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Abstract This paper addresses the page migration problem: given online requests
from nodes on a network for accessing a page stored in a node, output online mi-
grations of the page. Serving a request costs the distance between the request and
the page, and migrating the page costs the migration distance multiplied by the page
sizeD > 1. The objective is to minimize the total sum of service costs and migration
costs. Black and Sleator conjectured that there exists a 3-competitive deterministic
algorithm for every graph. Although the conjecture was disproved for thelzasg,
whether or not an asymptotically (with respecip3-competitive deterministic al-
gorithm exists for every graph is still open. In fact, we did not know if there exists a
3-competitive deterministic algorithm for an extreme case of three node®wiitA.

As the first step toward an asymptotic version of the Black and Sleator conjecture,
we present 3- an@B+ 1/D)-competitive algorithms on three nodes with= 2 and

D > 3, respectively, and a lower bound 0§32 (1/D) that is greater than 3 for every

D > 3. In addition to the results on three nodes, we also dgrdgempetitiveness on
complete graphs with edge-weights between 1 ar®2p for anyp > 3, extending

the previous 3-competitive algorithm on uniform networks.

Keywords page migration work function algorithm competitive analysisserver
problem

1 Introduction
The problem of computing an efficient dynamic allocation of data objects stored in

nodes of a network commonly arises in network applications such as memory man-
agement in a shared memory multiprocessor system and Peer-to-Peer applications on

A preliminary version appeared in the proceedings of the Y@tinkshop on Approximation and Online
Algorithms (WAOA 2012).
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the Internet. In this paper, we study one of the classical varieties of the problem, the
page migration problemin which a request issued on a node for accessing a single
data object (called @agein this problem) must be served using unicast commu-
nication. After serving each request, we are allowed to migrate the page. Serving a
request costs the distance of the communication, and migrating the page costs the mi-
gration distance multiplied by the page s2e> 1. The objective is to minimize the

total sum of the service and migration costs. The page migration problem has been
extensively studied (e.g., [2—4,8,10,13,15]) and generalized to several settings such
ask-page migration [3], file allocation problem, e.g., [2,4,13], and data management
on dynamic networks, e.g, [1,7]. See [6] for a recent survey.

1.1 Related Results

We focus on deterministic online page migration algorithms. Black and Sleator [8]
first studied competitive analysis of the page migration problem and presented 3-
competitive deterministic algorithms on trees, uniform networks, and Cartesian prod-
ucts of these networks, including grids and hypercubes. These algorithms are optimal
because the deterministic lower bound is 3 for every network with at least two nodes
[8,11]. Black and Sleator conjectured that there exists a 3-competitive deterministic
algorithm for every network. The first upper bound of 7 for general networks was
given by Awerbuch, Bartal, and Fiat [2] and improved t086 by Bartal, Charikar,

and Indyk [3]. For a special case@f= 1, a better bound of 2 v/2 is achievable [14].

For a yet restricted case &f = 1 and three nodes, a 3-competitive deterministic al-
gorithm was presented in [10]. Whether or not a 3-competitive deterministic algo-
rithm exists on three nodes f@r > 2 was left open. Concerning the lower bound,
Black and Sleator’s conjecture was disproved by Chrobak, Larmore, Reingold, and
Westbrook [10], who proved that no deterministic algorithm has the competitive ratio
less than 8527 ~ 3.148 on special networks with = 1. This bound was refined to
3.164 [14]. It is mentioned in [10] that the lower bound is larger than 3 even on four
nodes. An explicit lower bound of B21 on five nodes was proved in [14].

1.2 Contributions of This Paper

All the previous lower bounds larger than 3 were proved only for the Basel.
Therefore, an asymptotic version of the Black and Sleator conjecture with respect
to D, i.e., whether or not an asymptotically 3-competitive deterministic algorithm on
every network exists is still open. As the first step toward an answer for this conjec-
ture, we present

— a(3+ 1/D)-competitive algorithm on three nodes with> 3,
— a 3-competitive algorithm on three nodes wili< 2, and
— alower bound of 3- Q(1/D) that is greater than 3 for eveBy> 3.

These results thoroughly answer the open question of existence of a 3-competitive
algorithm on three nodes. A summary of the results is provided in Table 1. In addition
to the results on three nodes, we also derive
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Table 1 Summary of Results on Three Nodes

Page siz&®  Upper bound Lower bound

1 3[10]* 3[8]
2 3* 31[8]
>3 3+1/D* 3+Q(1/D)*
* This paper

— p-competitiveness on complete graphs (of arbitrary size) with edge-weights be-
tween 1 and 2 2/p for anyp > 3,

extending the previous 3-competitive algorithm on uniform networks [8].

1.3 Overview of Technical Ideas

Our (3+ 1/D)-competitive algorithm is a typical work function algorithm similar
to algorithms for metrical task systems, e.g., [9], &mskrver problems [5,12]. In
general, a work function algorithm makes online decisions using information on the
optimal offline cost for processing requests that have been issued so far and ending
at each configuration (page node in the page migration problem). The optimal off-
line cost function with respect to configurations is called a work function. To prove
that a work function (i.e., optimal cost) increases enough, we introduce a probably
new technique of analytically dealing with the work function extended on a contin-
uous network. In Sect. 3, we bound an extended work function from below using its
derivatives. The author believes that such analysis is the technical contribution of this
paper.

Since the competitive ratio on three nodes is hot monotonic with respé&xt to
it appears to be reasonable that we need different approachBs$d andD > 3.
Our 3-competitive algorithm fob = 2 is based on the counter-based algorithm for
uniform networks [8], which maintains a counter on each node. The counters are up-
dated every time a request arrives so that they represent a tendency of migration. If a
counter reaches a certain value, then the algorithm moves the page to the node with
this counter. One can observe that the original algorithm is 3-competitive even on a
complete graph with roughly the same edge-weights, and that this can be general-
ized to anyp > 3. More specifically, there is a “triangle” condition on edge-weights
around the page such that the original potential function used in [8] can amortize
the service costs and the next migration cost. If there are three nodes, then at least
one “good” node satisfies the condition. We design our algorithm by modifying the
original algorithm for the page at a “bad” node. Although the modification wastes
the “deposit” even worse when leaving the bad node, we can prove through careful
observations that much more deposit can be saved after the possible migration to a
good node or from services before the migration. The formal proof is presented in
Sect. 4.

Our lower bound is based on the following observation: If there are only two
nodes, then any 3-competitive algorithm must move after exaEtlsejuests issued
by a cruel adversary, which always issues a request from the other node than the
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Fig. 1 Example of work functions on three nodesh, andc with dap = dac = 2 anddyc = 1. We assume
that the page of sizB = 2 is located at initially, and that requests are issuedab, b, c, andb

online page. If the adversary carefully adds a new node close to the existent request
node and divides thel2requests among these nodes, then no matter when or where
the algorithm moves, it is too “impatient” or “tardy” to achieve the competitive ratio

of 3. We explicitly design the adversary and analyze the lower bound in Sect. 5.
We also demonstrate that an explicit lower bound efgmlew for D > 3 can be
derived from our proof.

2 Preliminaries

The page migration problem can be formulated as follows: given an undirected graph
G = (V,E) with edge weightsso, r1,...,rx € V, and a positive integdd, compute
S1,-..,% € V s0 that the cost functiof¥_;(ds_,r, +Dds_,s) is minimized, where

dyy is the distance between nodesindv on G. The termsds_,r, andDds_,5 rep-
resent the cost to serve the request frgroy the nodes_; holding the page and

the cost to migrate the page frogn; to s, respectively. We call andr; a server

and aclient, respectively. Anonline page migration algorithm determingswith-

out information ofr;,1, ..., rc. We denote byA(o) the cost of a page migration
algorithmA for a sequence :=rq---rg. A deterministic online page migration al-
gorithmALG is p-competitivef there exists a constant valwesuch thataLc (o) <
p-oPT(0)+ a for any g, whereopTis an optimal offline algorithm. We denote by
opTy(0o), called awork function the minimum (offline) cost to process so that

s« = u. Obviously,0PT(g) = minyey{OPTy(0)}. An online algorithm that deter-
mines the server position after processmaising the information obpT,(0o) for

all possible nodes is called awork function algorithm Note thatopT,(o) can

be computed using dynamic programming, i.e., for a request issueafter g,
OPTy(ar) = minyey {OPT,(0) + dry 4 Ddyy} andoPTy(0) = Ddg,y [10], where 0 de-
notes an empty sequence. An example of work functions are illustrated in Fig. 1.
For a nodeu andk > 1, we write a sequence consistinglofepetitions ofu asuX.
Unless otherwise stated, we suppose that graphs considered here have a node set
V := {a,b,c} and edge weightg := dap, Y := dac, andz := dy for edges(a,b),
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Fig. 2 Labels for nodes and edges of 3-node graphs

(a,c), and (b,c), respectively (Fig. 2). We denote:= x+y+ z and assume that
max{X,y,z} < L/2.

