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The stereo method can detect static objects; those cannot be 
detected by the motion based method. Although the stereo 
method might divide an object into some regions, they can be 
merged into the object by the motion based method. Thus this 
paper adopts a novel method for object detection based on 
both the stereo vision and motion analysis. In addition, object 
tracking with motion estimation, which follows the next 
object detection starting with an initial solution given by the 
tracking, improves detection accuracy. A combination of these 
methods can be used for general object detection and tracking.  

Based on the general method, a novel method for vehicle 
detection and tracking with road detection is proposed in this 
paper. The road detection with motion segmentation, 
considering a parallax in stereo vision as a motion, enables 
on-road vehicle and obstacle detection. All elements 
constructing the proposed method are founded commonly on 
affine motion segmentation, which uses affine motion model 
to merge pixels into a region.  Software and hardware 
implementations become efficient because their parts can 
share the common principal procedure. Especially, the 
hardware implementation can possibly reduce plenty of gates 
by sharing a circuit for the affine motion segmentation. The 
affine motion segmentation was difficult to execute in real-
time so far, because of the high computational costs. However, 
a VGA 30 fps VLSI processor has been proposed in [4]. We 
can expect real-time processing of the proposed method with 
this processor.  

This paper is organized as follows. The next section 
describes the affine motion segmentation. Then, the vehicle 
detection and tracking algorithm based on the motion 
segmentation is proposed in section 3. In section 4, simulation 
results show the effectiveness. Finally, we conclude this paper. 

II. AFFINE MOTION SEGMENTATION 
This section describes affine motion segmentation, which is 

a basis of the proposed method for vehicle detection and 
tracking. The algorithm was originally proposed in [5]. The 
aim of the motion segmentation is to extract moving regions 
in a video sequence. For example, the algorithm extracts the 
region R1 moving to the left and R2 moving to the right in a 
case of Fig.2. Each motion model of Θ  and Θ  expresses a 
motion of the corresponding region. The algorithm assigns a 
region label to each pixel according to the conformity to the 
motion model, resulting in a label map  for the frame . 
 

 
Fig. 2.  Affine motion segmentation and label map 

Fig.3 shows a flowchart of the affine motion segmentation. 
The algorithm adopts the affine motion model with a global 
illumination change ξ  as a motion model. The model can 
express a motion of the region such as rotation, zoom in/out, 
and transformation. All pixel flow in a region can be 
expressed by a set of linear equations. The model is composed 
of seven parameters as below: Θ = 	 	 	 	 	 	 ,            (1) ( ) = ( , )( , ) = + ++ + ,          (2) 

where  is a coordinate of ( , ), ( ) is a motion vector at 
the coordinate . The algorithm estimates an affine motion 
model Θ  corresponding to the region R . A symbol {Θ }  
means a set of motion models from the frame  to . The 
algorithm estimates Θ  with accumulation of ΔΘ  obtained by 
the iterative re-weighted least square method minimizing sum 
of a residual ( , Θ ) for each pixel in R  as the following:  ΔΘ = argminΔΘ ∑ , Θ∈ ,           (3) , Θ = ∇ + ( ) ( ) + Δ  																			+ + ( ) − ( ) + ,          (4) 
where ( )  represents a illumination value at  in . The 

illumination gradient ∇ ( )  is defined as ∇ ( ) = ( )( ) , 

using illumination differentials ( ) and ( ) in the  and  
direction. The residual ( , Θ )  is derived from a linear 
approximation of the illumination conservation law expressed 
by: ( ) = + ( ) + . The weight  is a weight 
assigned to a pixel at . To set up small weight for each outlier 
pixel makes the estimation more robust. Introduction of 
hierarchical method enables large motion estimation. 
 

 
Fig. 3.  Affine motion segmentation flowchart 
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C. Discussion 
In Fig.9 (a), there are pixels labelled with road on vehicles. 

They can be removed by appropriate thresholding of label 
density in the region. The pixels on the crosswalk boundary 
are not labelled with road. They will be improved by applying 
an individual parallax model to each divided area or adjusting 
the energy function parameters. Another promising approach 
is to investigate the region conformity to a parallax model, 
which assumes the object to be standing vertically on the road. 
In the case of the object included in the road surface such as 
the crosswalk, the total energy within the region applying the 
vertically standing model increases in comparison with that of 
the road surface model. 

V. CONCLUSION 
This paper proposed a novel method for vehicle detection 

and tracking based on stereo vision, motion analysis, and road 
detection. All elements constructing the proposed method are 
founded commonly on the affine motion segmentation. We 
also proposed the affine parallax model for the segmentation 
in stereo vision. In the simulation results, the proposed 
method could detect and track moving vehicles on the road 
with relative depths in a complicated scene of downtown. The 
future works are quantitative investigation of segmentation 
and depth accuracy, investigation of camera calibration 

influence to the detection accuracy, and robustness evaluation 
of the proposed method. We plan to implement the real-time 
system with our VLSI processor for the affine motion 
segmentation. Application of object detection and tracking 
with the affine motion segmentation to the gesture recognition 
is another challenge. 
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