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Abstract—Finger motion classification using surface 
electromyogram (EMG) signals is currently being applied to 
myoelectric prosthetic hands with methods of pattern 
classification. It can be used to classify motion with great 
accuracy under ideal circumstances. However, the precision of 
classification falling to change the quantity of EMG feature with 
muscle fatigue has been a problem. We addressed this problem in 
this study, which was aimed at robustly classifying finger motion 
against changes in EMG features with muscle fatigue. We tested 
the changes in EMG features before and after muscle fatigue and 
propose a robust feature that uses a methods of estimating 
tension in finger motion by taking muscle fatigue into 
consideration. 
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I.  INTRODUCTION 
Users of the entry tools of wearable computers expect to 

use surface electromyogram (EMG) signals in the ubiquitous 
computer society. EMG is signal that cause muscle 
contractions in muscle fibers due to motion commands that 
occur in the brain.  

EMG contains information on human motion. And it is 
possible to classify this motion with these signals. There has 
been much research on classifying motion and this has been 
applied interfaces such as those for myoelectric hands. Figure 1 
shows a sample of an electromyogram signal waveform. 
Motion classification uses a highly-precision pattern analysis 
method in these signals. The three main advantages of an 
interface using EMG are that it 1) allows muscular tension to 
be estimated 2) enables undelayed input signals and 3) easily 
measurement. It can also solve problems with other methods 

such as those with acceleration sensors and motion-capture 
technology. 

However, there is a problem in EMG changes over time in 
motion classification. EMG changes the nature of signals with 
muscle fatigue, removal of electrodes, and mastery of motion. 
The classification rate decreases over time because a traditional 
method is assumed where the feature space never changes and 
this is dependent on early-formed learning. Muscle fatigue 
particularly occurs often when EMG are applied. For example, 
false operation of a myoelectric hand is dangerous where a 
person has lost his hand. Muscle fatigue causes this in 
everyday life. In this study, we focused on muscle fatigue and 
propose a robust finger motion classification method doe to the 
muscle fatigue. 

EMG signals change according to muscle fatigue. The 
integral quantity and frequency range are feature quantities that 
can be used to detect muscle fatigue from EMG signals [1]. 
The integral quantity increases linearly according to muscle 
fatigue and the frequency range shifts to low according to this 
fatigue. The shift to low frequencies can be attributed to the 
conduction rate of muscle fiber. When the muscle continually 
constricts, the extracellular concentration of potassium ions 
increases. The frequency shifts to low to change the 
extracellular electrical gradient under polarizing conditions. 
Increasing the integral quantity can be attributed to the increase 
in motor units. The contraction force of muscle fiber decreases 
because of fatigue. All motor units increase to mobilize new 
motor units to help this. 

In this paper, we tested the change in the number of 
features before and after muscle fatigue and proposed a method 
of estimating the tension in finger motion considering muscle 
fatigue. Section 2 introduces studies related to methods if 
classifying motion using EMG and the relationship between 
EMG and muscle fatigue. Section 3 describes the proposed 



method of classification. Section 4 describes experiments we 
carried out with the proposed method. The paper is concluded 
in Section 5. 

 

Figure 1.  Example of a figure caption. (figure caption) 

II. RELAYED STUDIES 

A. Methods of estimating torque 
There have been methods of recognizing muscle tension by 

using EMG. These methods need to accept target motion 
because the behavior of individual muscles changes.  Elbow 
bending is simple motion and uses a simple muscle group. 
Koike proposed a method of estimation based on physiological 
data using neural networks [2]. Muscle tension in the lower 
limbs uses an analysis of walking motion and bicycling 
exercise. Tanaka estimated the muscle tension for walking 
using Electromyography-Assisted Optimization [3]. 

There has been research that has estimated muscle tension 
for finger motion. Okuno proposed a method of separately 
modeling the responses to tension and stretching and 
combining them [4]. Tsuchida's research cleared up the relation 
between the inner and outer muscle activities and the bending 
tension in finger motion [5]. These methods can be used where 
muscle activity is constant. However, there is a problem with 
not accepting changes in muscle conditions. 

B. Relationship between classification and change over time 
There has been some research on methods of classification 

that have taken changes over time into considering. Nishikawa 
proposed an on-line supervising mechanism for learning data in 
surface electromyogram motion classifiers [6]. Kiso proposed 
robust discrimination of motion based on human myoelectric 
potential by adaptive fuzzy inference by taking muscle fatigue 
[7]. However, there have been some problems with the results 
of classification because these methods have assumed 
continuity in classification results. The accuracy of 
classification decreases temporarily when redesigning the 
learning data after the number of features is changed. When 

muscle fatigue is rapidly reduced, the accuracy of classification 
decreases and does not accept continuity of motion. In this 
study, the method takes the characteristics EMG variation 
muscle fatigue into consideration. 

