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Abstract This paper addresses the page migration problem: given online requests
from nodes on a network for accessing a page stored in a node, output online mi-
grations of the page. Serving a request costs the distance between the request and
the page, and migrating the page costs the migration distance multiplied by the page
sizeD ≥ 1. The objective is to minimize the total sum of service costs and migration
costs. Black and Sleator conjectured that there exists a 3-competitive deterministic
algorithm for every graph. Although the conjecture was disproved for the caseD= 1,
whether or not an asymptotically (with respect toD) 3-competitive deterministic al-
gorithm exists for every graph is still open. In fact, we did not know if there exists a
3-competitive deterministic algorithm for an extreme case of three nodes withD≥ 2.
As the first step toward an asymptotic version of the Black and Sleator conjecture,
we present 3- and(3+1/D)-competitive algorithms on three nodes withD = 2 and
D ≥ 3, respectively, and a lower bound of 3+Ω(1/D) that is greater than 3 for every
D ≥ 3. In addition to the results on three nodes, we also deriveρ-competitiveness on
complete graphs with edge-weights between 1 and 2−2/ρ for anyρ ≥ 3, extending
the previous 3-competitive algorithm on uniform networks.

Keywords page migration· work function algorithm· competitive analysis· server
problem

1 Introduction

The problem of computing an efficient dynamic allocation of data objects stored in
nodes of a network commonly arises in network applications such as memory man-
agement in a shared memory multiprocessor system and Peer-to-Peer applications on
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the Internet. In this paper, we study one of the classical varieties of the problem, the
page migration problem, in which a request issued on a node for accessing a single
data object (called apage in this problem) must be served using unicast commu-
nication. After serving each request, we are allowed to migrate the page. Serving a
request costs the distance of the communication, and migrating the page costs the mi-
gration distance multiplied by the page sizeD ≥ 1. The objective is to minimize the
total sum of the service and migration costs. The page migration problem has been
extensively studied (e.g., [2–4,8,10,13,15]) and generalized to several settings such
ask-page migration [3], file allocation problem, e.g., [2,4,13], and data management
on dynamic networks, e.g, [1,7]. See [6] for a recent survey.

1.1 Related Results

We focus on deterministic online page migration algorithms. Black and Sleator [8]
first studied competitive analysis of the page migration problem and presented 3-
competitive deterministic algorithms on trees, uniform networks, and Cartesian prod-
ucts of these networks, including grids and hypercubes. These algorithms are optimal
because the deterministic lower bound is 3 for every network with at least two nodes
[8,11]. Black and Sleator conjectured that there exists a 3-competitive deterministic
algorithm for every network. The first upper bound of 7 for general networks was
given by Awerbuch, Bartal, and Fiat [2] and improved to 4.086 by Bartal, Charikar,
and Indyk [3]. For a special case ofD= 1, a better bound of 2+

√
2 is achievable [14].

For a yet restricted case ofD = 1 and three nodes, a 3-competitive deterministic al-
gorithm was presented in [10]. Whether or not a 3-competitive deterministic algo-
rithm exists on three nodes forD ≥ 2 was left open. Concerning the lower bound,
Black and Sleator’s conjecture was disproved by Chrobak, Larmore, Reingold, and
Westbrook [10], who proved that no deterministic algorithm has the competitive ratio
less than 85/27≈ 3.148 on special networks withD = 1. This bound was refined to
3.164 [14]. It is mentioned in [10] that the lower bound is larger than 3 even on four
nodes. An explicit lower bound of 3.121 on five nodes was proved in [14].

1.2 Contributions of This Paper

All the previous lower bounds larger than 3 were proved only for the caseD = 1.
Therefore, an asymptotic version of the Black and Sleator conjecture with respect
to D, i.e., whether or not an asymptotically 3-competitive deterministic algorithm on
every network exists is still open. As the first step toward an answer for this conjec-
ture, we present

– a (3+1/D)-competitive algorithm on three nodes withD ≥ 3,
– a 3-competitive algorithm on three nodes withD ≤ 2, and
– a lower bound of 3+Ω(1/D) that is greater than 3 for everyD ≥ 3.

These results thoroughly answer the open question of existence of a 3-competitive
algorithm on three nodes. A summary of the results is provided in Table 1. In addition
to the results on three nodes, we also derive
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Table 1 Summary of Results on Three Nodes

Page sizeD Upper bound Lower bound
1 3 [10] ∗ 3 [8]
2 3∗ 3 [8]
≥ 3 3+1/D∗ 3+Ω (1/D)∗

∗ This paper

– ρ-competitiveness on complete graphs (of arbitrary size) with edge-weights be-
tween 1 and 2−2/ρ for anyρ ≥ 3,

extending the previous 3-competitive algorithm on uniform networks [8].

1.3 Overview of Technical Ideas

Our (3+ 1/D)-competitive algorithm is a typical work function algorithm similar
to algorithms for metrical task systems, e.g., [9], andk-server problems [5,12]. In
general, a work function algorithm makes online decisions using information on the
optimal offline cost for processing requests that have been issued so far and ending
at each configuration (page node in the page migration problem). The optimal off-
line cost function with respect to configurations is called a work function. To prove
that a work function (i.e., optimal cost) increases enough, we introduce a probably
new technique of analytically dealing with the work function extended on a contin-
uous network. In Sect. 3, we bound an extended work function from below using its
derivatives. The author believes that such analysis is the technical contribution of this
paper.

Since the competitive ratio on three nodes is not monotonic with respect toD,
it appears to be reasonable that we need different approaches forD = 2 andD ≥ 3.
Our 3-competitive algorithm forD = 2 is based on the counter-based algorithm for
uniform networks [8], which maintains a counter on each node. The counters are up-
dated every time a request arrives so that they represent a tendency of migration. If a
counter reaches a certain value, then the algorithm moves the page to the node with
this counter. One can observe that the original algorithm is 3-competitive even on a
complete graph with roughly the same edge-weights, and that this can be general-
ized to anyρ ≥ 3. More specifically, there is a “triangle” condition on edge-weights
around the page such that the original potential function used in [8] can amortize
the service costs and the next migration cost. If there are three nodes, then at least
one “good” node satisfies the condition. We design our algorithm by modifying the
original algorithm for the page at a “bad” node. Although the modification wastes
the “deposit” even worse when leaving the bad node, we can prove through careful
observations that much more deposit can be saved after the possible migration to a
good node or from services before the migration. The formal proof is presented in
Sect. 4.

Our lower bound is based on the following observation: If there are only two
nodes, then any 3-competitive algorithm must move after exactly 2D requests issued
by a cruel adversary, which always issues a request from the other node than the
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Fig. 1 Example of work functions on three nodesa, b, andc with dab = dac = 2 anddbc = 1. We assume
that the page of sizeD = 2 is located ata initially, and that requests are issued atb, b, b, c, andb

online page. If the adversary carefully adds a new node close to the existent request
node and divides the 2D requests among these nodes, then no matter when or where
the algorithm moves, it is too “impatient” or “tardy” to achieve the competitive ratio
of 3. We explicitly design the adversary and analyze the lower bound in Sect. 5.
We also demonstrate that an explicit lower bound of 3+ 1

360D+347 for D ≥ 3 can be
derived from our proof.

2 Preliminaries

The page migration problem can be formulated as follows: given an undirected graph
G = (V,E) with edge weights,s0, r1, . . . , rk ∈ V, and a positive integerD, compute
s1, . . . ,sk ∈ V so that the cost function∑k

i=1(dsi−1r i +Ddsi−1si ) is minimized, where
duv is the distance between nodesu andv on G. The termsdsi−1r i andDdsi−1si rep-
resent the cost to serve the request fromr i by the nodesi−1 holding the page and
the cost to migrate the page fromsi−1 to si , respectively. We callsi andr i a server
and aclient, respectively. Anonline page migration algorithm determinessi with-
out information ofr i+1, . . . , rk. We denote byA(σ) the cost of a page migration
algorithmA for a sequenceσ := r1 · · · rk. A deterministic online page migration al-
gorithmALG is ρ-competitiveif there exists a constant valueα such thatALG(σ) ≤
ρ ·OPT(σ)+α for anyσ , whereOPT is an optimal offline algorithm. We denote by
OPTu(σ), called awork function, the minimum (offline) cost to processσ so that
sk = u. Obviously,OPT(σ) = minu∈V{OPTu(σ)}. An online algorithm that deter-
mines the server position after processingσ using the information ofOPTu(σ) for
all possible nodesu is called awork function algorithm. Note thatOPTu(σ) can
be computed using dynamic programming, i.e., for a request issued atr after σ ,
OPTu(σ r) = minv∈V{OPTv(σ)+drv +Dduv} andOPTu( /0) = Dds0u [10], where /0 de-
notes an empty sequence. An example of work functions are illustrated in Fig. 1.
For a nodeu andk ≥ 1, we write a sequence consisting ofk repetitions ofu asuk.
Unless otherwise stated, we suppose that graphs considered here have a node set
V := {a,b,c} and edge weightsx := dab, y := dac, and z := dbc for edges(a,b),
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Fig. 2 Labels for nodes and edges of 3-node graphs

(a,c), and (b,c), respectively (Fig. 2). We denoteL := x+ y+ z and assume that
max{x,y,z} < L/2.

3 (3+1/D)-Competitive Algorithm

We consider a typical work function algorithm denoted byWFA, which moves the
server located ats after processing a sequenceσ of clients, to a nearest node among
nodesv minimizing OPTv(σ)+drv +Ddsv after servicing a new request onr. By this
definition, the destination ˆs of the migration satisfiesOPTs(σ r) = OPTŝ(σ) + drŝ+
Ddsŝ. Another way of understanding the algorithm is thatWFA moves the servers to ŝ
when a decline of slopeD from s to ŝappears on the work function, i.e.,OPTs(σ r)−
OPTŝ(σ r) = Ddsŝ, except whens is one of the nodesv minimizing OPTv(σ)+drv +
Ddsv. In Fig. 1, for example, the server initially located ata is moved tob after the
last request onb. The purpose of considering such a decline on the work function as
a trigger of migration is to avoid requests on ˆs that would increase online service cost
at the serversbut change neitherOPTs norOPTŝ. A similar idea is used for other work
function algorithms ([9,5,12]). We prove the following theorem:

Theorem 1 WFA is (3+1/D)-competitive on three nodes.

Our proof of Theorem 1 is divided into two parts, deriving a sufficient condition
for Theorem 1 and proving the condition. In the rest of this section, we suppose that
WFA locates the server ons after processingσ , and that a request is issued atr ∈ V
after σ . For a functionf of σ , we use the notationsf = f (σ) and f ′ = f (σ r) for
simplicity.