3 (3+ 1/D)-Competitive Algorithm

We consider a typical work function algorithm denotedvsya, which moves the
server located &t after processing a sequengef clients, to a nearest node among
nodesy minimizing oPT,(0) + dry + Ddsy after servicing a new request onBy this
definition, the destinatios 6f the migration satisfieepPTs(ar) = oPTs(0) + drs+
Dds. Another way of understanding the algorithm is thata moves the servesto §
when a decline of slopb from sto §appears on the work function, i.@pTs(or) —
oPTs(or) = Ddg, except whers is one of the nodeg minimizing opPT,(0) + dw +
Ddsy. In Fig. 1, for example, the server initially locatedaais moved taob after the
last request ob. The purpose of considering such a decline on the work function as
a trigger of migration is to avoid requests ®that would increase online service cost
at the serves but change neitherPTs nor oPT. A similar idea is used for other work
function algorithms ([9, 5, 12]). We prove the following theorem:

Theorem 1 wrA is (3+ 1/D)-competitive on three nodes.

Our proof of Theorem 1 is divided into two parts, deriving a sufficient condition
for Theorem 1 and proving the condition. In the rest of this section, we suppose that
WFA locates the server amafter processing, and that a request is issuedrat V
after o. For a functionf of o, we use the notations = f(o) and f’ = f(or) for
simplicity.

3.1 Sufficient Condition for Theorem 1

We claim that the condition
Ddgy+ M’ < oPT, for anyu € V (1)

implies Theorem 1, wherss the server ofvFa after processingr, andM’ = M(or)
is D times the total sum of migration distances/#A in processingsr.
BecausdopPT, — OPTy| < Ddyy for anyu,v € V [10], it follows that

OPT, = OPTs+ s+ Ddss > OPTs + Oy, and @)
OPT, < OPT;+ Dds. (3)
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Fig. 3 Extended work functions on the same assumptions as those in Fig. 1

It follows from (2) and (3) thatls < OPT; — OPTs+ Dds. Therefore, we have
WFA' — WFA = drs + Ddss < drs+ (D + 1)dss < OPTs— OPTs+ (2D + 1)dss.  (4)

By summing (4) overall requests iar, we obtainwra’ < oPT;+ (2+ 1/D)M’.
Hence, if (1) is satisfied, then by choosiogninimizing opPT,, we havewra’ <
OPT;+(2+1/D)oPT — (2D +1)dsy < (3+1/D)oPT — (D + 1)dsy, which completes
the proof of Theorem 1.

3.2 Proof of Sufficient Condition

To prove (1), we generalize the network to a continuousiddpf lengthL contain-
ing a, b, andc with the preserved distances. Specifically, we delras an interval
{p|0< p< L} moduloL, i.e., any real numbep is equivalenttgp— | p/L] - L. We

define an extended work function at a pairt R as

W,

b= rc’?eig{wq + drg + Ddpg} andwp(0) := Ddsp.

An example of extended work functions are illustrated in Fig. 3. One of the important
properties of extended work functions is thpat V for any p € Rwith p # p, where

p is a nearest point tp € R among pointg| € R minimizing wq + drg + Ddpg. This
implies thatvy, = mingey; py {Wq +0rq +Ddpq}, and henceay, = opPT, foranyue V.
Another property is that one-sided derivatives at any point are integers betwzen
andD. These properties will formally be proved later in Lemma 5.

We denote the farthest point pfon R by p. For p,q € R, we defing[p, q] as the
closed interval of lengtlyq betweenp andg onRif dpg < L/2. If dpg = L/2, then
we defing]p, g] as the whole seR, not an interval betweep andg. Notations(p,q],
[p,q), and(p,q) are used to denote the intervals obtained ffpng] by excludingp,

g, and bothp andg, respectively. Lemmas 1-4 below state basic propertiasg, dtfiat
will be used in the subsequent lemmas.

1 One might expect that a continuous tree instead of a continuous loop would be preferable in terms of
scalability of the network. However, this idea would fail because such a tree has the center, i.e., a point
near to three nodes, which makes a work function extended on the continuous tree smaller than the original
work function at some nodes.
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Fig. 4 Range in whichgmay exist onR. Upper and lower arrows represety < dgp anddpp < dpg,
respectively

Lemma 1 For any pg < R, it follows that vy — wp < Ddpg.

Proof The lemma clearly holds ifr = 0. Otherwise, it follows from the minimality

Lemma 2 For any p€ R and ge (p, f], it follows that§ = f.
Proof It follows from the minimality of\/\/p that
V\/'p = Wp + drp -+ Ddpp < Wg + drg + Ddpg. (5)
Substitutingdys = dpg+ dgp, we obtain
Wp +drp+ Ddgp < Wq + Org + D(dpg — dpg) < Wq + g+ Ddgg =Wg.  (6)

By the minimality ofwg, (6) holds with equality. This means that (5) also holds with
equality. Thereforep minimizeswp + drp + Ddgp (i.€., P € argminer{w + dr +
Ddgt}), andg'minimizeswg + drg + Ddpg (i.€.,q € argminer{w; + drt + Ddpt}). By

the minimalities ofdgq anddpp, it follows thatdyq < dyp anddpp < dpg. Because

g e (p, f], § exists only ap(Fig. 4). O

Lemma 3 For any pe R and ge [p, p), it follows that w, — wp > (D — 1)dsq.

Proof Becausejis nearer tq thanpis, it follows thatwg + drp + Ddpp < Wg + 0rg +
Ddpg. Thus, becausgyp = dpg+ dgp, We havewg —wg > drp — g + D(dpp — dpg) >

Lemma 4 For any pe R and ge [r, p], it follows that w, — wq < (D — 1)dpg.

Proof It follows from the minimality ofwy, thatwp + drg -+ Ddpp < Wq + drg + Ddpg.
Thus, becauseé, p = drq + dgp, We havews —Wg < drg — drp+ D(dpg— dpp) < (D —
To prove (1), we utilize a relation between the increased amount of the work
function and its one-sided derivatives, which are defined as
W — W, Wy —W,
mMpo:= lim = ——Pandm,o:= lim ———PforanypeR
g—p—0 pq g—p+0  dpq

It should be noted thah,_g is a negated value of standard one-sided derivative. The
following lemma guarantees that, = opPT, for anyu € V, the derivatives exist and
are integers, and that, can be strictly convex only on an interval containing a node
of V.
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Lemma 5 The following claims hold.

1. Forany pe R withp # p, it follows thatp e V.

2. For any pe R, mp_g and m, o are integers with-D < mp,9 < D.

3. For any pe R\V, it follows that m_o+ mp.0 < 0, i.e., W, iS concave on any
interval not containing a node in V.

Proof We prove the lemma by induction an If o = 0, thenmg,_g = mg, 0 =D,
Mg, —0 = Mgy0 = —D, and{mp_o,Mp 0} = {—D,D} for pe R\ {s0,%}. These equa-
tions imply Claims 2 and 3. Assume that Claims 2 and 3 hold for a sequence

We first prove Claim 1 foo. Let p € Rwith p # p. The claim is immediate if
p=r. We assume % r. Letqs € (p,p) andq € (r, P). It follows thatr ¢ (p, p),
for otherwise, by Lemma 1 anghp = dpr + drp, we havew, = wp + drp + Ddpp >
W — Ddrp+ Ddpp = W + Ddpr, contradicting the minimality on. Therefore, we
havep'e (gi1,02). Thus, by Lemmas 3 and 4 we have

Mp_0+ Mpi0 = lim Yoo =Wo iy Y =Wo 59y _p_1)-0.
q1—p pay G2—P pa2
By Claim 3 of induction hypothesis, this meapg R\ V, and hencep £V.

We then prove Claim 2 foor. |.e., we prove that for anp € R, limg_,p(W; —
Wp)/dpq is an integer iN—D,D]. By Lemma 2, ifp # p, then any pointj € (p, p)
hasq'with q # § = f. Therefore] :={q € R|gq# §} is a union of disjoint intervals
li,j) with j =T, or (i, j) with j # i such that any poing € (i, j) hasq'= j. It should
be noted that is not contained in the latter interval for two cases. One case is that
Wq + drg + Ddiq is minimized at bottg = i andq = j. In this casej = i and hence
i ¢ 1. The other case is that + drq + Ddiq is minimized atg = j andq =1 ¢ [i, ]
with d.- < djj. In this caseli,i) is also a subset df. Conversely, for any interval
[i,i) C 1, there exists an interval, j) C | with j # I andd;; < d;j. For otherwise, an
infinite number of point§’ ¢ [i,1) sufficiently close ta hasi’ =i’, implyingi =i by
continuity ofw,.