III. MOTION ESTIMATED CONSIDERING MUSCLE 
FATIGUE 

A. Muscle fatigue and EMG 
EMG signals change according to muscle fatigue. The 

integral quantity and the frequency range are feature quantities 
which detect muscle fatigue from EMG signals. The integral 
quantity increases linearly according to muscle fatigue. This 
integral quantity feature is Average Rectified Value (ARV).  
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ARV is calculated with the mean value of the absolute 
EMG signal in the frame. The time change in ARV is obtained 
to calculate ARV while the frame is gradually sliding in terms 
of time. L is the number of samples in one frame. The 
frequency range shifts to low according to muscle fatigue. This 
frequency range feature is Mean Power Frequency (MPF). 
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The frequency spectrum of EMG is calculated by fast 
Fourier transform (FFT). The preprocessing algorithm is the 
Hamming window before applying the FFT processing. P(f) 
represents the power spectrum, f represents the frequency. 
MPF is calculated the centroid of frequency. If all spectrum 
change low frequency, MPF is smaller. 

B. Tension estimate method 
In this method, robust finger motion classification using 

MPF represent frequency characteristics. Feature vector makes 
the feature quantity in frame. The frame is shifted with frame 
length 64[ms](128 samples) during frame period 16 [ms](32 
samples). The motion classification of 60[Hz] period is 
actualized while guaranteeing the number of samples which are 
necessary for feature extraction. 

1) Conventional method 

 )()( taARVtT =  (3) 

Motion torque in isometric contraction is linear to integral 
EMG and a is a constant [8]. It is calculated from ARV and the 
pressure sensor value by the least-squares method. However, 
the results of obtained with this method increase error 
according to muscle fatigue because ARV increases to the 
same torque. We propose a method of estimating muscle 



tension considering muscle fatigue using the MPF of frequency 
characteristics. 

 

2) Proposed method 

 )()()( tARVxftT =  (4)  α  + β  = χ. (1) (1) 

 nmxxf +=)(  (5)  α  + β  = χ. (1) (1) 

 )(tMPFx =  (6)  

The conventional method in the proposed approach is 
extended for equation 4. f(x) changes according to muscle 
fatigue. Slope f(x) is designed to decrease according to fatigue. 
f(x) establishes the relation represented by MPF and is derived 
in equations 5 and 6. We found x was a linear MPF linearly 
from a preliminary experiment and this will hereinafter be 
described in detail after this. Constant numbers m and n can be 
calculated from the EMG data before and after muscle fatigue 
using the least squares method. 

 )()()()( tnARVtMPFtmARVtT +=  (7)  α  + β  = χ. (1) (1) 

Tension can be calculated as described above considering the 
muscle fatigue. Tension can be estimated from m and n if the 
position of the electrode does not change. 

C. Estimation of Flow 
Here, we explain the estimation of flow with the proposed 

and conventional methods. We will describe how to estimate 
flow with the conventional method. The constants a and b in 
Equation 3 are determined using least-squares estimates of 
torque values obtained from pressure sensors and the ARV data 
range of the first set. Only the state before muscle fatigue was 
learned. 

We will describe how to estimate flow with the proposed 
method, where there are two phases for learning and 
estimation. Constants m and n are calculated from the data of 
muscle fatigue process in the learning phase. Tension is 
calculated in the estimate phase from ARV and MPF based on 
constants, which are calculated in the learning phase.  

In the learning phase, constants m and n are calculated from 
the EMG data on the muscle fatigue process. The data are the 
separated frames of 1000 points. The slope value is calculated 
by using another set using the least squares method, which is 
the same as that with the conventional method. f(x) is 
determined in other set as the slope changes only by using the 
least squares method. f(x) decreases according to fatigue. f(x) 
has a relation represented by MPF. MPF is used as the average 
of each set. Figure 2 shows a sample of the scatter plot for 
MPF and f(x). The constants m and n are calculated from these 
values using the least squares method. In the estimate phase, 
tension is calculated from ARV and MPF based on constants 

that are calculated in the learning phase. ARV is not specially 
treated. It is difficult to calculate a unique MPF through time 
because the EMG wave-form is complex. Consequently, MPF 
is used as a smoothing technique at 1000 points so that there is 
no change over time.  

 
Figure 2.  Relationship between MPF and f(x) 

 

 
Figure 3.  EMG measurement system 

IV. EXPERIMENT AND EVALUATION 
We carried out experiments to classify finger motion using 

EMG to test availability proposed method. The male subject 
aged 23 and was right-handed. 

A. Measurement signals 
Figure 3 shows the hardware we used to measure EMG. 

They were measured with an easily-removable surface 
electrode. We used a bipolar-lead electrocardiogram to place 
the electrode a wide area on the forearm because a single-lead 
electrocardiogram would have caused large amount of noise.  