3.1 Sufficient Condition for Theorem 1

We claim that the condition

Ddŝu+M′ ≤ OPT′u for anyu∈V (1)

implies Theorem 1, where ˆs is the server ofWFA after processingσ r, andM′ =M(σ r)
is D times the total sum of migration distances ofWFA in processingσ r.

Because|OPTu−OPTv| ≤ Dduv for anyu,v∈V [10], it follows that

OPT′s = OPTŝ+drŝ+Ddsŝ≥ OPTs+drŝ, and (2)

OPT′s ≤ OPT′ŝ+Ddsŝ. (3)
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Fig. 3 Extended work functions on the same assumptions as those in Fig. 1

It follows from (2) and (3) thatdrŝ ≤ OPT′ŝ−OPTs+Ddsŝ. Therefore, we have

WFA′−WFA = drs+Ddsŝ≤ drŝ+(D+1)dsŝ≤ OPT′ŝ−OPTs+(2D+1)dsŝ. (4)

By summing (4) overall requests inσ r, we obtainWFA′ ≤ OPT′ŝ+ (2+ 1/D)M′.
Hence, if (1) is satisfied, then by choosingu minimizing OPT′u, we haveWFA′ ≤
OPT′ŝ+(2+1/D)OPT′−(2D+1)dŝu≤ (3+1/D)OPT′−(D+1)dŝu, which completes
the proof of Theorem 1.

3.2 Proof of Sufficient Condition

To prove (1), we generalize the network to a continuous loop1 R of lengthL contain-
ing a, b, andc with the preserved distances. Specifically, we defineR as an interval
{p | 0≤ p< L} moduloL, i.e., any real numberp is equivalent top−⌊p/L⌋ ·L. We
define an extended work function at a pointp∈ Ras

w′
p := min

q∈R
{wq+drq+Ddpq} andwp( /0) := Dds0p.

An example of extended work functions are illustrated in Fig. 3. One of the important
properties of extended work functions is that ˆp∈V for any p∈ R with p̂ 6= p, where
p̂ is a nearest point top∈ R among pointsq∈ R minimizing wq+drq +Ddpq. This
implies thatw′

p =minq∈V∪{p}{wq+drq+Ddpq}, and hence,wu = OPTu for anyu∈V.
Another property is that one-sided derivatives at any point are integers between−D
andD. These properties will formally be proved later in Lemma 5.

We denote the farthest point ofp on R by p̄. For p,q∈ R, we define[p,q] as the
closed interval of lengthdpq betweenp andq on R if dpq < L/2. If dpq = L/2, then
we define[p,q] as the whole setR, not an interval betweenp andq. Notations(p,q],
[p,q), and(p,q) are used to denote the intervals obtained from[p,q] by excludingp,
q, and bothp andq, respectively. Lemmas 1–4 below state basic properties ofwp that
will be used in the subsequent lemmas.

1 One might expect that a continuous tree instead of a continuous loop would be preferable in terms of
scalability of the network. However, this idea would fail because such a tree has the center, i.e., a point
near to three nodes, which makes a work function extended on the continuous tree smaller than the original
work function at some nodes.
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Fig. 4 Range in which ˆq may exist onR. Upper and lower arrows representdqq̂ ≤ dqp̂ anddpp̂ ≤ dpq̂,
respectively

Lemma 1 For any p,q∈ R, it follows that wq−wp ≤ Ddpq.

Proof The lemma clearly holds ifσ = /0. Otherwise, it follows from the minimality
of w′

q thatw′
q ≤ wp̂+dr p̂+Ddqp̂ = w′

p−Ddpp̂+Ddqp̂ ≤ w′
p+Ddpq. ⊓⊔

Lemma 2 For any p∈ R and q∈ (p, p̂], it follows thatq̂= p̂.

Proof It follows from the minimality ofw′
p that

w′
p = wp̂+dr p̂+Ddpp̂ ≤ wq̂+drq̂+Ddpq̂. (5)

Substitutingdpp̂ = dpq+dqp̂, we obtain

wp̂+dr p̂+Ddqp̂ ≤ wq̂+drq̂+D(dpq̂−dpq)≤ wq̂+drq̂+Ddqq̂ = w′
q. (6)

By the minimality ofw′
q, (6) holds with equality. This means that (5) also holds with

equality. Therefore, ˆp minimizeswp̂ + dr p̂ +Ddqp̂ (i.e., p̂ ∈ argmint∈R{wt + drt +
Ddqt}), andq̂ minimizeswq̂+drq̂+Ddpq̂ (i.e., q̂∈ argmint∈R{wt +drt +Ddpt}). By
the minimalities ofdqq̂ anddpp̂, it follows that dqq̂ ≤ dqp̂ anddpp̂ ≤ dpq̂. Because
q∈ (p, p̂], q̂ exists only at ˆp (Fig. 4). ⊓⊔

Lemma 3 For any p∈ R and q∈ [p, p̂), it follows that wq−wp̂ > (D−1)dp̂q.

Proof Becauseq is nearer top thanp̂ is, it follows thatwp̂+dr p̂+Ddpp̂ <wq+drq+
Ddpq. Thus, becausedpp̂ = dpq+dqp̂, we havewq−wp̂ > dr p̂−drq+D(dpp̂−dpq)≥
(D−1)dp̂q. ⊓⊔

Lemma 4 For any p∈ R and q∈ [r, p̂], it follows that ŵp−wq ≤ (D−1)dp̂q.

Proof It follows from the minimality ofw′
p thatwp̂+dr p̂+Ddpp̂ ≤ wq+drq+Ddpq.

Thus, becausedr p̂ = drq +dqp̂, we havewp̂−wq ≤ drq −dr p̂+D(dpq−dpp̂)≤ (D−
1)dp̂q. ⊓⊔

To prove (1), we utilize a relation between the increased amount of the work
function and its one-sided derivatives, which are defined as

mp−0 := lim
q→p−0

wq−wp

dpq
andmp+0 := lim

q→p+0

wq−wp

dpq
for anyp∈ R.

It should be noted thatmp−0 is a negated value of standard one-sided derivative. The
following lemma guarantees thatwu = OPTu for anyu∈V, the derivatives exist and
are integers, and thatwp can be strictly convex only on an interval containing a node
of V.
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Lemma 5 The following claims hold.

1. For any p∈ R with p̂ 6= p, it follows thatp̂∈V.
2. For any p∈ R, mp−0 and mp+0 are integers with−D ≤ mp±0 ≤ D.
3. For any p∈ R\V, it follows that mp−0+mp+0 ≤ 0, i.e., wp is concave on any

interval not containing a node in V.

Proof We prove the lemma by induction onσ . If σ = /0, thenms0−0 = ms0+0 = D,
ms̄0−0 =ms̄0+0 =−D, and{mp−0,mp+0}= {−D,D} for p∈R\{s0, s̄0}. These equa-
tions imply Claims 2 and 3. Assume that Claims 2 and 3 hold for a sequenceσ .

We first prove Claim 1 forσ . Let p ∈ R with p̂ 6= p. The claim is immediate if
p̂ = r. We assume ˆp 6= r. Let q1 ∈ (p, p̂) andq2 ∈ (r, p̂). It follows that r /∈ (p, p̂),
for otherwise, by Lemma 1 anddpp̂ = dpr +dr p̂, we havew′

p = wp̂+dr p̂+Ddpp̂ >
wr −Ddr p̂+Ddpp̂ = wr +Ddpr, contradicting the minimality ofw′

p. Therefore, we
havep̂∈ (q1,q2). Thus, by Lemmas 3 and 4 we have

mp̂−0+mp̂+0 = lim
q1→p̂

wq1 −wp̂

dp̂q1

+ lim
q2→p̂

wq2 −wp̂

dp̂q2

> (D−1)− (D−1)= 0.

By Claim 3 of induction hypothesis, this means ˆp /∈ R\V, and hence, ˆp∈V.
We then prove Claim 2 forσ r. I.e., we prove that for anyp ∈ R, limq→p(w′

q −
w′

p)/dpq is an integer in[−D,D]. By Lemma 2, ifp 6= p̂, then any pointq∈ (p, p̂)
hasq̂ with q 6= q̂= p̂. Therefore,I := {q∈ R | q 6= q̂} is a union of disjoint intervals
[i, j) with j = î, or (i, j) with j 6= î such that any pointq∈ (i, j) hasq̂= j. It should
be noted thati is not contained in the latter interval for two cases. One case is that
wq + drq +Ddiq is minimized at bothq = i andq = j. In this case,i = î and hence
i /∈ I . The other case is thatwq+drq +Ddiq is minimized atq = j andq = î /∈ [i, j]
with di î ≤ di j . In this case,[i, î) is also a subset ofI . Conversely, for any interval
[i, î) ⊆ I , there exists an interval(i, j) ⊆ I with j 6= î anddi î ≤ di j . For otherwise, an
infinite number of pointsi′ /∈ [i, î) sufficiently close toi hasî′ = i′, implying î = i by
continuity ofw′

q.
For any such interval[i, j) or (i, j) of I , and for any pointp∈ [i, j] andq∈ (i, j),

it follows thatw′
p = wj +dr j +Ddp j andw′

q = wj +dr j +Ddq j. Therefore, we have

w′
q−w′

p

dpq
=

D(dq j −dp j)

dpq
=±D. (7)

The setR\ I is a union of disjoint intervals[i, j] (with not necessarily distinct
end-pointsi and j) such that anyp∈ [i, j] hasp̂= p. Therefore, forq 6= p in (i, j), it
follows that

w′
q−w′

p

dpq
=

(wq+drq)− (wp+drp)

dpq
=

wq−wp

dpq
+

drq −drp

dpq
. (8)

This approaches an integer asq→ p because the first term approaches an integer by
Claim 2 of induction hypothesis, and because the second term approaches±1. The
absolute value of (8) is at mostD by Lemma 1. Because ˆq ∈ V for any q ∈ R by
Claim 1, I consists of finite disjoint intervals. Therefore,R\ I also consists of finite
disjoint intervals. Ifp is an end-point of an interval ofI or of R\ I , and ifq not in the
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interval is sufficiently close top, thenq resides in an interval adjacent to the interval.
Thus, we have Claim 2 forσ r by (7) and (8).