For any such intervdl, j) or (i, j) of I, and for any poinp € [i, j] andq € (i, j),
it follows thatwy, = w; + drj 4 Ddpj andwj, = wj + drj 4 Ddgj. Therefore, we have

W —Wp _ D(dgj — dpj)
dpq dpq

—4D. @)

The setR\ | is a union of disjoint intervaldi, j] (with not necessarily distinct
end-points andj) such that anyp € [i, j] hasp’= p. Therefore, folg # pin (i, j), it
follows that

Wg —Wp _ (Wg+ drg) — (Wp+ drp)
dpq dpg dpg dpg

Wq—Werdrq—drp.

(8)

This approaches an integer@s» p because the first term approaches an integer by
Claim 2 of induction hypothesis, and because the second term appraathéhe
absolute value of (8) is at mo&t by Lemma 1. Becausg €V for any g € R by
Claim 1,1 consists of finite disjoint intervals. TherefoR) | also consists of finite
disjoint intervals. Ifpis an end-point of an interval ¢for of R\ I, and ifq not in the
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interval is sufficiently close t@, thenq resides in an interval adjacent to the interval.
Thus, we have Claim 2 fasr by (7) and (8).

We finally prove Claim 3 foror. Let p € R\V. If m{_o < mp o andmj,, <
Mp_0, then the claim holds by induction hypothesis. Otherwise, assume without loss
of generality thatﬁpf0 > Mmp_o. There are two such cases from the proof of Claim 2.

One case is thati,_, becomedD. l.e., for some intervafi, j) or (i, j) in | with
i < j such that any in the interval hagy = j, p is contained in(i, j) and (w;, —
Wp)/dpg = D(dgj — dpj)/dpq = D for anyq with i < g < p. It should be noted that
p# j because ¢ V. Then, for anyg with p < g < |, it follows that(wg —w})/dpg =
D(dgj —dpj)/dpq = —D, and hencen, o = —D.

The other case is thatl, ,=mp_o+1. l.e., for some intervdl, j] in R\ | with
i < J, pis contained in(i, ] and (drq, — drp)/dpg, — 1 @soy — p with i < o1 <
p<r < p+L/2. It should be noted thgt A r by p¢ V. If p< j, then we have
(drg, — drp) /dpg — —1 @sGz — p with p < gz < min{j,r}, which meansm, o =
Mpio— 1. If p=j, thenp = j is an end-point of an intervdl, j’) in | with j < j’
such that any € (j,j’) hasd’= j'. It should be noted thai cannot beqfor any
pointq # j by j = p ¢ V. Therefore, for anyg with p < q < j/, it follows from
(7) that(wg — wp)/dpg = D(dqj — dpjr) /dpg = —D, and hencen,, , = —D. Because
rﬂpfo < D by Claim 2, we have Claim 3 faor. O

We define

My = lim w forueV\{s},

andms:= min{ms_,, |u€V\ {s}}. Now we state our main lemma, which claims (1)
together with two other claims.

Lemma 6 The following claims hold.

1. For{p,q} ==V \{s}, wp > D(L —dsp) + M, or wy > D(L —dsq) + M, or wp +
Wq > MsOpg+ DL +2M.

2. Forany ueV, w, +wg > Ws+ 2= +M.

3. Forany ue V, w, > Ddgy+ M.

Proof SketchWe describe a proof sketch prior to our formal proof. Through the ex-
tension of networks and work functions to continuous ones, we see that Claim 3 is
implied by Claim 2. Actually, if Claim 2 holds, then it follows thet, > ws — wg-+

B +M > —Ddsi+ % +M = —D(5 — dsy) + 5 +M = Ddsy+ M. Here, we have
used the factvs — wg > —Ddgy (Lemma 1). We will prove Claim 2 by induction

on events of services and migrationsvefa for requests. The inductive proof for a
WFA'’S migration is easy, becausewsrA’s migration of distancel decreasesis by

Dd, increased by Dd, and does not change the left hand side of the inequality in
Claim 2. As for the proof for avFA’s service, Claim 2 can inductively be proved for
most cases using basic propertieswgf(Lemmas 1-5), some of which are properties

of wy's slope defined using one-sided derivatives. However, there is one exception
for which Claim 2 cannot be proved inductively. As shown in Fig. 5, for example, if
0 =u# sand a decline fronu to the request nodec V \ {s,u} has slopeD, then

w, increases by, whereasvg does not increase. ThereforesiE"s andds, > dyr,
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Fig. 5 Situation for which Claim 2 cannot be proved inductively. It follows thgt- wi= wy -+ dyr +Wg <
M+ B 4 dg +ws = w, + B + M, whereasw, +wg = ws+ 35 +M

then it is the case that the increased amaiyndf wy + wiris less than the increased
amountds, of ws.

To prove Claim 2 even for such a case, we need Claim 1. The first and second in-
equalities in Claim 1 imply thatv, or wy is already large enough, and therefore, the
inequality in Claim 2 is satisfied fqwor g,° respectively. Actually, if the first inequal-
ity holds, then it follows thatv, +wp > D(L — dsp) +M +Ws — Ddsg = Ws + 2= + M.

Here, we have used the fasy — ws > —Ddsp (Lemma 1). The parameterns in

the third inequality of Claim 1 is the smaller slopeva towards and atwy to-
wards. Roughly speakingys is increased by requests fropor g and becomeb

in a situation for which Claim 2 cannot be proved inductively. Actuatly= D in

Fig. 5. However, the third inequality of Claim 1 withhs = D implies Claim 2 be-
causewp +Wgq > Ddpg+ DL+ 2M = D(2L — dsp— dsq) + 2M, implying the first or
second inequality of Claim 1. Claim 1 is proved inductively, together with induc-
tion hypothesis of Claim 3, and hence that of Claim 2. Thus, Claims 1-3 are proved
simultaneously in the formal proof.

Formal Proof Claim 2 implies Claim 3 as described in the proof sketch. We prove
Claims 1 and 2 by induction on events of services and migrationsaffor requests
in . If 0 =0, then the claims hold. This is becawgg+wq — msdqu— 2M = D(dsp+
dsq) + Ddpg = DL, and becausey +wg—Ws—M = D(ds,+ dsz) = 2 foranyue V.
Assume that Claims 1-3 hold for all eventsinWe suppose that andmare updated
tow andn, respectively, in the service ofFA for a request issued afafter g, and
thatM is updated taM’ in the subsequent migration wfFA.

We first prove Claim 1 fowFA’s service forr. If wp > D(L —dsp) +M orwg >
D(L — dsg) + M, then the claim holds for the event becawgez Wp and\/\/q > W.
Therefore, we assume thap + wq > Msdpg+ DL + 2M.

Case 1.1:p=s. Then,m,_,, = —D, and hencer, = —D < ms. This means that
Wy + Wy — Midpg > Wp +Wg — Msdpg > DL + 2M by induction hypothesis.

2 To be accurate, we should prove the inequality in Claim 2 for iptnd g. Although we do not
mention the reason here, we note that one of the first and second inequalities of Claim 1 suffices.
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Case 1.2:p = q. Then, it follows from Claim 3 in induction hypothesis thefy >

Case 1.3:G € {s,p}. Similar to the casp &€ {s,q}.

Case 1.4:p=pandd=q. If m,<ms+1, thenV\/p +V\/q — mdpq > Wp + drp +
Wq + rg — (Ms + 1)dpg > Wp + Wq — Msdpg > DL + 2M by induction hypothesis. If
mg > ms+ 1, thenms_,p Or ms_,q, say,ms_,p increases by more than 1. By (the proof
of) Lemma 5, this means that ., < D—1,m_, , = D, and that there exists (s, p)
with p € (i,f]. It follows from Lemma 2 thap = p = i. Therefore, it follows from
Lemma 3 thatvj —w, > (D — 1)dp; for any j € (i, p), which contradictsns,p <
D-1.

Second, we prove Claim 2 fovFA's service forr. Becausevs = Ws+ Wg— Wg >
BL + M by induction hypothesis, it follows that; + ws—w, > ws> 2= + M. There-
fore, without loss of generality, it suffices to prove th%t+ \/\/52 (A % +M.

Case 2.1: f = s. Then,s’= p=sby Lemma 2. Therefore, it follows that, = ws+
drs. Moreover,\/\/p = Ws+ Ors + Ddsp > Wy + drs by Lemma 1. Thus, we ha\mz’p +

W'ﬁf W > Wp + Ors + Wy — (Ws+ Ors) > % -+ M by induction hypothesis.

Case 2.2:p=q. Then,V\/p > D(L —dsp) +M as shown in Case 1.2. Moreovwfﬁz
W, — Dds5 = W, — D(5 — dsp) by Lemma 1. Thus, we hawe, + w5 > D(L — dsp) +
M+ W, — D(§ — dsp) = Wi+ B + M.

Case 2.3:p = p. The proof for the cas@ = sis similar to that for the casp = s.

