μL DPPH ethanol solution (0.1 mg/L) was dropped on a
microinductor and dried at room temperature. The number
of spins on the microinductor was estimated at about 1014.
The magnetic field was 4.2 mT and the center frequency of
the signal was 117.6638 MHz. From these results, the g-factor
of the ESR line was estimated at 2.0016. The estimated g-
factor is smaller than the reported value (g = 2.0023) [7].
As the magnetic field is not measured accurately enough
to estimate the g-factor, calibration by another g-marker is
needed to estimate the g-factor more precisely.

4. Conclusions

The ESR measurement with a microinductor fabricated on a
chip is demonstrated to show the possible integration of ESR
signal processing on a chip. The ESR spectra of DPPH are
observed at room temperature. The number of spins on the
microinductor was estimated at about 1014. While sensitivity
is not higher than that of the standard ESR spectrometers,
the measurement system with a microinductor has several
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Figure 3: Spectra of RESR and LESR for DPPH at room temperature.
Magnetic field was 4.2 mT.

advantages. First, it is of small size, simple, and compact.
Second, frequency scans can be done without the need for
a magnetic field sweep. Third, the instrumentation is well
developed in the very high frequency range (from 30 MHz to
300 MHz) and the ultrahigh frequency range (from 300 MHz
to 3 GHz). Fourth, the probe head can be manufactured with
CMOS technology. This instrument may be used to construct
near-field ESR apparatuses with high spatial resolution.
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