We finally prove Claim 3 forσ r. Let p ∈ R\V. If m′
p−0 ≤ mp−0 andm′

p+0 ≤
mp+0, then the claim holds by induction hypothesis. Otherwise, assume without loss
of generality thatm′

p−0 > mp−0. There are two such cases from the proof of Claim 2.
One case is thatm′

p−0 becomesD. I.e., for some interval[i, j) or (i, j) in I with
i < j such that anyq in the interval has ˆq = j, p is contained in(i, j) and (w′

q −
w′

p)/dpq = D(dq j −dp j)/dpq = D for anyq with i < q < p. It should be noted that
p 6= j becausep /∈V. Then, for anyq with p< q< j, it follows that(w′

q−w′
p)/dpq=

D(dq j −dp j)/dpq=−D, and hencem′
p+0 =−D.

The other case is thatm′
p−0 = mp−0+1. I.e., for some interval[i, j] in R\ I with

i < j, p is contained in(i, j] and (drq1 − drp)/dpq1 → 1 asq1 → p with i < q1 <
p < r < p+ L/2. It should be noted thatp 6= r by p /∈ V. If p < j, then we have
(drq2 −drp)/dpq2 → −1 asq2 → p with p< q2 < min{ j, r}, which meansm′

p+0 =

mp+0−1. If p = j, thenp = j is an end-point of an interval( j, j ′) in I with j < j ′

such that anyq ∈ ( j, j ′) hasq̂ = j ′. It should be noted thatj cannot be ˆq for any
point q 6= j by j = p /∈ V. Therefore, for anyq with p < q < j ′, it follows from
(7) that(w′

q−w′
p)/dpq= D(dq j′ −dp j′)/dpq=−D, and hencem′

p+0 =−D. Because
m′

p−0 ≤ D by Claim 2, we have Claim 3 forσ r. ⊓⊔
We define

ms→u := lim
q→u

q∈[s,u)

wq−wu

duq
for u∈V \ {s},

andms := min{ms→u | u∈V \{s}}. Now we state our main lemma, which claims (1)
together with two other claims.

Lemma 6 The following claims hold.

1. For {p,q} := V \ {s}, wp ≥ D(L−dsp)+M, or wq ≥ D(L−dsq)+M, or wp +
wq ≥ msdpq+DL+2M.

2. For any u∈V, wu+wū ≥ ws+
DL
2 +M.

3. For any u∈V, wu ≥ Ddsu+M.

Proof SketchWe describe a proof sketch prior to our formal proof. Through the ex-
tension of networks and work functions to continuous ones, we see that Claim 3 is
implied by Claim 2. Actually, if Claim 2 holds, then it follows thatwu ≥ ws−wū+
DL
2 +M ≥ −Ddsū+

DL
2 +M = −D(L

2 −dsu)+
DL
2 +M = Ddsu+M. Here, we have

used the factws− wū ≥ −Ddsū (Lemma 1). We will prove Claim 2 by induction
on events of services and migrations ofWFA for requests. The inductive proof for a
WFA’s migration is easy, because aWFA’s migration of distanced decreasesws by
Dd, increasesM by Dd, and does not change the left hand side of the inequality in
Claim 2. As for the proof for aWFA’s service, Claim 2 can inductively be proved for
most cases using basic properties ofwu (Lemmas 1–5), some of which are properties
of wu’s slope defined using one-sided derivatives. However, there is one exception
for which Claim 2 cannot be proved inductively. As shown in Fig. 5, for example, if
û = u 6= s and a decline from ¯u to the request noder ∈ V \ {s,u} has slopeD, then
wu increases bydur, whereaswū does not increase. Therefore, if ˆs= s anddsr > dur,
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s s̄u ūr

dur

dsr

DL
2
+ M

s

w

w′

slope D

slope D

Fig. 5 Situation for which Claim 2 cannot be proved inductively. It follows thatw′
u+w′

ū =wu+dur+wū <
M+ DL

2 +dsr +ws = w′
s+

DL
2 +M, whereaswu+wū = ws+

DL
2 +M

then it is the case that the increased amountdur of wu+wū is less than the increased
amountdsr of ws.

To prove Claim 2 even for such a case, we need Claim 1. The first and second in-
equalities in Claim 1 imply thatwp or wq is already large enough, and therefore, the
inequality in Claim 2 is satisfied forp or q,2 respectively. Actually, if the first inequal-
ity holds, then it follows thatwp+wp̄ ≥ D(L−dsp)+M+ws−Ddsp̄ = ws+

DL
2 +M.

Here, we have used the factwp̄ − ws ≥ −Ddsp̄ (Lemma 1). The parameterms in
the third inequality of Claim 1 is the smaller slope atwp toward s and atwq to-
wards. Roughly speaking,ms is increased by requests fromp or q and becomesD
in a situation for which Claim 2 cannot be proved inductively. Actually,ms = D in
Fig. 5. However, the third inequality of Claim 1 withms = D implies Claim 2 be-
causewp +wq ≥ Ddpq+DL+2M = D(2L−dsp−dsq)+2M, implying the first or
second inequality of Claim 1. Claim 1 is proved inductively, together with induc-
tion hypothesis of Claim 3, and hence that of Claim 2. Thus, Claims 1–3 are proved
simultaneously in the formal proof.

Formal Proof Claim 2 implies Claim 3 as described in the proof sketch. We prove
Claims 1 and 2 by induction on events of services and migrations ofWFA for requests
in σ . If σ = /0, then the claims hold. This is becausewp+wq−msdpq−2M =D(dsp+
dsq)+Ddpq=DL, and becausewu+wū−ws−M =D(dsu+dsū) =

DL
2 for anyu∈V.

Assume that Claims 1–3 hold for all events inσ . We suppose thatw andmare updated
to w′ andm′, respectively, in the service ofWFA for a request issued atr afterσ , and
thatM is updated toM′ in the subsequent migration ofWFA.

We first prove Claim 1 forWFA’s service forr. If wp ≥ D(L−dsp)+M or wq ≥
D(L− dsq)+M, then the claim holds for the event becausew′

p ≥ wp andw′
q ≥ wq.

Therefore, we assume thatwp+wq ≥ msdpq+DL+2M.

Case 1.1: p̂ = s. Then,m′
s→p = −D, and hencem′

s = −D ≤ ms. This means that
w′

p+w′
q−m′

sdpq≥ wp+wq−msdpq≥ DL+2M by induction hypothesis.

2 To be accurate, we should prove the inequality in Claim 2 for bothp and q. Although we do not
mention the reason here, we note that one of the first and second inequalities of Claim 1 suffices.
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Case 1.2: p̂ = q. Then, it follows from Claim 3 in induction hypothesis thatw′
p ≥

wq+Ddpq≥ Ddsq+M+Ddpq= D(L−dsp)+M.

Case 1.3:q̂∈ {s, p}. Similar to the case ˆp∈ {s,q}.

Case 1.4: p̂ = p and q̂ = q. If m′
s ≤ ms+ 1, thenw′

p +w′
q −m′

sdpq ≥ wp + drp +
wq +drq − (ms+ 1)dpq ≥ wp +wq −msdpq ≥ DL+ 2M by induction hypothesis. If
m′

s > ms+1, thenms→p or ms→q, say,ms→p increases by more than 1. By (the proof
of) Lemma 5, this means thatms→p <D−1,m′

s→p =D, and that there existsi ∈ (s, p)
with p ∈ (i, î]. It follows from Lemma 2 thatp = p̂ = î. Therefore, it follows from
Lemma 3 thatwj −wp > (D− 1)dp j for any j ∈ (i, p), which contradictsms→p <
D−1.

Second, we prove Claim 2 forWFA’s service forr. Becausews̄ = ws+ws̄−ws ≥
DL
2 +M by induction hypothesis, it follows thatw′

s+w′
s̄−w′

s≥ ws̄ ≥ DL
2 +M. There-

fore, without loss of generality, it suffices to prove thatw′
p+w′

p̄ ≥ w′
s+

DL
2 +M.

Case 2.1: p̂= s. Then,ŝ= p̂= s by Lemma 2. Therefore, it follows thatw′
s = ws+

drs. Moreover,w′
p = ws+drs+Ddsp≥ wp+drs by Lemma 1. Thus, we havew′

p+

w′
p̄−w′

s ≥ wp+drs+wp̄− (ws+drs)≥ DL
2 +M by induction hypothesis.

Case 2.2: p̂= q. Then,w′
p ≥ D(L−dsp)+M as shown in Case 1.2. Moreover,w′

p̄ ≥
w′

s−Ddsp̄ = w′
s−D(L

2 −dsp) by Lemma 1. Thus, we havew′
p+w′

p̄ ≥ D(L−dsp)+

M+w′
s−D(L

2 −dsp) = w′
s+

DL
2 +M.

Case 2.3: p̂= p. The proof for the casê̄p = s is similar to that for the case ˆp= s.
If ˆ̄p= p, then it follows from Claim 3 in induction hypothesis thatw′

p̄ = wp+drp +

Ddpp̄ ≥ Ddsp+M + DL
2 . Moreover,w′

p ≥ w′
s−Ddsp by Lemma 1. Thus, we have

w′
p +w′

p̄ ≥ w′
s+M + DL

2 . If ˆ̄p = p̄, then it follows from the minimality ofw′
s that

w′
s = wŝ+drŝ+Ddsŝ ≤ ws+drs. Thus, by induction hypothesis, we havew′

p+w′
p̄−

w′
s ≥ wp+drp+wp̄+dr p̄− (ws+drs)≥ M+ DL

2 . Assume the remaining caseˆ̄p= q.
Then,wp̄−wq > (D−1)dp̄q by Lemma 3. This meansms→q = D becausems→q is an
integer at mostD by Lemma 5, and because there is no node ofV between ¯p andq,
and therefore, no convex point in(p̄,q) by Lemma 5.

Case 2.3.1: ms→p = D. Then, it follows from Claim 1 in induction hypothesis that
wp ≥ D(L−dsp)+M, or wq ≥ D(L−dsq)+M, or wp+wq ≥ Ddpq+DL+2M. The
third inequality implies the first or second inequality. Therefore, it follows thatw′

p ≥
wp ≥D(L−dsp)+M, or thatw′

p̄ = wq+drq+Ddqp̄ ≥D(L−dsq)+M+drq+Ddqp̄ ≥
M+D(L−dsp̄). Both cases can be proved using similar arguments for Case 2.2.
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Case 2.3.2: ms→p ≤ D− 1. This meanswq̄ −wp ≤ (D− 1)dpq̄ because there is no
node ofV between ¯q and p, and therefore, no convex point in(q̄, p) by Lemma 5.
Therefore, it follows thatw′

p+w′
p̄ = wp+drp+wq+drq+Ddqp̄ ≥ wq̄−(D−1)dpq̄+

drp +wq+drq +Ddqp̄ = wq+wq̄+dpq̄+drp +drq ≥ ws+
DL
2 +M+ L

2 by induction
hypothesis. Becausew′

s ≤ ws+drs ≤ ws+
L
2 by the minimality ofw′

s, we havew′
p+

w′
p̄ ≥ w′

s+
DL
2 +M.