If p= p, then it follows from Claim 3 in induction hypothesis thla%: Wp + Orp +
Ddps > Ddsp+ M + %. Moreover,\/\/p > wg — Ddsp by Lemma 1. Thus, we have
Wy + W5 > W +M + %. If p=p, then it follows from the minimality ofa that
W = Ws + 0rs + Ddss < Ws + drs. Thus, by induction hypothesis, we hawg -+ wj —
W, > Wp + Orp -+ W+ Oy g — (Ws+ brs) > M + BE. Assume the remaining cage= g.
Then,wy—wq > (D —1)dgq by Lemma 3. This mearnss_,q = D becausens,q is an
integer at mosb by Lemma 5, and because there is no node betweenp andg,
and therefore, no convex point {p,q) by Lemma 5.

Case 2.3.1: m,p = D. Then, it follows from Claim 1 in induction hypothesis that
Wp > D(L —dsp) +M, orwg > D(L — dsg) + M, orwp +Wg > Ddpg+ DL +2M. The
third inequality implies the first or second inequality. Therefore, it follows jar
Wp > D(L —dsp) +M, or thatwy = Wgq + 0rq + Ddg > D(L — dsg) + M + drq + Ddg >
M+ D(L — dsp). Both cases can be proved using similar arguments for Case 2.2.
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Case 2.3.2: m,p < D — 1. This meansvg— wp < (D — 1)dyg because there is no
node ofV betweenqand p, and therefore, no convex point {i, p) by Lemma 5.
Therefore, it follows thatvy, +Wg = Wp + drp +Wq + drq -+ Ddgy > Wg— (D — 1)dpg+
Orp + Wq + Org + Ddgp = Wq +Wg+ dpg+ Grp -+ trg > Ws+ 5 + M + 5 by induction
hypothesis. Becaus€, < ws+ drs < Ws+ % by the minimality ofw;, we havev\/p +
Wi > e+ B+ M.

Finally, we prove Claims 1 and 2 fawvFA’s migration froms to another node,
say, p after the service for. It follows that

Therefore, it follows thatrYp = —D. Moreover, it follows from Claims 2 and 3 (for
the event ofwFA’s service) that
W, +Ww; > w,+ 2 +M for anyu € V, and (10)
W, > Ddsp+ M. (11)

Furthermore, becausge (s, p), it follows that
W, — Wy = Ddsg=D (5 — dg) - (12)

We obtainwg > 2Ddsp+ M from (9) and (11), andv, > D(L — dsg) + M from (10)

with u= g and (12). Thus, we hawe; -+ W, — Mydsq > 2Ddsp+ M + D(L — dsq) +

M + Ddsq = DL + 2(Ddsp+ M) = DL + 2M’. Moreover, it follows from (9) and (10)

thatw), + ws—wj, > B + M+ Ddsp= 5 + M’ foranyue V. 0
By Lemma 6, we have (1), and hence Theorem 1.

4 Counter-Based Algorithm

In this section we design a counter-based algorithm caldand prove the follow-
ing theorems:

Theorem 2 CBA is 3-competitive on three nodes if © 2.

We define and analyzesa in three stages. In Sect. 4.1, we review a 3-competitive
algorithm, calledcounT, for uniform networks presented in fBhnd prove that
COUNT in fact has generalized competitiveness as follows:

Theorem 3 COUNT s p-competitive on complete graphs with edge-weights between
land2-—2/p foranyp > 3.

We definecBa for three nodes by extendingOuNT in Sect. 4.2, and analyze
CBAin Sect. 4.3.

3 Although the algorithm described here is slightly modified, it is essentially same as the original ver-
sion.
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4.1 Algorithm for Restricted Edge-Weights

In this subsection we consider graphs of arbitrary stz@uNT maintains a counter
C, > 0 for each node so thaty ., C, = 2D, and that the server afoOUNT always
has a positive counter. Initially, the server has a countefgféhd the other nodes
have counters of 0. If a request is issued on a hode other than the servertben
decrements a positive counter of a node by 1 and increments the counter of the request
node by 1. If a counter becomeB 2thencouNT moves the server to the node with
this counter. The 3-competitiveness@bUNT is proved by verifying that for each
event ofCOUNT's migration,0PTs migration, and services afouNT andopPTfor a
request,

f:=ACOUNT+A®—pAOPT<LO (13)
is satisfied fopp = 3. Here,® is apotential functiorof counters and the servesand
t of cBA andoPT, respectively, and defined as follows:

b= %VEZ/CthV+ (% — 1) VEZ/CvdSV-

ACOUNT, AOPT, A® are the amounts of change ©buNT's cost,0PTSs cost, and
@ in the event, respectively. Sinee > 0, by summing (13) overall events, we can
prove thatcOUNT is p-competitive.

Theorem 3 will be proved by verifying that for the service eventofuNT and
opPT for a request o, if COUNT decrements the counter of a node£ s with
dsr < (1—2/p)dsy+ dur, then (13) is satisfied. i = s, then (13) is satisfied from the
original proof. As for the migration event @fOUNT or OPT, (13) is satisfied regard-
less of the structure of the network becagseJNT always moves the server from a
node of counter O to a node with countdd.ZTherefore, if the server is located at a
nodes satisfying

dsv < (1— %)dsu+ dyy for any distinctu,ve V \ {s}, (14)

then (13) is satisfied for any event considered here. We formally prove this in Lem-
mas 7-9 below.

Lemma 7 Suppose thatOUNT and OPT serve a request issued akrV with the
servers on s and t, respectively. If (14) is satisfied, thehOf

Proof Obviously,ACOUNT = d;s and AopPT = dy; for the services ofouNT and
OPT, respectively. Ifr = s, then no counters are changed. Therefdr® = 0, and
hence,f =04 0— pd; < 0. Otherwise, the amount of 1 is moved from the counter
of a nodeu to the counter of. If u# s, then it follows thatA @ = £ (dy — dhu) + (5 —
1)(dsy — dsy). Therefore, we have

f = drs+ 5 (ckr — hu) + (5 — 1) (dsr — dsu) — Pt
— B (cks— thr — chu) — (§ ~ 1) < § (chs—chu — (1~ £)u) <O.
If u=s, then it follows thatt @ = 5 (diy — dhs) + (% —1)dg. Therefore, we have

0
2
f=dis+ %(dtr —ohs) + (% —1)dy — pdit = %(drs*drt —dgt) <0.
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Lemma 8 If opT moves the server from t to g, ther<fO.

Proof Obviously, ACOUNT = 0 andAOPT = Ddq for OPT's migration. Moreover,
AP =55,y Cy(dg — ). Therefore, we have

f*OJrp Z/CV dogv — Ov) — PDdtq* 5 Z/Cv dogv — Gv) — Z/Cvdtq
= EVEZ/CV dqv*dtv*dtq) >

O
Lemma 9 Suppose thatouNT moves the server from s to pdf> 3, then f< 0.

Proof Obviously,ACOUNT = Ddsp andAoPT = 0 for COUNT's migration. Because
p has the counter of 2 and all the other nodes have counters of 0, it follows that
we have

f = Ddsp—D(p — 2)dsp— 0= —D(p —3)dsp < 0.

O
If a complete graph has edges of weights between 1 an@/p, then (14) is
satisfied for every node Therefore, we have Theorem 3.

4.2 Algorithm for Three Nodes

If the server is located at a nodenot satisfying (14), then it may be the case that
f > 0. We shall amortize the excessive debt. Adte the set of nodes satisfying (14)
andB be the set of nodes not containedAinin the rest of this section, we consider
graphs with three nodes and labels as shown in Fig. 2. Moreover, we apsti@ér
simplicity, andy > max{x, z} without loss of generality Then, it follows thhte A,
and henceB C {a,c}. This is because <y < ( Jz+yandz<y<(1- —)x+y

We design our algorithnasa by mtroducmg tﬁe following policy t@:OUNT If
the server, sag, is in B, thencBa always decrementss counter for a request dn
or c and increments the counter of the request node. With this policy, (13) is satisfied
for any service event. However, this policy may cause a situation that the counters
of bothb andc are less than2 whena’s counter becomes 0. This situation forces
CBA to move the server tb or ¢, becausea has no counter to be decremented for
further requests oh or c. This migration may causé > 0. Preciselyf depends on
the position of the serverof opPT and distribution of values of the counters. If the
counter ofc is sufficiently large, then the excessive debt for the migration fadm
c can entirely be amortized by the sum fofissociated with service events between
the previous and current migrations. Otherwise, although the excessive debt for the
migration froma to b may still remain unpaid through the previous service events,
it can be amortized by the sum d@fassociated with service events and a possible
OPTSs migration between the current and next migration£bh. CBA determines
the destination of the migration by estimating the excessive debt for the migration
and the amount that can amortize the debt.
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Now we formally definecBa. We divide the input sequence of clients into phases
so that a migration ofBA ends the current phase. When a new phase begiss,
sets the counter of the previous server to 0. We define a funiétion O of counters
of the servers andt of cBa andoPT, respectively, at the end of a phase, i.e., just
after the migration o€Ba to s. If B =0, then¥%; := 0 for anys andt. Otherwise,

Yi:=0if se {a,c},ors=bandt #£v,
v = max{Cq(—30b7— 3 (Aw— dbv)), 3Co(dby— to — A) }

where{v,v} = {a,c} with C, = 0.
If a request is issued at a nodethencBsa performs the following procedure
unless =s.