 
Figure 4.  Conductive fabric supporter 

 
Figure 5.  Position of electrode placed on subject’s forarm 

The electromyogram measured at the electrode was 
increased with an amplifier. Measured data were taken from 
samples with a sampling frequency of 2000 [Hz] and a 
quantization bit rate of 16 [bit].. 

1) noise abatement regulation 
There is a variety of noise in our living environment, 

which causes alternating current sources and electromagnetic 
waves from mobile phones and PCs. We needed to use a 
shielded room to reduce these noise in an experiment. 
However, we needed to creat an experimental environment in 
which noise could be easily reduced ubiquitously because 
working in a shielded room is not practical in everyday use. As 
a result, we used a conductive cloth that created an 
environment like that in a shielded room [8]. Figure 4 has a 
photgraph of the conductive cloth. 

B. Experimental environment 
The target motion was three types of powers of the same 

motion to reduce problems in this experiment. The motion was 
index finger flection Specifically for sustained isometric 
contraction. The subject performed a task in the experiment of 
sitting on a chair next to a desk with a pressure sensor between 
his index finger and the desk. He could provide the intended 
tensional force while watching the sensor value. One channel 
was used for the electrodes, which were attached to the 
subject's forearm, as can be seen in Figure 5. 

We measured Maximal Voluntary Contraction (MVC) with 
the pressure sensor before the experiment. Three types of 
power is 30%, 40% and 50%MVC that took into consideration 
range of motion were performed that resulted in muscle fatigue 
and that easily changed the features. One set was maintained 
for 3 seconds according 30%, 40% and 50%MVC in 12 sets 
when measuring the data. 

 

Figure 6.  Each set mean of ARV and MPF 

Calibration was performed to match EMG waveforms and 
pressure sensor waveforms. The EMG waveforms were 
measured faster than the pressure sensor waveforms. The 
calibration was performed in three sets to force changes in the 
50 % MVC from 0 % MVC before the experiment. We 
determined the correlation between the ARV of EMG 
waveforms and waveform of pressure sensors. The pressure 
sensor had the least delay in waveforms. Figure 7 shows the 
measured data after calibration.  

C. Change in features to muscle fatigues 
Figure 6 plots the means of ARV and MPF in the set. The 

ARV increases and the MPF decreases with the increasing 
degree of the set. The ARV increased according to the increase 
in the percent of MVC. The MPF does not change. This is 
because it is possible to detect muscle fatigue using MPF. 

D. Estimation Result of proposed method 
We propose evaluating the accuracy with which tension can 

be estimated considering muscle fatigue. The significance of 
the proposed method was found by comparing actual tension 
obtained from a pressure sensor using the proposed approach 
and a conventional method.. 

Figure 8 above shows the results obtained from estimation 
with the conventional method. It is clear that highly accurate 
results can be estimated before muscle fatigue occurs. 
However, the data estimated after muscle fatigue occurs have a 
high error rate. The bottom of Figure 8 shows the results 
obtained from estimation using the proposed method. It is clear 
that very accurate results can be estimated before and after 
muscle fatigue occurs. 

We compared the error value calculated as the difference 
between the actual torque to assess the accuracy of the 
proposed and the traditional method. Figure 9 plots the results. 
The error values represent the mean of each set. The error 
value for the conventional method increased from the sixth set. 
The error value for the proposed method does not increase. 



 

Figure 7.  Sample of measured data 

 
Figure 8.  Results of estimating tension in muscle fatigue environment 

E. Discussion 
It is possible to accurately estimate results even when 

muscle fatigue occurs using this method. Its main problem is 
the need to calculate a constant with muscle fatigue EMG 
before tension is estimated. Once the state to muscle fatigue is 
not only time consuming, but imposes restriction on finger 
movement. We need to calculate the constant by estimating the 
change in MPF and f(x) in the early stages. 

 

 

Figure 9.  Error rate in muscle fatigue environment 

V. CONCLUSION AND FUTURE WORK 
In this paper, we tested changes in the number of features 

before and after muscle fatigue and proposed a method of 
estimating the tension in finger motion considering the muscle 
fatigue. The main characteristics detected in muscle fatigue 
were the integral EMG and frequency range. The integral EMG 
increased linearly with muscle fatigue. The power spectrum of 
EMG frequency band shifted to low frequencies. 

It is possible to robustly estimate tension considering 
muscle fatigue by using a model of the transition fatigue using 
ARV and MPF. As a result of the experiment, we found it was 
possible to accurately estimate muscle fatigue using this 
method even before it occurs. 



In future work, we need to calculate the constant while 
estimating the change in MPF and f(x) in the early stages. We 
also plan to extend the present method to more than one finger. 
We may be able to configure the number of robust feature in 
muscle fatigue with this indicator. We think that our method of 
classifying finger motion has great potential in the future. 
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