Finally, we prove Claims 1 and 2 forWFA’s migration froms to another node,
say,p after the service forr. It follows that

w′
s−w′

p = Ddsp. (9)

Therefore, it follows thatm′
p = −D. Moreover, it follows from Claims 2 and 3 (for

the event ofWFA’s service) that

w′
u+w′

ū ≥ w′
s+

DL
2 +M for anyu∈V, and (10)

w′
p ≥ Ddsp+M. (11)

Furthermore, because ¯q∈ (s, p), it follows that

w′
s−w′

q̄ = Ddsq̄ = D
(

L
2 −dsq

)

. (12)

We obtainw′
s ≥ 2Ddsp+M from (9) and (11), andw′

q ≥ D(L−dsq)+M from (10)
with u = q and (12). Thus, we havew′

s+w′
q−m′

pdsq ≥ 2Ddsp+M+D(L− dsq)+
M+Ddsq= DL+2(Ddsp+M) = DL+2M′. Moreover, it follows from (9) and (10)
thatw′

u+w′
ū−w′

p ≥ DL
2 +M+Ddsp=

DL
2 +M′ for anyu∈V. ⊓⊔

By Lemma 6, we have (1), and hence Theorem 1.

4 Counter-Based Algorithm

In this section we design a counter-based algorithm calledCBA and prove the follow-
ing theorems:

Theorem 2 CBA is 3-competitive on three nodes if D≤ 2.

We define and analyzeCBA in three stages. In Sect. 4.1, we review a 3-competitive
algorithm, calledCOUNT, for uniform networks presented in [8]3 and prove that
COUNT in fact has generalized competitiveness as follows:

Theorem 3 COUNT is ρ-competitive on complete graphs with edge-weights between
1 and2−2/ρ for anyρ ≥ 3.

We defineCBA for three nodes by extendingCOUNT in Sect. 4.2, and analyze
CBA in Sect. 4.3.

3 Although the algorithm described here is slightly modified, it is essentially same as the original ver-
sion.
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4.1 Algorithm for Restricted Edge-Weights

In this subsection we consider graphs of arbitrary size.COUNT maintains a counter
Cv ≥ 0 for each nodev so that∑v∈V Cv = 2D, and that the server ofCOUNT always
has a positive counter. Initially, the server has a counter of 2D, and the other nodes
have counters of 0. If a request is issued on a node other than the server, thenCOUNT

decrements a positive counter of a node by 1 and increments the counter of the request
node by 1. If a counter becomes 2D, thenCOUNT moves the server to the node with
this counter. The 3-competitiveness ofCOUNT is proved by verifying that for each
event ofCOUNT’s migration,OPT’s migration, and services ofCOUNT andOPT for a
request,

f := ∆ COUNT+∆Φ −ρ∆ OPT≤ 0 (13)

is satisfied forρ = 3. Here,Φ is apotential functionof counters and the serverssand
t of CBA andOPT, respectively, and defined as follows:

Φ := ρ
2 ∑

v∈V
Cvdtv+

(ρ
2 −1

)

∑
v∈V

Cvdsv.

∆ COUNT, ∆ OPT, ∆Φ are the amounts of change ofCOUNT’s cost,OPT’s cost, and
Φ in the event, respectively. SinceΦ ≥ 0, by summing (13) overall events, we can
prove thatCOUNT is ρ-competitive.

Theorem 3 will be proved by verifying that for the service event ofCOUNT and
OPT for a request onr, if COUNT decrements the counter of a nodeu 6= s with
dsr ≤ (1−2/ρ)dsu+dur, then (13) is satisfied. Ifu= s, then (13) is satisfied from the
original proof. As for the migration event ofCOUNT or OPT, (13) is satisfied regard-
less of the structure of the network becauseCOUNT always moves the server from a
node of counter 0 to a node with counter 2D. Therefore, if the server is located at a
nodessatisfying

dsv≤ (1− 2
ρ )dsu+duv for any distinctu,v∈V \ {s}, (14)

then (13) is satisfied for any event considered here. We formally prove this in Lem-
mas 7–9 below.

Lemma 7 Suppose thatCOUNT and OPT serve a request issued at r∈ V with the
servers on s and t, respectively. If (14) is satisfied, then f≤ 0.

Proof Obviously,∆ COUNT = drs and ∆ OPT = drt for the services ofCOUNT and
OPT, respectively. Ifr = s, then no counters are changed. Therefore,∆Φ = 0, and
hence,f = 0+0−ρdrt ≤ 0. Otherwise, the amount of 1 is moved from the counter
of a nodeu to the counter ofr. If u 6= s, then it follows that∆Φ = ρ

2 (dtr −dtu)+(ρ
2 −

1)(dsr−dsu). Therefore, we have

f = drs+
ρ
2 (dtr −dtu)+ (ρ

2 −1)(dsr−dsu)−ρdrt

= ρ
2 (drs−dtr −dtu)− (ρ

2 −1)dsu ≤ ρ
2

(

drs−dru− (1− 2
ρ )dsu

)

≤ 0.

If u= s, then it follows that∆Φ = ρ
2 (dtr −dts)+ (ρ

2 −1)dsr . Therefore, we have

f = drs+
ρ
2 (dtr −dts)+ (ρ

2 −1)dsr −ρdrt =
ρ
2 (drs−drt −dst)≤ 0.

⊓⊔



14 Akira Matsubayashi

Lemma 8 If OPT moves the server from t to q, then f≤ 0.

Proof Obviously,∆ COUNT = 0 and∆ OPT= Ddtq for OPT’s migration. Moreover,
∆Φ = ρ

2 ∑v∈V Cv(dqv−dtv). Therefore, we have

f = 0+ ρ
2 ∑

v∈V
Cv(dqv−dtv)−ρDdtq =

ρ
2 ∑

v∈V
Cv(dqv−dtv)− ρ

2 ∑
v∈V

Cvdtq

= ρ
2 ∑

v∈V

Cv(dqv−dtv−dtq)≤ 0.

⊓⊔

Lemma 9 Suppose thatCOUNT moves the server from s to p. Ifρ ≥ 3, then f≤ 0.

Proof Obviously,∆ COUNT = Ddsp and∆ OPT= 0 for COUNT’s migration. Because
p has the counter of 2D and all the other nodes have counters of 0, it follows that
∆Φ = (ρ

2 −1)∑v∈V Cv(dpv− dsv) = (ρ
2 −1)Cp(−dsp) = −D(ρ −2)dsp. Therefore,

we have
f = Ddsp−D(ρ −2)dsp−0=−D(ρ −3)dsp≤ 0.

⊓⊔
If a complete graph has edges of weights between 1 and 2− 2/ρ , then (14) is

satisfied for every nodes. Therefore, we have Theorem 3.

4.2 Algorithm for Three Nodes

If the server is located at a nodes not satisfying (14), then it may be the case that
f > 0. We shall amortize the excessive debt. LetA be the set of nodes satisfying (14)
andB be the set of nodes not contained inA. In the rest of this section, we consider
graphs with three nodes and labels as shown in Fig. 2. Moreover, we assumeρ = 3 for
simplicity, andy≥ max{x,z} without loss of generality. Then, it follows thatb∈ A,
and hence,B⊆ {a,c}. This is becausex≤ y≤ (1− 2

ρ )z+y andz≤ y≤ (1− 2
ρ )x+y.

We design our algorithmCBA by introducing the following policy toCOUNT. If
the server, saya, is in B, thenCBA always decrementsa’s counter for a request onb
or c and increments the counter of the request node. With this policy, (13) is satisfied
for any service event. However, this policy may cause a situation that the counters
of bothb andc are less than 2D whena’s counter becomes 0. This situation forces
CBA to move the server tob or c, becausea has no counter to be decremented for
further requests onb or c. This migration may causef > 0. Precisely,f depends on
the position of the servert of OPT and distribution of values of the counters. If the
counter ofc is sufficiently large, then the excessive debt for the migration froma to
c can entirely be amortized by the sum off associated with service events between
the previous and current migrations. Otherwise, although the excessive debt for the
migration froma to b may still remain unpaid through the previous service events,
it can be amortized by the sum off associated with service events and a possible
OPT’s migration between the current and next migrations ofCBA. CBA determines
the destination of the migration by estimating the excessive debt for the migration
and the amount that can amortize the debt.
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Now we formally defineCBA. We divide the input sequence of clients into phases
so that a migration ofCBA ends the current phase. When a new phase begins,CBA

sets the counter of the previous server to 0. We define a functionΨst ≤ 0 of counters
of the serverss andt of CBA andOPT, respectively, at the end of a phase, i.e., just
after the migration ofCBA to s. If B= /0, thenΨst := 0 for anysandt. Otherwise,

Ψst := 0 if s∈ {a,c}, or s= b andt 6= v,

Ψbv := max
{

Cv̄(− 1
2dbv̄− 3

2(dvv̄−dbv)),
3
2Cb(dbv̄−dvb−dvv̄)

}

,

where{v, v̄}= {a,c} with Cv = 0.
If a request is issued at a noder, then CBA performs the following procedure

unlessr = s.

1. If s∈ A and there exists unique ¯r ∈V \{s, r} with Cr̄ ≥ 1, thenCr̄−− andCr++.
Otherwise,Cs−− andCr++.

2. If Cs = 0, then move the server as follows:
(a) If s∈ A, then move the server tor. Step 1 impliesCr = 2D in this case.
(b) If s∈ B andFb ≤ Fs̄ (F is defined later), then move the server tob, where

{s̄}=V \ {s,b}. It should be noted that{s, s̄}= {a,c}.
(c) If s∈ B andFb > Fs̄, then move the server to ¯s, and setCb := 0 andCs̄ := 2D.

Here, forp∈ {b, s̄},

Fp := max
t,q∈V

{Mpq+Sq+Ψpq−Ψ ′
st},

Mbq :=Cs̄(
L
2 −dss̄) for q∈V,

Ms̄q :=Cb
(1

2(dss̄−dsb)+
3
2(ds̄q−dbq)

)

for q∈V,

Ss := 0, and

Sq := max
{

−3Cs̄(
L
2 −dss̄),−3Cb(

L
2 −dsb),−3Cb(

L
2 −dbs̄)

}

for q∈ {b, s̄}.