1. If se Aand there exists uniquec V \ {s,r} with C-> 1, thenC—— andC;++.
OtherwiseCs—— andC; ++.
2. If Cs= 0, then move the server as follows:
(a) If se A, then move the server to Step 1 implie€; = 2D in this case.
(b) If se B andF, < Fs (F is defined later), then move the serverttowhere
{8} =V \ {s,b}. It should be noted thdts, s} = {a,c}.
(c) If se BandR, > F5 then move the server ® and seCy, := 0 andCs:= 2D.

Here, forp € {b,s},

Fp 3:tﬂg\f{Mpq+31+ Whq— Wit}

Mpgq := Cs(5 — dss) forq e V,
Msg:= Cp (3 (dss— ds) + 3 (dsg — dog)) forge Vv,
S:=0, and

Sy 1= max{ —3Cs(5 — dss), —3Cp(5 — dg), —3Ch(5 —dps) } forge {b,s}.

We have use#’ to denotel associated with the previous phase and migration. If the
current phase is the first phase, thfis defined using the initial server and counters.
Moreover,W,q is associated with the current phase and migration. It should be noted
that¥,q can be computed just before the migratiorcer to p using counters at this
point. This is becauseBA changes no countersyif= b, and becausésq = Yt = 0.

The intuitions of#, F, M, andSare as followsSandM are corrections ofb in
the current phase, i.e., upper bounds of increage®i’s cos) + @ — p(OPTSs cos)
for services and migration @fBA, respectively. Sinc may be positive an& < 0,
M may yield the excessive debt of the current phase and be amortiZd’hg debt
actually remains unpaid i = b, whereassis enough ifp # b. In the next phase after
CBA moves the server tb, in particular, we can save sufficient deposit to amortize
the remaining debt of the current phase, as well as the debt of the next ghase.
introduced to transfer such deposit from the next phase to the current phiasbe
total debt of a phase taking into accolét Our goal is to prove thdf, or Fsis at
most O.
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4.3 Analysis ofcBA

For any eveng, let AcBa(e) andAoPT(e) be the costs oEBA andoPT for e, re-

spectively. Moreover, lefA®(e) be the amount of change @f for e. Furthermore,
let f(e) := AcBa(e) + Ad(e) — pAorT(e). We will omit e in the notations ife is

clear from the context.

Lemmas 10-12 below are detailed statements of Lemmas 7-9, respectively, ex-
cept thatcBA’s migration in Step 2b or 2c is included in Lemma 12. These lemmas
imply that we can save some deposit Hsand S), and will be used to prove that
the deposit can entirely amortize the excessive ddbf¢r the migration in Step 2b
or 2c.

Lemma 10 Suppose thatBA and OPT serve a request issued ataV with the
servers on s and t, respectively. s, then f= —3d; < 0. If r £, s€ A, and
Cr> 1, then f< 3(drs— di) — 3ds < 0, where {} =V \ {s,r}. Otherwise, f=
3(drs—drt — dst) <.

Proof By the definition ofcBa, if r # s, s€ A, andCr > 1, then the amount of 1 is

moved fromCrto C;. Otherwise, the amount of 1 is moved fr@uato C,. Therefore,
we have the lemma by the proof of Lemma 7. O

Lemma 11 If opTmoves the server fromtto q, thera:f% S vev Cv(dgy — Oy — ig) <
0.

Proof The lemma is directly obtained from the proof of Lemma 8. O

Lemma 12 Suppose thatBa moves the server from s to p. If the server is moved in
Step 2a, then £ 0. If the server is moved in Step 2b or 2c, thea Myq, where g is
the server oDPT at the migration ofcBA. In particular, if Cy = 2D, then f= 0 for

any case.

Proof Obviously,AcBA = Ddsp andAopPT = 0 for CBA’s migration. If CBA moves
the server in Step 2a or 2b, then no counters are changed in the ste@s-arid
ThereforeA® = 15,y Cy(dpy — dsv) = 3(—Cpdsp + Cp(dps— dsp)), where{p} =
V\ {s,p}. Thus, we have
f = Ddsp+ 3(—Cpdsp + Cp{dpp— dsp)) — O

= Ddsp+ 3(— (2D — Cp)dsp + Cp(dpp — dsp))

= 3Cp(dsp + dpp— dsp),
which equals 0 ifC, = 2D, implied by Step 2a. This is becaugg = 2D implies
Cp= 0. For Step 2bf = Mpq becauss < {a,c}, p=b,andp=s.

If cBA moves the server in Step 2c, th€g andCy are set to P and 0, re-
spectively, after the migration. Moreov&ls = 0 during the migration. Therefore,
A® = 3((2D — Cp)dgp+ (0 Cp)dgp) + 3(—Cpdsp — Cadsp). Thus, we have

f = Ddsp+ 3 ((2D — Cp)dgp+ (0 — Cp)dgp) + 3(~Cpdsp — Cplsp) — O
= Ddsp+ 3Cp{dap — dgp) + 3(— (2D — Cp)dsp — Cplsp)
= Cp (3(dsp — dsp) + 3 (dpg — dp)) »
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which equaldVipq becauses € {a,c}, p=s, andp = b for Step 2c. Obviouslyf =0
if Cp = 2D, implyingCz=0. O

Fix a phase, and lep be the sequence of events in the phase consisting of ser-
vices of cBA and oPT for a request, migrations adPT, and a migration oCBA.
Suppose thatBa and OPT locate the servers atandt, respectively, at the begin-
ning of the phase, and gt and g, respectively, at the end of the phase. We will
proveg := Yecqp f(€) + Wpg— W < 0. If this holds, then because bothand¥ can
be bounded from below independently of the number of requests, we can prove that
CBA is 3-competitive by summing up the inequalities overall phases. In what follows,
C, denotes the counter efc V just beforecBA moves the server tp. This means
thatCs = 0.

If B=0orse {ac}NA, thenC, = 2D as mentioned in Step 2a of the definition
of cBA, and¥ = 0. Thereforeg < 0 by %4 < 0 and Lemmas 10-12. To prove
Theorem 2, it remains to prove thaK O for the cas® # 0 ands € {b} UB.

Lemma 13 If s=b, then g< 0.

Proof Let C|, be the value of counter of € V at the beginning of the phase, i.e.,
just after the previous migration afBA to s= b. BecausecBA moved the server
fromu € {a,c} to b in the previous migratior;, = 0 by the definition ofcBA. We
prove the lemma for the case= a and omit a proof for the case= ¢, which can

be obtained with a similar argument. Becabse A, C, = 2D by the definition of
CBA. If p=c, then by Lemma 12f = 0O for the event of the migration afsA to c.
Thereforey o, f(€) <0 by Lemmas 10 and 11. ff = a, then an amount at leaSt
must be moved frona’s counter toa’s counter in the phase. This means that at least
C( requests ora move the amount of, from c's counter toa's counter. It should

be noted thatBa never increases the server’'s counter. Therefore, it follows from
Lemma 10 tha¥ e, (€) < Ci(3(x—y) — 32). Thus, we can obtaig < yec,, f(€) —

Y, <0ifte{b,ciorp=a

We assume thdt= a andp = c. An amount at least; must be moved frory's
counter tac’'s counter in the phase. If a situation tle& counter becomes 0 occurs in
the phase, then the amount at legsinust be moved from’s counter taa's counter,
and hence, we can proge< 0 as in the casp = a. We assume that no such situation
occurs. ThenG{ requests oo moves the amount &, from b's counter tac’s counter
whena'’s counter is 0. It should be noted thaBa never decreases the counter of a
server inA unless one of the other nodes has the counter of 0. Therefooe,Tif
does not move the server throughout the phase, shepf(e) < %C{j(z— X—Y) by
Lemma 10 and the above analysis tiiat O for the migration ofcBA to c. Thus, we
can obtairg < Y., f(€) — ¥, < 0.