We have usedΨ ′ to denoteΨ associated with the previous phase and migration. If the
current phase is the first phase, thenΨ ′ is defined using the initial server and counters.
Moreover,Ψpq is associated with the current phase and migration. It should be noted
thatΨpq can be computed just before the migration ofCBA to p using counters at this
point. This is becauseCBA changes no counters ifp= b, and becauseΨaq=Ψcq= 0.

The intuitions ofΨ , F, M, andSare as follows:SandM are corrections ofΦ in
the current phase, i.e., upper bounds of increase of(CBA’s cost)+Φ −ρ(OPT’s cost)
for services and migration ofCBA, respectively. SinceM may be positive andS≤ 0,
M may yield the excessive debt of the current phase and be amortized byS. The debt
actually remains unpaid ifp= b, whereasSis enough ifp 6= b. In the next phase after
CBA moves the server tob, in particular, we can save sufficient deposit to amortize
the remaining debt of the current phase, as well as the debt of the next phase.Ψ is
introduced to transfer such deposit from the next phase to the current phase.F is the
total debt of a phase taking into accountΨ . Our goal is to prove thatFb or Fs̄ is at
most 0.
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4.3 Analysis ofCBA

For any evente, let ∆ CBA(e) and∆ OPT(e) be the costs ofCBA andOPT for e, re-
spectively. Moreover, let∆Φ(e) be the amount of change ofΦ for e. Furthermore,
let f (e) := ∆ CBA(e)+∆Φ(e)−ρ∆ OPT(e). We will omit e in the notations ife is
clear from the context.

Lemmas 10–12 below are detailed statements of Lemmas 7–9, respectively, ex-
cept thatCBA’s migration in Step 2b or 2c is included in Lemma 12. These lemmas
imply that we can save some deposit (asΨ andS), and will be used to prove that
the deposit can entirely amortize the excessive debt (M) for the migration in Step 2b
or 2c.

Lemma 10 Suppose thatCBA and OPT serve a request issued at r∈ V with the
servers on s and t, respectively. If r= s, then f= −3drt ≤ 0. If r 6= s, s∈ A, and
Cr̄ ≥ 1, then f≤ 3

2(drs− drr̄)− 1
2dsr̄ ≤ 0, where{r̄} = V \ {s, r}. Otherwise, f=

3
2(drs−drt −dst)≤ 0.

Proof By the definition ofCBA, if r 6= s, s∈ A, andCr̄ ≥ 1, then the amount of 1 is
moved fromCr̄ to Cr . Otherwise, the amount of 1 is moved fromCs to Cr . Therefore,
we have the lemma by the proof of Lemma 7. ⊓⊔
Lemma 11 If OPTmoves the server from t to q, then f= 3

2 ∑v∈V Cv(dqv−dtv−dtq)≤
0.

Proof The lemma is directly obtained from the proof of Lemma 8. ⊓⊔
Lemma 12 Suppose thatCBA moves the server from s to p. If the server is moved in
Step 2a, then f= 0. If the server is moved in Step 2b or 2c, then f= Mpq, where q is
the server ofOPT at the migration ofCBA. In particular, if Cp = 2D, then f= 0 for
any case.

Proof Obviously,∆ CBA = Ddsp and∆ OPT= 0 for CBA’s migration. If CBA moves
the server in Step 2a or 2b, then no counters are changed in the steps andCs = 0.
Therefore,∆Φ = 1

2 ∑v∈V Cv(dpv−dsv) =
1
2(−Cpdsp+Cp̄(dpp̄−dsp̄)), where{p̄} =

V \ {s, p}. Thus, we have

f = Ddsp+
1
2(−Cpdsp+Cp̄(dpp̄−dsp̄))−0

= Ddsp+
1
2(−(2D−Cp̄)dsp+Cp̄(dpp̄−dsp̄))

= 1
2Cp̄(dsp+dpp̄−dsp̄),

which equals 0 ifCp = 2D, implied by Step 2a. This is becauseCp = 2D implies
Cp̄ = 0. For Step 2b,f = Mpq becauses∈ {a,c}, p= b, andp̄= s̄.

If CBA moves the server in Step 2c, thenCp andCp̄ are set to 2D and 0, re-
spectively, after the migration. Moreover,Cs = 0 during the migration. Therefore,
∆Φ = 3

2((2D−Cp)dqp+(0−Cp̄)dqp̄)+
1
2(−Cpdsp−Cp̄dsp̄). Thus, we have

f = Ddsp+
3
2 ((2D−Cp)dqp+(0−Cp̄)dqp̄)+

1
2(−Cpdsp−Cp̄dsp̄)−0

= Ddsp+
3
2Cp̄(dqp−dqp̄)+

1
2(−(2D−Cp̄)dsp−Cp̄dsp̄)

=Cp̄
(

1
2(dsp−dsp̄)+

3
2(dpq−dp̄q)

)

,
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which equalsMpq becauses∈ {a,c}, p= s̄, andp̄= b for Step 2c. Obviouslyf = 0
if Cp = 2D, implyingCp̄ = 0. ⊓⊔

Fix a phase, and letφ be the sequence of events in the phase consisting of ser-
vices of CBA and OPT for a request, migrations ofOPT, and a migration ofCBA.
Suppose thatCBA and OPT locate the servers ats andt, respectively, at the begin-
ning of the phase, and atp and q, respectively, at the end of the phase. We will
proveg := ∑e∈φ f (e)+Ψpq−Ψ ′

st ≤ 0. If this holds, then because bothΦ andΨ can
be bounded from below independently of the number of requests, we can prove that
CBA is 3-competitive by summing up the inequalities overall phases. In what follows,
Cv denotes the counter ofv ∈ V just beforeCBA moves the server top. This means
thatCs = 0.

If B= /0 ors∈ {a,c}∩A, thenCp = 2D as mentioned in Step 2a of the definition
of CBA, andΨ ′

st = 0. Therefore,g ≤ 0 by Ψpq ≤ 0 and Lemmas 10–12. To prove
Theorem 2, it remains to prove thatg≤ 0 for the caseB 6= /0 ands∈ {b}∪B.

Lemma 13 If s= b, then g≤ 0.

Proof Let C′
v be the value of counter ofv ∈ V at the beginning of the phase, i.e.,

just after the previous migration ofCBA to s= b. BecauseCBA moved the server
from u∈ {a,c} to b in the previous migration,C′

u = 0 by the definition ofCBA. We
prove the lemma for the caseu = a and omit a proof for the caseu = c, which can
be obtained with a similar argument. Becauseb ∈ A, Cp = 2D by the definition of
CBA. If p= c, then by Lemma 12,f = 0 for the event of the migration ofCBA to c.
Therefore,∑e∈φ f (e)≤ 0 by Lemmas 10 and 11. Ifp= a, then an amount at leastC′

c
must be moved fromc’s counter toa’s counter in the phase. This means that at least
C′

c requests ona move the amount ofC′
c from c’s counter toa’s counter. It should

be noted thatCBA never increases the server’s counter. Therefore, it follows from
Lemma 10 that∑e∈φ f (e)≤C′

c(
3
2(x−y)− 1

2z). Thus, we can obtaing≤ ∑e∈φ f (e)−
Ψ ′

bt ≤ 0 if t ∈ {b,c} or p= a.
We assume thatt = a andp= c. An amount at leastC′

b must be moved fromb’s
counter toc’s counter in the phase. If a situation thatc’s counter becomes 0 occurs in
the phase, then the amount at leastC′

c must be moved fromc’s counter toa’s counter,
and hence, we can proveg≤ 0 as in the casep= a. We assume that no such situation
occurs. Then,C′

b requests onc moves the amount ofC′
b fromb’s counter toc’s counter

whena’s counter is 0. It should be noted thatCBA never decreases the counter of a
server inA unless one of the other nodes has the counter of 0. Therefore, ifOPT

does not move the server throughout the phase, then∑e∈φ f (e) ≤ 3
2C′

b(z− x− y) by
Lemma 10 and the above analysis thatf = 0 for the migration ofCBA to c. Thus, we
can obtaing≤ ∑e∈φ f (e)−Ψ ′

ba≤ 0.
It remains to prove the lemma for the case thatt = a, p= c, and thatOPT moves

the server in the phase. Because we have assumed thatc has a positive counter
throughout the phase, no amount moves fromb’s counter toa’s counter directly.
Therefore, ifλ ≤ C′

b is the amount moving fromb’s counter toc’s counter before
the first migration ofOPT, and if δ is the smaller value ofC′

c+λ and the number of
requests issued ata before theOPT’s migration, thenb andc have the countersC′

b−λ
and at leastC′

c + λ − δ , respectively, at the point of the migration ofOPT. For the
events of services ofCBA andOPT for the δ requests ona and theλ requests onc,
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f ≤ δ (3
2(x−y)− 1

2z)+ 3
2λ (z−y−x) by Lemma 10. IfOPT moves the server froma

to c, then by Lemma 11,f ≤ 3
2(C

′
c+λ − δ )(dcc−dac−dac) =−3(C′

c+λ − δ )y for
the event. Moreover,f = 0 for CBA’s migration fromb to c. Therefore, it follows that

∑
e∈φ

f (e) ≤ δ
(3

2(x− y)− 1
2z
)

+ 3
2λ (z− y− x)−3(C′

c+λ − δ )y

= δ
(3

2(x+ y)− 1
2z
)

+ 3
2λ (z−3y− x)−3C′

cy

≤ (C′
c+λ )

(

3
2(x+ y)− 1

2z
)

+ 3
2λ (z−3y− x)−3C′

cy

=C′
c

(

3
2(x− y)− 1

2z
)

+λ (z−3y)≤C′
c

(

3
2(x− y)− 1

2z
)

Thus, we can obtaing ≤ ∑e∈φ f (e)−Ψ ′
ba ≤ 0. If OPT moves the server tob, then

by Lemma 11,f ≤ 3
2((C

′
b−λ )(dbb−dab−dab)+ (C′

c+λ − δ )(dbc−dac−dab)) =
3
2(−2C′

bx+λ (z−y+x)+(C′
c−δ )(z−y−x)) for the event. Therefore, it follows that

∑
e∈φ

f (e)≤ δ
(3

2(x− y)− 1
2z
)

+ 3
2λ (z− y− x)

+ 3
2

(

−2C′
bx+λ (z− y+ x)+ (C′

c− δ )(z− y− x)
)

= δ (3x−2z)+3λ (z− y)+ 3
2

(

−2C′
bx+C′

c(z− y− x)
)

(15)

If 3x≥ 2z, then the last expression of (15) is at most

(C′
c+λ )(3x−2z)+3λ (z− y)+ 3

2

(

−2C′
bx+C′

c(z− y− x)
)

=C′
c(3x−2z)+ 3

2C′
c(z− y− x)+3(λ −C′

b)x+λ (z−3y)

≤C′
c

(

3
2(x− y)− 1

2z
)

.