It remains to prove the lemma for the case thata, p = ¢, and thatoPT moves
the server in the phase. Because we have assumed thed a positive counter
throughout the phase, no amount moves flomcounter toa's counter directly.
Therefore, ifA < is the amount moving frod’s counter toc’s counter before
the first migration oopT, and if 4 is the smaller value of + A and the number of
requests issued atbefore theopTs migration, therb andc have the counteg, — A
and at leas€, + A — 9, respectively, at the point of the migration oPT. For the
events of services afBA andoPT for the d requests o and theA requests ore,
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f <3(3(x—y)— 32+ 3A(z— y—x) by Lemma 10. lfoPT moves the server from
to ¢, then by Lemma 11f < 3(C.,+ A — 8)(dec — dac — dac) = —3(CL+ A — &)y for
the event. Moreoveff, = O for cBA’s migration fromb to c. Therefore, it follows that

Zf 3(x—y)—22) +3A(z—y—Xx) —3(Cc+A — d)y

=3 (3(x+y)— 32 + 32 (z-3y—x) -y
<(Ce+A) (B(x+y)—22) +3A(z—3y—x) - 3Cy
=Ce(3(x—y)~32) +A(z-3y) <Cc (3 (x~y) ~ 32)
Thus, we can obtaig < Yeeo f(€) = W, < 0. If oPT moves the server tb, then

by Lemma 11,f < 3((C},— A)(dob— dap — dap) + (C; + A — 8)(dpe — Gac — ap)) =
2( 2C{x+A (z—y+x)+ (C{— 0)(z—y—x)) for the event. Therefore, it follows that

Zf e <5(3(x—y)—32) +3A(z—y—x)
—(—chx+)\(z—y+x) (CL—8)(z—y—X)) (15)
= 8(3x—22)+3A (z—Y) +3 (- 2C(x+Cy(z—y — X))

If 3x > 2z, then the last expression of (15) is at most

(CL+A)(3x—22) +3A (z—y) +3 (- 2C[x+ Cl{(z— y— X))
= Cy(3x—22) + 3CL(z—y—X) + 3(A —C)x+ A (z— 3y)
<C.(3(x—-y)-32).

If 3x < 2z, then the last expression of (15) is at most
3(—20p) < 3 (~Cix—Chly—2) = Ch(z—x—y).

Thus, we can obtaig < Y., f(€) — ¥, < 0. O
We proveg < 0 for the remaining casec {a,c} NBin Lemmas 14 and 15 below.

Lemma 14 If s € B, thenY ¢y, f(€) < Mpg+ ;.

Proof We prove the lemma for the case= a and omit a proof for the casge= c,
which can be obtained with a similar argument. For the eveaBafs migration top,

f = Mpq by Lemma 12. Moreoveg ¢ f(€) < 0= S by Lemmas 10 and 11, where
¢ is the sequence of events obtained frgnby removing the last event afBA’s
migration. Therefore, it suffices to prove thfit., f(e) < § = max{f3Cc(§ —
¥),—3Co(5 —X), —3Cp(5 —2)} forq € {b,c}.

Let &, andd; be the numbers of requests issueth andc in the phase, respec-
tively, before the point thabpPT locates the server apand keeps it until the end of
the phase. Ther, < G, & < C, andb andc have the counters @, and . at the
point, respectively. This is becausea sets the server’s counter tDafter it moves
the server to a node iB, and henc&;, = 2D andC|, = C{ = 0, and becauseBA
decreases only the server’s counter when the serverBs TthereforeCp — &, and
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C. — & requests are issued dinand c after that point, respectively. For the events
of the serwces otsA andopT for the Cg — J5 requests on uniqueg < {b,c} \ {q},

f <(Cq— &) 3 (dag— dgg — dag) by Lemma 10. loPTkeeps the server anthrough-
out the phase i.ed, = & =0, then

z{d (e) < chfdaqquq—daq <max{3Cb %) 3cc(y,%)}_

If oPT moves the server frora to q at the point thab andc have the counters of
Oq(dgg — dag— dag)) by Lemma 11. Combining this event and the eventsfpr &,
andC; — & requests o andc, respectively, we have

> f(€) < 3 (~28ydaq+ S5(dgg— dag— dag)) + (Cg— 3) - 3(dag— Ay — dag)

ecy
= 3 (Cq(dag— Z— dag) — 20q0ag — 284(dag — 2))
< 3Cq(ldag—2| —dag)  [bYy &< Cg
< max{3cc(y— %),SCD(X* %)73Cb(27 %)}

If oPT moves the server fromto g at the point thab andc have the counters a},
and{, then by analyzing this event with Lemma 11, we have

> f(e) < 3 (3u(daq— dgg — daa) + (2D — & — J) (dga — dga — )

ecqy

(2D — &g)(dya — dga— dgg) — 9q(dya — dga+ dgg))
2D — 0g)(dga — dga— dgo)
Cq(dga — dga— 2) < max{3Cy(x— 5),3Cc(y—5)} -

Here, we have used the fact thdd 2 5> 2D — Cq= Cq. O

IN

NIWw NIw NIw
—

—~

INIA

Lemma 15 If D < 2and se {a,c} NB,then F < 0or Fs<0.

Proof We prove the lemma for the case= a and omit a proof for the casge= c,
which can be obtained with a similar argument.
We first estimatéy,. Becausédty, = 0, Hp =%, =0,5%=0,5 =S, andMpa =

Mppb = Mpc, We haveR, = max gev {Mpg+ Sg+ $hg — Pat} = Moa+ max{%ha, S} -
By the definitions oMpa, S, andW,,

Mba:Cc(%—y),
S = max{3C¢(y—5),3Ch(x— 5),3Ch(z— 5)} , and
Yga—max{Ce (3(x—y) -~ 1) . 3Colz— x—y)}.

If Yha = Co(3(x—Y) — 32), thenFy/Co < (5 —y) + S(x—y) — 52=2(x—y) <
Moreover, ifS, = 3C¢(y— 5) and $ha < S5, thean/ch(% y)+3(y—5)=2y—
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L <0. Thus, the lemma holds for these cases. We assume the remaining cases. Then,
by 3(z—x—y) =z—}, we have

Fo < Ce(5 — ) + max{3Cy(x— 5),3Cu(z— 5)}
= (2D~ Co)(5 —y) +3Ch (max{x,z} - §) .

Therefore, ifC, > D/2, thenk, < 3C,(max{x,z} —y) <0.1fC, <D/2<1, e,
Cp =0, thenMcq, S, Yq, and¥y, are all equal to O for any,q € V. Thus, we have
Fe = max gev {Mcq+ Sq+ $eq— Wy} = 0. O

By Lemmas 13-15, we hawe< 0 for every case. Therefore, the proof of Theo-
rem 2 is completed.

5 Lower Bound

In this section we prove the following theorem:

Theorem 4 If a deterministic page migration algorithm js-competitive on three
nodes, thep = 3+ Q(1/D). In particular, p > 3for any D> 3.

5.1 Adversary

To prove Theorem 4, we design a 3-node network analkdversaryi.e., a strategy to
generate an arbitrarily costly sequerm®f clients against any deterministic online
page migration algorithmLG on the network so thatLG (o) > p-oPT(o) for some

p =3+ Q(1/D) with D > 3. By using such a strategy, we obtain a lower boung,of
i.e.,ALG(0) > p-oPT(0)+a for anya independent of the number of clients because
o can be arbitrarily costly. Broadly, our strategy repeatedly generates a sequence
of clients so thatALG returns the server to the initial positiag after processing
eachg, and thataLG (@) > (3+ Q(1/D))oPTs (@). The sequence begins with a
sequence such thaaLc (1) > (3+ Q(1/D))opPT(T), or thatALG moves the server
too early to achieve a competitive ratiot3(1/D). If ALG locates the server &
after processing and hasaLG (1) > (3+ Q(1/D))0oPTg(T), thent is actually a
desired sequenag Otherwise, a subsequent sequetie@nforces enough separation
between costs fLG andoPTif necessary, and leads.G to return the server tey
with preserving part of the separation, so that (117') > (3+ Q(1/D))0PTs (TT').

In this section we assume without loss of generality thatx > z. We call a
sequenceg av-forcing sequencalenoted byyy, if ALG leaves the server on a node
v after processing. The following Lemma 16 is a tool to enforce enough separation
between costs ofLG with too early migration andpT.

Lemma 16 Let PCV, Q:=V\ P, and let pc P and ge Q be joined by an edge with
the minimum weight w overall edges joining P and Q. If there gxist3 and a g-
forcing sequencg of clients such thafp — 1)oPTp(X)+ OPTq(X) —ALG(X)+ (P —
5)Dw < 0, then there exists a p-forcing sequencevith ALG (x ') > p-OPTo(X X’)
or a g-forcing sequencg” with ALG(xx”) > p- OPTa(X X")-
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Proof We prove thay’ := plaqg®--- ph-1qfi-1ph or x” := plagfr- - phdfi is a desired
sequence for somie Here k; (resp.fj) (1 < j <i) is the minimum positive integer
such thairLG moves the server from a node@f(resp.P) to a nodeP (resp.Q) after
processing pigft-- - phi-1qfi-1pki (resp.x pigfs--- pig').