If 3x< 2z, then the last expression of (15) is at most

3
2(−2C′

bx)≤ 3
2

(

−C′
bx−C′

b(y− z)
)

= 3
2C′

b(z− x− y).

Thus, we can obtaing≤ ∑e∈φ f (e)−Ψ ′
ba≤ 0. ⊓⊔

We proveg≤ 0 for the remaining cases∈ {a,c}∩B in Lemmas 14 and 15 below.

Lemma 14 If s∈ B, then∑e∈φ f (e)≤ Mpq+Sq.

Proof We prove the lemma for the cases= a and omit a proof for the cases= c,
which can be obtained with a similar argument. For the event ofCBA’s migration top,
f = Mpq by Lemma 12. Moreover,∑e∈φ ′ f (e)≤ 0= Sa by Lemmas 10 and 11, where
φ ′ is the sequence of events obtained fromφ by removing the last event ofCBA’s
migration. Therefore, it suffices to prove that∑e∈φ ′ f (e) ≤ Sq = max{−3Cc(

L
2 −

y),−3Cb(
L
2 − x),−3Cb(

L
2 − z)} for q∈ {b,c}.

Let δb andδc be the numbers of requests issued atb andc in the phase, respec-
tively, before the point thatOPT locates the server onq and keeps it until the end of
the phase. Then,δb ≤Cb, δc ≤Cc, andb andc have the counters ofδb andδc at the
point, respectively. This is becauseCBA sets the server’s counter to 2D after it moves
the server to a node inB, and henceC′

a = 2D andC′
b = C′

c = 0, and becauseCBA

decreases only the server’s counter when the server is inB. Therefore,Cb− δb and
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Cc − δc requests are issued onb andc after that point, respectively. For the events
of the services ofCBA andOPT for theCq̄− δq̄ requests on unique ¯q∈ {b,c} \ {q},
f ≤ (Cq̄−δq̄) · 3

2(daq̄−dq̄q−daq) by Lemma 10. IfOPTkeeps the server onq through-
out the phase, i.e.,δb = δc = 0, then

∑
e∈φ ′

f (e)≤ 3
2Cq̄(daq̄−dq̄q−daq)≤ max

{

3Cb(x− L
2),3Cc(y− L

2)
}

.

If OPT moves the server froma to q at the point thatb andc have the counters of
δb andδc, then f ≤ 3

2(δq(dqq− daq− daq))+ δq̄(dqq̄ − daq̄ − daq)) =
3
2(−2δqdaq+

δq̄(dqq̄−daq̄−daq)) by Lemma 11. Combining this event and the events forCb− δb

andCc− δc requests onb andc, respectively, we have

∑
e∈φ ′

f (e)≤ 3
2 (−2δqdaq+ δq̄(dqq̄−daq̄−daq))+ (Cq̄− δq̄) · 3

2(daq̄−dq̄q−daq)

= 3
2 (Cq̄(daq̄− z−daq)−2δqdaq−2δq̄(daq̄− z))

≤ 3
2Cq̄(|daq̄− z|−daq) [by δq̄ ≤Cq̄]

≤ max
{

3Cc(y− L
2),3Cb(x− L

2),3Cb(z− L
2)
}

.

If OPT moves the server from ¯q to q at the point thatb andc have the counters ofδb

andδc, then by analyzing this event with Lemma 11, we have

∑
e∈φ ′

f (e)≤ 3
2 (δq(dqq−dq̄q−dq̄q)+ (2D− δq− δq̄)(dqa−dq̄a−dq̄q))

= 3
2 ((2D− δq̄)(dqa−dq̄a−dq̄q)− δq(dqa−dq̄a+dq̄q))

≤ 3
2(2D− δq̄)(dqa−dq̄a−dq̄q)

≤ 3
2Cq(dqa−dq̄a− z)≤ max

{

3Cb(x− L
2),3Cc(y− L

2)
}

.

Here, we have used the fact that 2D− δq̄ ≥ 2D−Cq̄ =Cq. ⊓⊔

Lemma 15 If D ≤ 2 and s∈ {a,c}∩B, then Fb ≤ 0 or Fs̄ ≤ 0.

Proof We prove the lemma for the cases= a and omit a proof for the cases= c,
which can be obtained with a similar argument.

We first estimateFb. BecauseΨ ′
at = 0,Ψbb=Ψbc= 0,Sa = 0,Sb = Sc, andMba=

Mbb = Mbc, we haveFb = maxt,q∈V{Mbq+Sq+Ψbq−Ψ ′
at} = Mba+max{Ψba,Sb}.

By the definitions ofMba, Sq, andΨba,

Mba =Cc(
L
2 − y),

Sb = max
{

3Cc(y− L
2),3Cb(x− L

2),3Cb(z− L
2)
}

, and

Ψba= max
{

Cc
(3

2(x− y)− 1
2z
)

, 3
2Cb(z− x− y)

}

.

If Ψba = Cc(
3
2(x− y)− 1

2z), thenFb/Cc ≤ (L
2 − y) + 3

2(x− y)− 1
2z= 2(x− y) ≤ 0.

Moreover, ifSb = 3Cc(y− L
2) andΨba ≤ Sb, thenFb/Cc ≤ (L

2 −y)+3(y− L
2) = 2y−
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L ≤ 0. Thus, the lemma holds for these cases. We assume the remaining cases. Then,
by 1

2(z− x− y) = z− L
2 , we have

Fb ≤Cc(
L
2 − y)+max

{

3Cb(x− L
2),3Cb(z− L

2)
}

= (2D−Cb)(
L
2 − y)+3Cb

(

max{x,z}− L
2

)

.

Therefore, ifCb ≥ D/2, thenFb ≤ 3Cb(max{x,z}− y) ≤ 0. If Cb < D/2 ≤ 1, i.e.,
Cb = 0, thenMcq, Sq, Ψcq, andΨ ′

at are all equal to 0 for anyt,q∈ V. Thus, we have
Fc = maxt,q∈V{Mcq+Sq+Ψcq−Ψ ′

at}= 0. ⊓⊔
By Lemmas 13–15, we haveg≤ 0 for every case. Therefore, the proof of Theo-

rem 2 is completed.

5 Lower Bound

In this section we prove the following theorem:

Theorem 4 If a deterministic page migration algorithm isρ-competitive on three
nodes, thenρ = 3+Ω(1/D). In particular,ρ > 3 for any D≥ 3.

5.1 Adversary

To prove Theorem 4, we design a 3-node network and anadversary, i.e., a strategy to
generate an arbitrarily costly sequenceσ of clients against any deterministic online
page migration algorithmALG on the network so thatALG(σ)> ρ ·OPT(σ) for some
ρ = 3+Ω(1/D) with D≥ 3. By using such a strategy, we obtain a lower bound ofρ ,
i.e.,ALG(σ)≥ρ ·OPT(σ)+α for anyα independent of the number of clients because
σ can be arbitrarily costly. Broadly, our strategy repeatedly generates a sequenceφ
of clients so thatALG returns the server to the initial positions0 after processing
eachφ , and thatALG(φ) > (3+Ω(1/D))OPTs0(φ). The sequenceφ begins with a
sequenceτ such thatALG(τ) > (3+Ω(1/D))OPT(τ), or thatALG moves the server
too early to achieve a competitive ratio 3+ o(1/D). If ALG locates the server ats0

after processingτ and hasALG(τ) > (3+Ω(1/D))OPTs0(τ), thenτ is actually a
desired sequenceφ . Otherwise, a subsequent sequenceτ ′ enforces enough separation
between costs ofALG andOPT if necessary, and leadsALG to return the server tos0

with preserving part of the separation, so thatALG(ττ ′)> (3+Ω(1/D))OPTs0(ττ ′).
In this section we assume without loss of generality thaty ≥ x ≥ z. We call a

sequenceχ a v-forcing sequence, denoted byχv, if ALG leaves the server on a node
v after processingχ . The following Lemma 16 is a tool to enforce enough separation
between costs ofALG with too early migration andOPT.

Lemma 16 Let P⊆V, Q:=V \P, and let p∈P and q∈Q be joined by an edge with
the minimum weight w overall edges joining P and Q. If there existρ > 3 and a q-
forcing sequenceχ of clients such that(ρ −1)OPTp(χ)+OPTq(χ)−ALG(χ)+(ρ −
5)Dw< 0, then there exists a p-forcing sequenceχ ′ with ALG(χχ ′)> ρ ·OPTp(χχ ′)
or a q-forcing sequenceχ ′′ with ALG(χχ ′′)> ρ ·OPTq(χχ ′′).
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Proof We prove thatχ ′ := pk1qℓ1 · · · pki−1qℓi−1 pki or χ ′′ := pk1qℓ1 · · · pki qℓi is a desired
sequence for somei. Here,k j (resp.ℓ j ) (1≤ j ≤ i) is the minimum positive integer
such thatALG moves the server from a node ofQ (resp.P) to a nodeP (resp.Q) after
processingχ pk1qℓ1 · · · pkj−1qℓ j−1 pkj (resp.χ pk1qℓ1 · · · pkj qℓ j ).

Assume for contradiction thatALG(χχ ′) ≤ ρ · OPTp(χχ ′) andALG(χχ ′′) ≤ ρ ·
OPTq(χχ ′′). BecauseALG incurs a cost at leastw to serve a request inχ ′ or χ ′′ and a
cost at leastDw to migrate betweenP andQ, it follows that

ALG(χχ ′)≥ ALG(χ)+ (Ki +Di +Li−1+D(i −1))w, and

ALG(χχ ′′)≥ ALG(χ)+ (Ki +Di +Li +Di)w,

whereK j := ∑ j
h=1kh and L j := ∑ j

h=1ℓh for 1 ≤ j ≤ i, andL0 := 0. Moreover, an
offline algorithm that locates and keeps the server atp (resp.q) after processing
χ can processχχ ′ (resp.χχ ′′) with a cost ofOPTp(χ) + Li−1w (resp.OPTq(χ) +
Kiw). Therefore, it follows thatOPTp(χχ ′) ≤ OPTp(χ)+ Li−1w, andOPTq(χχ ′′) ≤
OPTq(χ)+Kiw. By the inequalities observed above, we have

ALG(χ)+ (Ki +Di +Li−1+D(i −1))w≤ ρ(OPTp(χ)+Li−1w), and

ALG(χ)+ (Ki +Di +Li +Di)w≤ ρ(OPTq(χ)+Kiw),

which yield the inequalities

Ki ≤ (ρ −1)Li−1−D(2i −1)+A andLi ≤ (ρ −1)Ki −2Di +B for i ≥ 1,

whereA := (ρ · OPTp(χ)− ALG(χ))/w andB := (ρ · OPTq(χ)− ALG(χ))/w. Thus,
we have the recurrence

Ki ≤ (ρ −1)2Ki−1−2ρDi +(2ρ−1)D+A+(ρ−1)B for i ≥ 2,

which is equivalent to

Ki − 2Di
ρ−2 −

ρD
ρ−2−A−(ρ−1)B

ρ(ρ−2) ≤
{

Ki−1− 2D(i−1)
ρ−2 −

ρD
ρ−2−A−(ρ−1)B

ρ(ρ−2)

}

(ρ −1)2.

Therefore, it follows that

Ki ≤
{

K1− 2D
ρ−2 −

ρD
ρ−2−A−(ρ−1)B

ρ(ρ−2)

}

(ρ −1)2(i−1)+ 2Di
ρ−2 +

ρD
ρ−2−A−(ρ−1)B

ρ(ρ−2)

by K1 ≤ A−D

≤
{

− ρ(ρ−1)D
ρ−2 +(ρ −1)A+B

}

(ρ−1)2i−1

ρ(ρ−2) + 2Di
ρ−2 +

ρD
ρ−2−A−(ρ−1)B

ρ(ρ−2)

=
{

− ρ(ρ−1)D
ρ−2 +(ρ −1)A+B

}

·Θ
(

(ρ −1)2i)+O(i).

The factor ofΘ((ρ −1)2i) can be estimated as

− ρ(ρ−1)D
ρ−2 +(ρ −1)A+B= ρ

w

{

(ρ −1)OPTp(χ)+OPTq(χ)− ALG(χ)− ρ−1
ρ−2Dw

}

,
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which is negative by− ρ−1
ρ−2 ≤ ρ −5 for ρ ≥ 3 and by the assumption of the lemma.

Therefore,Ki decreases asi grows sufficiently large, but it is impossible by definition.
⊓⊔

Lemmas 17 and 18 below are tools to generateτ ′ for ALG with ALG(τ) > ρ ·
OPT(τ) and with too early migration, respectively.

Lemma 17 Let p:= a and q:= b, or p := b and q:= c. Let w:= dpq. If there exist
ρ > 3, β > 0, and a q-forcing sequenceχ of clients such thatALG(χ)> ρ ·OPTq(χ)
and OPTq(χ) ≥ βDw, then there exists a sequenceχ ′ that is a p-forcing sequence
with ALG(χχ ′)> ρ ′ ·OPTp(χχ ′) or an arbitrarily costly sequence withALG(χχ ′)>

ρ ′ ·OPT(χχ ′), whereρ ′ := β
β+4(ρ −3)+3.

Proof We defineχ ′ as follows:

1. Letψ0 be an empty sequence andj := 1.
2. ALG have processedχψ0 · · ·ψ j−1 and locates the server onq. Then, we generate

requests atp repeatedly untilALG locates the server onp. Let i be the number of
the requests onp.

3. If i ≥ ((β +1)ρ ′−β ρ−1)D, then setχ ′ :=ψ0 · · ·ψ j−1pi , and quit the procedure.
4. Otherwise, we estimate costs ofALG andOPT for the clientspi with the server

initially at q. WhereverALG moves the server betweenq andu /∈ {p,q} during the
requests,ALG incurs a cost at least(i+D)w. This is becausew≤ dpu by y≥ x≥ z.
An offline algorithm that keeps the server atq can processpi with a cost ofiw.
Moreover, an offline algorithm that moves the server fromq to p first and keeps
the server atp can processpi with a cost ofDw. Thus, we have

(ρ ′−1)OPTq(p
i)+OPTp(p

i)− ALG(pi)+ (ρ ′−5)Dw

≤ (ρ ′−1)iw+Dw− (i +D)w+(ρ ′−5)Dw

<
{

(ρ ′−2)((β +1)ρ ′−β ρ −1)+ρ ′−5
}

Dw

=
{

(β +1)ρ ′2− (β ρ +2(β +1))ρ ′+2β ρ −3
}

Dw

= (β +1)
(

ρ ′−A(ρ)
)(

ρ ′−B(ρ)
)

Dw< 0,

(16)

where

A(ρ) := 1+ β ρ+
√

(β ρ−2(β+1))2+12(β+1)
2(β+1) , and

B(ρ) := 1+
β ρ−

√
(β ρ−2(β+1))2+12(β+1)

2(β+1) .

The last inequality of (16) can be proved by verifying that forρ ≥ 3,

A(ρ)> d
dρ A(3) · (ρ −3)+A(3) [by d2

dρ2 A(ρ)> 0]

= ρ ′, and

B(ρ)< 1+ β ρ−|β ρ−2(β+1)|
2(β+1) ≤ 2< ρ ′.

Therefore, by applying Lemma 16 withP := {p} andQ := {q,u}, we can obtain
a sequenceψ j beginning withpi that is ap-forcing sequence withALG(ψ j) >
ρ ′OPTp(ψ j) or aq-forcing sequence withALG(ψ j)> ρ ′OPTq(ψ j).
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5. If ψ j is a p-forcing sequence, then setχ ′ := ψ0 · · ·ψ j , and quit the procedure.
Otherwise, setj := j +1, and repeat the process from Step 2.

By definition, χ ′ is a p-forcing sequence or arbitrarily costly. If the procedure
ends in Step 3, then it follows that

ALG(χχ ′)−ρ ′ ·OPTp(χχ ′)≥ ALG(χ)+∑
j

ALG(ψ j)+ ALG(pi)

−ρ ′
{

OPTq(χ)+∑
j

OPTq(ψ j)+OPTp(p
i)

}

> (ρ −ρ ′)OPTq(χ)+
(

(β +1)ρ ′−β ρ
)

Dw−ρ ′Dw

= (ρ −ρ ′)(OPTq(χ)−βDw)≥ 0.

If the procedure ends in Step 5, then it follows that

ALG(χχ ′)−ρ ′ ·OPTp(χχ ′)≥ ALG(χ)+ ∑
h< j

ALG(ψh)+ ALG(ψ j)

−ρ ′
{

OPTq(χ)+ ∑
h< j

OPTq(ψh)+OPTp(ψ j)

}

> (ρ −ρ ′)OPTq(χ)> 0.

Otherwise, we can similarly proveALG(χχ ′)−ρ ′ ·OPT(χχ ′)> 0. ⊓⊔

Lemma 18 Let {p,q} := {a,b} and w:= dpq. If there existρ > 3, β > 0, and a
q-forcing sequenceχ of clients such that(ρ − 1)OPTp(χ) + OPTq(χ)− ALG(χ) +
(ρ − 5)Dw < 0 and OPTq(χ) ≥ βDw, then there exists a sequenceχ ′ that is an a-
forcing sequence withALG(χχ ′) > ρ ′ ·OPTa(χχ ′) or an arbitrarily costly sequence

with ALG(χχ ′)> ρ ′ ·OPT(χχ ′), whereρ ′ := β
β+4(ρ −3)+3.

Proof Let P := {a} andQ := {b,c} if p = a, P := {b,c} andQ := {a} otherwise.
By applying Lemma 16 with suchP and Q, we can obtain a sequenceψ that is
ana-forcing sequence withALG(χψ)> ρ ·OPTa(χψ) or ab-forcing sequence with
ALG(χψ) > ρ · OPTb(χψ). If ψ is ana-forcing sequence, then we have obtained a
desired sequence. Otherwise, by Lemma 17, there exists a sequenceψ ′ that is an
a-forcing sequence withALG(χψψ ′) > ρ ′ · OPTa(χψψ ′) or an arbitrarily costly se-
quence withALG(χψψ ′)> ρ ′ ·OPT(χψψ ′). Therefore,ψψ ′ is a desired sequence.

⊓⊔
We set the initial servers0 := a. Our strategy to generateσ is defined using a

state machine as shown in Fig. 6. In this state machine, a transition represents a server
position selected byALG, together with optional conditions on the number of requests
generated in the source state. The parameter 1≤λ ≤D/3 will be defined later. A state
with the form ofuk (i.e., bh, a j , andci) represents a sequence of requests that are
issued onu until the server position ofALG and the numberk of the issued requests
meet those associated with one of the outgoing arcs from the state. For example, we
generate requests onb at the statebh and transit toa+ if ALG moves the server from
a to b or c after at mostλ requests, while we transit toci if ALG keeps the server at
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a, j≥2D

Lm17b

Lm17a

Lm18

a, h=λ

a, j≤2D−1
a j

c,D−λ≤ i≤2D−λ
b, i≤2D−λ−1

c, i≥2D−λ+1

b, i≥2D−λc, i<D−λ
bc, h≤λ

cibh

c+a+

a

a
a

a b

b b

c

c

Fig. 6 Strategy to generateσ

a duringλ requests onb. At the statea j , for another example, we generate requests
ona until ALG locates the server ata, and transit to Lm18 if the number of generated
requests ona is less than 2D, bh otherwise. A state with the form ofu+ (i.e., a+

andc+) represents a sequence of requests onu until ALG locates the server onu.
The states Lm17b and Lm17a represent sequences of requests obtained by applying
Lemma 17 withp := b andq := c, and with p := a andq := b, respectively. The
state Lm18 represents a sequence of requests obtained by applying Lemma 18 with
p∈ {a,b} \ {s} andq := s, wheres∈ {a,b} is the server ofALG at the beginning of
the state.

5.2 Analysis

Now we prove Theorem 4. Suppose thaty = x+ δ andz= γδ with δ > 0 and 3≤
γ ≤ x/δ . We will chooseγ and δ later. We divideσ into phases so that entering
the statebh begins a new phase.ALG locates the server ona at the beginning of
each phase. Therefore, Theorem 4 is proved if for eacha-forcing phaseφ , ALG(φ)>
ρ · OPTa(φ) with the server initially ata, and if for an arbitrarily costly phaseφ ,
ALG(φ)> ρ ·OPT(φ) with the server initially ata.