Assume for contradiction thatLG (x x') < p-oPTp(xX') andALG(xx") < p-
OPTy(XX"). Because\LG incurs a cost at least to serve a request iy’ or x” and a
cost at leasbw to migrate betweeR andQ, it follows that

ALG(xX') > ALG(X) + (Ki + Di +Li_1+D(i — 1))w, and
ALG(XX") > ALG(X) + (Ki + Di + L + Di)w,

whereK;j := 5} . ky andLj := S} _, ¢y for 1< j <i, andLo := 0. Moreover, an
offline algorithm that locates and keeps the servep étesp.q) after processing
X can procesg x’ (resp.xx”) with a cost ofoPTy(x) + Li_1w (resp.oPTq(X) +
Kiw). Therefore, it follows thabPTy(x x') < OPTp(X) + Li—1w, andoPTg(x x") <
OPTqy(X) + Kiw. By the inequalities observed above, we have

ALG(X) + (Ki +Di+Li_1+D(i — 1))w < p(0PTp(X) + Li_1w), and
ALG(X) + (Ki +Di+Li + Di)w < p(0PTq(X) + Kiw),

which yield the inequalities
Ki <(p—1)Li_1—D(2i —1)+AandL; < (p—1)Ki—2Di+Bfori > 1,

whereA = (p - OPTp(X) —ALG(X))/wandB = (p-OPTy(X) — ALG(X))/W. Thus,
we have the recurrence

Ki < (p—1)%Ki_1 — 2pDi+ (20— 1)D+ A+ (p—1)Bfori > 2,

which is equivalent to

i 2S-A-(p-1B Mi-1) SH-A-(p-1)B
. 2Di  p-=2 . (i-1) p2 2
K-~ "2 = {K'l p—2 T plp-2 }( -1%

Therefore, it follows that

28 —A-(p-1)B i i 25-A-(p-1B
= {Kl%”pw}(p”% D e

byK; <A—D

;’%7A7(p71)8
p(p—2)

2i— .
< {26301 (p-na+B} BT

= {-2232 + (p-)A+B}- 0 ((p-1)?) +Ofi).
The factor of@((p — 1)?) can be estimated as

B804 (0 - )A+B= & { (P~ 1)OPTH(X) + OPTy(X) — ALG(X) — B5DW},
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which is negative by—p 1 < p—5forp > 3 and by the assumption of the lemma.

ThereforeK; decreases a@rows sufficiently large, but it is impossible by definition.
O

Lemmas 17 and 18 below are tools to genemtéor ALG with ALG(T) > p-
opPT(1) and with too early migration, respectively.

Lemma 17 Let p:=aand g:=b, or p:=b and g:= c. Let w:= dpq. If there exist
p >3, B >0, and a g-forcing sequengeof clients such thaaLG (x) > p-oPTy(X)
and opPTy(X) > BDw, then there exists a sequengkethat is a p-forcing sequence
with ALG(x x’) > p"- oPTy(x X') or an arbitrarily costly sequence withLG (x x') >

p'-opPT(xx'), wherep’ := B%l(p -3)+3.
Proof We definex’ as follows:

1. Lety® be an empty sequence ajd= 1.

2. ALG have processegy?®- - - )~1 and locates the server opnThen, we generate
requests ap repeatedly untinLG locates the server om Leti be the number of
the requests op.

3. Ifi>((B+1)p —Bp—1)D,thensey’ := yO--- wi~1p', and quit the procedure.

4. Otherwise, we estimate costsaifc andopT for the clientsp' with the server
initially at . WhereverLG moves the server betwegmndu ¢ {p,q} during the
requestsaLG incurs a cost at leasi+ D)w. This is because < dpybyy> x>z
An offline algorithm that keeps the servercatan procesg' with a cost ofiw.
Moreover, an offline algorithm that moves the server frgpio p first and keeps
the server ap can procesg' with a cost oDw. Thus, we have

(P —1)oPTy(p) + OPTo(p') — ALG(p') + (' — 5)Dw
<(p'— 1)iw+ Dw — (i + D)w+ (p’ — 5)Dw
<{(P"-2)((B+1)p'—Bp—1)+p'—5}Dw (16)
:{B+1 P>~ (Bp+2(B+1))p'+2Bp— 3} Dw
=(B+1)(p'—~A(p)) ('~ B(p)) Dw <O,

where
A(p) i= 14 Be+/(Bo- 2(gi11)>>2+12<5+1>, and
2(B+1))24+12 1
B(p) = 1+ £2- v (Bp- (g:l)» +12(B+1)

The last inequality of (16) can be proved by verifying thatgor 3,

AP) > GAR3) (P~3) +AR) [y zA(p) > 0]
=p’, and

B(p)<1+%§2<p’.

Therefore, by applying Lemma 16 with:= {p} andQ := {qg, u}, we can obtain
a sequencailJ beginning withp' that is ap- forcing sequence WItlALG(l,UJ)
P opr(wJ) or ag-forcing sequence witaLG (¢}) > p OPTq(LpJ)
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5. If ¢! is a p-forcing sequence, then sgt := ¢°--- i, and quit the procedure.
Otherwise, sef := j + 1, and repeat the process from Step 2.

By definition, x’ is a p-forcing sequence or arbitrarily costly. If the procedure
ends in Step 3, then it follows that

ALG(XX') = p'-OPTp(XX') = ALG(X) + Y ALG(Y!) +ALG(P)
J

—p' {OPTq(X) +3 oPTy(y)) + OPTp(p‘)}
J

> (p—p")oPTq(x) + ((B+1)p’ — Bp) Dw— p'Dw
= (p—p) (0PT4(x) — BDW) > 0.

If the procedure ends in Step 5, then it follows that

ALG(xX') —p'-OPTp(XX') > ALG(X) + 5 ALG(Y") +ALG(¢))
h<j

-0 {OPTq(x) + 5 OPT(yY") + OPTp(y/! )}

h<j
> (p—p')oPTy(x) > 0.

Otherwise, we can similarly prove G (xx’) — p’- oPT(xx') > 0. O

Lemma 18 Let {p,q} := {a,b} and w:= dpq. If there existp >3, >0, and a
g-forcing sequencg of clients such thatp — 1)oPTp(X) + OPT4(X) — ALG(X) +
(p —5)Dw < 0 and oPTy(X) > BDw, then there exists a sequenyethat is an a-
forcing sequence withLG(x x') > p’- oPTa(xX’) or an arbitrarily costly sequence

with ALG(x x') > p'-oPT(xx'), wherep’ := %(p—@ +3.

Proof Let P:= {a} andQ := {b,c} if p=a, P:= {b,c} andQ := {a} otherwise.
By applying Lemma 16 with suck and Q, we can obtain a sequendge that is
ana-forcing sequence withLG (x /) > p - OPTa(Xx ¢) or ab-forcing sequence with
ALG(XY) > p-OPTR(xy). If Y is ana-forcing sequence, then we have obtained a
desired sequence. Otherwise, by Lemma 17, there exists a sequetitat is an
a-forcing sequence witALG (x yy') > p’- oPTa(x@') or an arbitrarily costly se-
quence withaLG (x@y') > p’ - oPT(xWy'). Thereforepy/ is a desired sequence.
O

We set the initial serveg, := a. Our strategy to generate is defined using a
state machine as shown in Fig. 6. In this state machine, a transition represents a server
position selected byLG, together with optional conditions on the number of requests
generated in the source state. The parametek K D/3 will be defined later. A state
with the form ofu (i.e., b", al, andc') represents a sequence of requests that are
issued oru until the server position ofLG and the numbek of the issued requests
meet those associated with one of the outgoing arcs from the state. For example, we
generate requests drat the statéd" and transit ta* if ALG moves the server from
ato b or c after at mos# requests, while we transit © if ALG keeps the server at
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Fig. 6 Strategy to generate

aduringA requests om. At the stateal, for another example, we generate requests
onauntil ALG locates the server af and transit to Lm18 if the number of generated
requests ora is less than R, b" otherwise. A state with the form aft (i.e., a’

andc™) represents a sequence of requestsiamtil ALG locates the server on.

The states Lm17b and Lm17a represent sequences of requests obtained by applying
Lemma 17 withp := b andq:= ¢, and withp := a andq := b, respectively. The

state Lm18 represents a sequence of requests obtained by applying Lemma 18 with
p € {a,b}\ {s} andq:=s, wheres € {a,b} is the server oALG at the beginning of

the state.

5.2 Analysis

Now we prove Theorem 4. Suppose that x+ d andz = yd with d > 0 and 3<

y < x/d. We will choosey and 9 later. We divideo into phases so that entering
the stateb” begins a new phaseLG locates the server oa at the beginning of
each phase. Therefore, Theorem 4 is proved if for @afdicing phasep, ALG(¢p) >

p - OPTa(@) with the server initially ata, and if for an arbitrarily costly phase,
ALG(@) > p - oPT(@) with the server initially at.

Case 1. p=Dbll.at withh< A. Itfollows thatALG (@) > (h+2D)xandoPTa(@) < hx

(cost of keeping the servera}. Thus, we hav FL,%%)) >0 > 942057

Case 2: ¢ = 17/, wheret ;= bgcib with i < 2D — A — 1, andt’ is the sequence of
clients generated in the state Lm18. It follows that (7) = (A +D)x+iy, OPTa(T) =
Ax+iy (cost of keeping the server a}, andoPT,(7) < Dx+ iz (cost of moving the
server tob first and keeping it db). Thus, we have

(p—1)OPTa(T) + OPTH(T) — ALG(T) 4 (p — 5)Dx
<(p—1)(Ax+iy)+Dx+iz— ((A 4+ D)x+iy)+ (p—5)Dx
<p{(BD—-1)x+ (2D —-A—-1)0} — {(9D — 2)x+ (2D —A —1)(2—y)d}.
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Therefore, if(p — 1)OPTa(T) + OPTy(T) — ALG(T) + (o — 5)Dx > 0, then we obtain

X—(2D—A—-1)(1+Yy)d
(3D—1)x+(2D—A—1)3’

p=>3+

which is 3+ ﬁ with 0 < € < 1 by settingy = O(1) and

(1—e)x _ X
OS BB AT+ D =0(5)- (47

This means that there exigts= 3+ Q(1/D) such tha{p — 1)OPTa(T) + OPTH(T) —
ALG(T) + (p — 5)Dx < 0. Becaus®PTy(T) > Dx, by Lemma 18, there exisfg =
3+ Q(1/D) such thatp is ana-forcing sequence withLG (¢) > p’- OPT4(@) or an
arbitrarily costly sequence withLG (@) > p’- OPT(@).

Case 3: ¢=11/, wherer = bgcichr withi > 2D — A, andt’ is the sequence of clients
generated in the states Lm17b and Lm17a. It follows that(1) > (A + D)x+iy +
(1+ D)zandopPTe(1) < Dy+ Az (cost of moving the server tofirst and keeping it
atc). Thus, we have

ALG(T) o (A+D)x+iy+(1+ D)z> 3Dx+{(2D—A)+(1+D)y}o
OPT(T) — Dy+Az - Dx+ (D+Ay)d
{(y=1)D+y-A@By+1)}d6

Dx+ (D+Ay)d ’

=3+

which is 3+ 5f5; with 0 < & < 1 by setting

y:=4+4+3e=0(1), (18)
_ | y=1=¢)D+y| _
A= {TJ =0O(D), and (29)

0 = O(x/D). It should be noted thatd A <D/3 forD > 3. Becaus®PT;(T) > Dy
andoPTy(T) > Dx, by Lemma 17, there exists = 3+ ©(1/D) such thatp is ana-
forcing sequence withLG (@) > p’- OPTa(@) or an arbitrarily costly sequence with
ALG(@) > p'-OPT(@).

Case 4: ¢ = bAclat with i < D — A. It follows thatALG (@) > Ax+ (i+D + 1+
D)y =Ax+ (i+2D+ 1)y andoPTa(¢) < Ax+ iy (cost of keeping the server a}.
Thus, we have

ALG(co)>i\x+(i+2D+1)y>l+(2D+1)y>1 D+1_, 1

OPTa(®) = AX+iy AX+iy D 3+p
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Case 5:¢ = 117’ wherer = b)cla withD—A <i<2D—A andj < 2D -1, and
T’ is the sequence of clients generated in the state Lm8.dfkeeps the server at
¢ duringal, then the cost foa! is (j +D)y. If ALG moves the server from to b
after thej’th request o&l, then the cost foal is at leastj’y + Dz+ (j — j + D)x =
jiy+D(yd+x)—(j —j)d. Becausey > 3 and j — j’ < 2D, this is at leastjy +
D(38+x) —2Dd = jy+ D(6+x) = (j + D)y. Therefore, it follows thatLG (1) >
AX+(i+D+j+D)y=Ax+(i+ j+2D)y. Moreover,0PTa(T) < Ax+ iy (cost of
keeping the server af), andopPT,(T) < Dx+iz+ jx = (j + D)x+ iz (cost of moving
the server td first and keeping it ab). Thus, we have

(p—1)OPTy(T) + OPTa(T) — ALG(T) + (p — 5)Dx
<(P—1)((j+D)x+iz) + Ax+iy — (Ax+ (i + ] +2D)y) + (p — 5)Dx
<p{(4D —1)x+ (2D —A)yd} — {(12D—2)x+ (4D —1+ (2D —A)y)d}.

To derive the second inequality, we have boungby 2D — 1 becausg is multiplied
by (o0 —1)x—y>2x—y>x+z—y> 0 for p > 3. Therefore, if(p — 1)oPTy(T) +
OPTa(T) — ALG(T) + (p — 5)Dx > 0, then we obtain

X+ ((4D—-1)—2(2D—-A)y)d

>
P 3 D s D A)y5

which is 3+ ﬁ with 0 < € < 1 by settingy = O(1) and

(1—e)x B X
o< 2(2D7)\)y7(4D71)_O(5)' (20)

This means that there exigts= 3+ Q(1/D) such tha{p — 1)OPTy(T) + OPTa(T) —
ALG(T) + (p — 5)Dx < 0. Becaus®PT,(T) > Dx, by Lemma 18, there exisfg =
3+ Q(1/D) such thatp is ana-forcing sequence withLG (@) > p’- OPT4(@) or an
arbitrarily costly sequence withLG (@) > p’ - OPT(@).

Case 6: 9 =blclalwithD — A <i <2D— A andj > 2D. If ALG keeps the server at
cduringal, then the cost foa! is (j + D)y > 3Dy. If ALG moves the server fromto

b after thej’th request o&l, then the cost foal is at leastj’y+ Dz+ (j — j’+D)x>
jx-+D(yd+x). Becausg > 3 andj > 2D, this is at leastB(d +x) = 3Dy. Therefore,
it follows thatALG () > Ax+ (i+D+3D)y= Ax+ (i +4D)yandoPTa(@) < Ax+iy
(cost of keeping the server a}. Thus, we have

ALG(@) _ Ax+(i+4D)y 4Dy 4D(x+9)
> = >
OPTa(@) —  Ax+ly 1+)\X+iy_l+2Dx+(2D—)\)5
2\5
=3+

2Dx+ (2D— )3’

which is 3+ ©(1/D) by settingA = ©(D) andd = O(x/D).
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Case 7: 9= 11’, wherer = bAcl withi > 2D — A + 1, andt’ is the sequence of clients
generated in the states Lm17b and Lm17a. It follows thag(t) > Ax+ (i+ D)y
andoPT(7) < Dy+ Az(cost of moving the server ofirst and keeping it at). Thus,
we have

ALG(T) - Ax+(i+D)y _ (3D+1)x+(3D—A+1)d X—((By+1)A-1)%

> =3+

OPT(T) — Dy+Az Dx+ (D+Ay)d Dx+ (D+Ay)d
which is 3+ 557 with 0 < £ < 1 by settingy = O(1), A = (D), and
(1—e)x X
< —— " _—0(=).
S@y a1 o(5) (21)

BecauseopPT(T) > Dy and oPTy(T) > Dx, by Lemma 17, there exisi{g’ = 3+
Q(1/D) such thatg is an a-forcing sequence witlALG (@) > p’- OPTa(®) or an
arbitrarily costly sequence withLG (@) > p’ - OPT(@).

By settingy as in (18),A as in (19), and so that (17), (20), (21), and < x/y
are satisfied, we can obtain a desired sequencehus, the proof of Theorem 4 is
completed.

If we sete :=1/3, y:=5, A = [1BH2| 'and § := %5, then we can lower-

boun g;?c((?) by 3+ 7,35 in Case 3. By applying Lemma 17 wifh=y/z= 282+

for the state Lm 17b, and then wifh = 1 for the state Lm 17a, we obtajpl >
3+ (360D + 340+ 529%) 1 > 3+ z555-577 for D > 3, which is the smallest lower
bound over all Cases 1-7.

6 Future Work

It would be interesting to answer whether or not there exists an asymptotically 3-
competitive deterministic algorithm on a broader class of networks. Unfortunately,
even 4-node ring networks do not allawrA as it is to have such a competitive ratio.

In fact, our proof of Theorem 1 depends on the fact that an extended work function
is concave on the interval between two nodes on a continuous loop with three nodes
(Claim 3 of Lemma 5). However, this fact does not follow on four nodes. On the other
hand, there might exist a lower bound of3(1) on general networks. For such a
lower bound, however, we would need at least four nodes and have to overcome the
difficulty of designing and analyzing a much more complicated adversary mainly due
to increase of nodes. In any case, improving the currently best upper bound of 4.086
on general networks is still an important open problem.
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