Case 1: φ = bh
bca

+ with h≤ λ . It follows thatALG(φ)> (h+2D)xandOPTa(φ)≤ hx

(cost of keeping the server ata). Thus, we haveALG(φ)
OPTa(φ) >

h+2D
h ≥ 1+ 2D

λ ≥ 7.

Case 2: φ = ττ ′, whereτ := bλ
a ci

b with i ≤ 2D−λ − 1, andτ ′ is the sequence of
clients generated in the state Lm18. It follows thatALG(τ)= (λ +D)x+ iy, OPTa(τ)=
λx+ iy (cost of keeping the server ata), andOPTb(τ) ≤ Dx+ iz (cost of moving the
server tob first and keeping it atb). Thus, we have

(ρ −1)OPTa(τ)+OPTb(τ)− ALG(τ)+ (ρ −5)Dx

≤ (ρ −1)(λx+ iy)+Dx+ iz− ((λ +D)x+ iy)+ (ρ−5)Dx

≤ ρ{(3D−1)x+(2D−λ−1)δ}−{(9D−2)x+(2D−λ−1)(2− γ)δ}.



Asymptotically Optimal Online Page Migration on Three Points 25

Therefore, if(ρ −1)OPTa(τ)+OPTb(τ)− ALG(τ)+ (ρ −5)Dx≥ 0, then we obtain

ρ ≥ 3+
x− (2D−λ −1)(1+ γ)δ
(3D−1)x+(2D−λ −1)δ

,

which is 3+ ε
O(D)

with 0< ε < 1 by settingγ = O(1) and

δ ≤ (1− ε)x
(2D−λ −1)(γ +1)

= O
( x

D

)

. (17)

This means that there existsρ = 3+Ω(1/D) such that(ρ −1)OPTa(τ)+OPTb(τ)−
ALG(τ)+ (ρ −5)Dx < 0. BecauseOPTb(τ) ≥ Dx, by Lemma 18, there existsρ ′ =
3+Ω(1/D) such thatφ is ana-forcing sequence withALG(φ) > ρ ′ ·OPTa(φ) or an
arbitrarily costly sequence withALG(φ)> ρ ′ ·OPT(φ).

Case 3: φ = ττ ′, whereτ = bλ
a ci

bc+ with i ≥ 2D−λ , andτ ′ is the sequence of clients
generated in the states Lm17b and Lm17a. It follows thatALG(τ) ≥ (λ +D)x+ iy+
(1+D)z andOPTc(τ) ≤ Dy+λz (cost of moving the server toc first and keeping it
at c). Thus, we have

ALG(τ)
OPTc(τ)

≥ (λ +D)x+ iy+(1+D)z
Dy+λz

≥ 3Dx+ {(2D−λ )+ (1+D)γ}δ
Dx+(D+λ γ)δ

= 3+
{(γ −1)D+ γ −λ (3γ +1)}δ

Dx+(D+λ γ)δ
,

which is 3+ ε
Θ (D) with 0< ε < 1 by setting

γ := 4+3ε = O(1), (18)

λ :=

⌊

(γ −1− ε)D+ γ
3γ +1

⌋

=Θ(D), and (19)

δ =Θ(x/D). It should be noted that 1≤ λ ≤ D/3 for D ≥ 3. BecauseOPTc(τ)≥ Dy
andOPTb(τ) ≥ Dx, by Lemma 17, there existsρ ′ = 3+Θ(1/D) such thatφ is ana-
forcing sequence withALG(φ) > ρ ′ ·OPTa(φ) or an arbitrarily costly sequence with
ALG(φ)> ρ ′ ·OPT(φ).

Case 4: φ = bλ
a ci

ca
+ with i < D− λ . It follows that ALG(φ) ≥ λx+(i +D+ 1+

D)y = λx+(i +2D+1)y andOPTa(φ) ≤ λx+ iy (cost of keeping the server ata).
Thus, we have

ALG(φ)
OPTa(φ)

≥ λx+(i +2D+1)y
λx+ iy

≥ 1+
(2D+1)y

λx+ iy
> 1+

2D+1
D

= 3+
1
D
.
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Case 5: φ = ττ ′ whereτ = bλ
a ci

ca
j
a with D−λ ≤ i ≤ 2D−λ and j ≤ 2D−1, and

τ ′ is the sequence of clients generated in the state Lm18. IfALG keeps the server at
c during a j , then the cost fora j is ( j +D)y. If ALG moves the server fromc to b
after the j ′th request ofa j , then the cost fora j is at leastj ′y+Dz+( j − j ′+D)x=
jy+ D(γδ + x)− ( j − j ′)δ . Becauseγ ≥ 3 and j − j ′ < 2D, this is at leastjy +
D(3δ + x)−2Dδ = jy+D(δ + x) = ( j +D)y. Therefore, it follows thatALG(τ) ≥
λx+(i +D+ j +D)y = λx+(i + j +2D)y. Moreover,OPTa(τ) ≤ λx+ iy (cost of
keeping the server ata), andOPTb(τ)≤ Dx+ iz+ jx = ( j +D)x+ iz (cost of moving
the server tob first and keeping it atb). Thus, we have

(ρ −1)OPTb(τ)+OPTa(τ)− ALG(τ)+ (ρ −5)Dx

≤ (ρ −1)(( j +D)x+ iz)+λx+ iy− (λx+(i + j +2D)y)+(ρ−5)Dx

≤ ρ{(4D−1)x+(2D−λ )γδ}−{(12D−2)x+(4D−1+(2D−λ )γ)δ}.

To derive the second inequality, we have boundedj by 2D−1 becausej is multiplied
by (ρ −1)x− y≥ 2x− y≥ x+ z− y> 0 for ρ ≥ 3. Therefore, if(ρ −1)OPTb(τ)+
OPTa(τ)− ALG(τ)+ (ρ −5)Dx≥ 0, then we obtain

ρ ≥ 3+
x+((4D−1)−2(2D−λ)γ)δ

(4D−1)x+(2D−λ )γδ
,

which is 3+ ε
O(D) with 0< ε < 1 by settingγ = O(1) and

δ ≤ (1− ε)x
2(2D−λ )γ − (4D−1)

= O
( x

D

)

. (20)

This means that there existsρ = 3+Ω(1/D) such that(ρ −1)OPTb(τ)+OPTa(τ)−
ALG(τ)+ (ρ −5)Dx < 0. BecauseOPTa(τ) > Dx, by Lemma 18, there existsρ ′ =
3+Ω(1/D) such thatφ is ana-forcing sequence withALG(φ) > ρ ′ ·OPTa(φ) or an
arbitrarily costly sequence withALG(φ)> ρ ′ ·OPT(φ).

Case 6: φ = bλ
a ci

ca
j
a with D−λ ≤ i ≤ 2D−λ and j ≥ 2D. If ALG keeps the server at

c duringa j , then the cost fora j is ( j +D)y≥ 3Dy. If ALG moves the server fromc to
b after thej ′th request ofa j , then the cost fora j is at leastj ′y+Dz+( j − j ′+D)x≥
jx+D(γδ +x). Becauseγ ≥3 andj ≥2D, this is at least 3D(δ +x)=3Dy. Therefore,
it follows thatALG(φ)≥ λx+(i+D+3D)y= λx+(i+4D)yandOPTa(φ)≤ λx+ iy
(cost of keeping the server ata). Thus, we have

ALG(φ)
OPTa(φ)

≥ λx+(i +4D)y
λx+ iy

= 1+
4Dy

λx+ iy
≥ 1+

4D(x+ δ )
2Dx+(2D−λ )δ

= 3+
2λ δ

2Dx+(2D−λ )δ
,

which is 3+Θ(1/D) by settingλ =Θ(D) andδ =Θ(x/D).
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Case 7: φ = ττ ′, whereτ = bλ
aci

c with i ≥ 2D−λ +1, andτ ′ is the sequence of clients
generated in the states Lm17b and Lm17a. It follows thatALG(τ) ≥ λx+(i +D)y
andOPTc(τ)≤Dy+λz(cost of moving the server toc first and keeping it atc). Thus,
we have

ALG(τ)
OPTc(τ)

≥ λx+(i +D)y
Dy+λz

≥ (3D+1)x+(3D−λ +1)δ
Dx+(D+λ γ)δ

= 3+
x− ((3γ +1)λ −1)δ

Dx+(D+λ γ)δ
,

which is 3+ ε
O(D) with 0< ε < 1 by settingγ = O(1), λ =Θ(D), and

δ ≤ (1− ε)x
(3γ +1)λ −1

= O
( x

D

)

. (21)

BecauseOPTc(τ) ≥ Dy and OPTb(τ) ≥ Dx, by Lemma 17, there existsρ ′ = 3+
Ω(1/D) such thatφ is an a-forcing sequence withALG(φ) > ρ ′ · OPTa(φ) or an
arbitrarily costly sequence withALG(φ)> ρ ′ ·OPT(φ).

By settingγ as in (18),λ as in (19), andδ so that (17), (20), (21), andδ ≤ x/γ
are satisfied, we can obtain a desired sequenceφ . Thus, the proof of Theorem 4 is
completed.

If we set ε := 1/3, γ := 5, λ := ⌊11D+15
48 ⌋, andδ := x

24D , then we can lower-

bound ALG(τ)
OPTc(τ) by 3+ 1

72D+8 in Case 3. By applying Lemma 17 withβ = y/z= 24D+1
5

for the state Lm 17b, and then withβ = 1 for the state Lm 17a, we obtainρ ′ >
3+(360D+340+ 500

24D+1)
−1 > 3+ 1

360D+347 for D ≥ 3, which is the smallest lower
bound over all Cases 1–7.

6 Future Work

It would be interesting to answer whether or not there exists an asymptotically 3-
competitive deterministic algorithm on a broader class of networks. Unfortunately,
even 4-node ring networks do not allowWFA as it is to have such a competitive ratio.
In fact, our proof of Theorem 1 depends on the fact that an extended work function
is concave on the interval between two nodes on a continuous loop with three nodes
(Claim 3 of Lemma 5). However, this fact does not follow on four nodes. On the other
hand, there might exist a lower bound of 3+Θ(1) on general networks. For such a
lower bound, however, we would need at least four nodes and have to overcome the
difficulty of designing and analyzing a much more complicated adversary mainly due
to increase of nodes. In any case, improving the currently best upper bound of 4.086
on general networks is still an important open problem.
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