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Abstract 

The occurrence, distribution, speciation, and biotransformation of arsenic in aquatic 

environment (marine- and freshwater) have been studied extensively by several research groups during 

last couple of decades. However, most of those studies have been conducted in marine waters, and the 

results are available in a number of reviews. Speciation, bioaccumulation, and biotransformation of 

arsenic in freshwaters have been studied in recent years. Although inorganic arsenic (iAs) species 

dominates in both marine- and freshwaters, it is biotransformed to methyl- and organoarsenic species 

by aquatic organisms. Phytoplankton is considered as a major food source for the organisms of higher 

trophic levels in the aquatic food chain, and this autotrophic organism plays important role in 

biotransformation and distribution of arsenic species in the aquatic environment. Bioaccumulation and 

biotransformation of arsenic by phytoplankton, and trophic transfer of arsenic in marine- and 

freshwater food chains have been important concerns because of possible human health effects of the 

toxic metalloid from dietary intake. To-date, most of the studies on arsenic biotransformation, 

speciation, and trophic transfer have focused on marine environments; little is known about these 

processes in freshwater systems. This article has been reviewed the bioaccumulation, biotransformation, 

and trophic transfer of arsenic in marine- and freshwater food chain. 
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1. Introduction 

Arsenic is one of the significant environmental contaminants which exists mainly in four 

oxidation states- arsenate (AsV), arsenite (AsIII), arsenic (As0), and arsine (As-III) (Sharma and Sohn, 

2009). The toxicity of arsenic to organisms depends on its concentration and speciation, and inorganic 

arsenic (iAs) species are generally more toxic than organoarsenic (orgAs) species (Meharg and 

Hartley-Whitaker, 2002; Ng, 2005). AsIII is usually more toxic than AsV, and dimethylarsinous acid 

(DMAAIII) and monomethylarsonous acid (MMAAIII) are more toxic than their parent compounds 

(Petrick et al., 2000; Mass et al., 2001). AsV is the thermodynamically stable state in oxic waters, while 

AsIII is predominant in reduced redox environment. In aquatic systems, the dominant iAs are 

incorporated into microorganisms such as phytoplankton, and are converted to methylarsenicals and/or 

high order orgAs such as arsenosugars (AsS) (Francesconi and Edmonds, 1996). The orgAs are 

mineralized to iAs and methylarsenicals by bacteria (Hanaoka et al., 1995). Thus, aquatic 

microorganisms such as phytoplankton and bacteria play important roles in arsenic speciation, 

distribution, and cycling in aquatic systems (Howard et al., 1995; Hasegawa et al., 2001; Hellweger and 

Lall, 2004; Sharma and Sohn, 2009).  

Aquatic organisms accumulate, retain, and transform arsenic species inside their bodies when 

exposed to it through their diet and other routes/sources such as water, soil, particles etc. (Edmonds et 

al., 1997; Hasegawa et al., 2001; Suhendrayatna and Maeda, 2001). Although arsenic biomagnification, 

a process whereby chemical concentrations increase in aquatic organisms of each successive trophic 

level due to increasing dietary exposures (e.g. increasing concentrations from algae, to zooplankton, to 

forage fish, to predator fish), is not consistent (Maher et al., 2011), previous studies reveal the 

possibility of this process in aquatic food webs (Goessler et al., 1997). Therefore, not only 

contaminated water but also fishes and other aquatic foods containing arsenic may be potential sources 
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of human health risks. This paper reviews the distribution, speciation, bioaccumulation and metabolism, 

and trophic transfer of arsenic in aquatic food chains in both freshwater and marine environments. 

 

2. Source and distribution of arsenic in aquatic systems 

The occurrence, distribution, and speciation of arsenic in aquatic systems are particularly 

important in determining its bioaccumulation and trophic transfer through the food chain. Although iAs 

species (AsV and AsIII) are the major species, methylated (DMAA, MMAA and TMAA) and complex 

orgAs species have also been found in marine and freshwaters. Arsenic species found in natural waters 

and organisms of aquatic food chain are shown in Table 1. In addition to arsenic speciation, it is  

difficult to estimate typical arsenic levels in aquatic systems under natural conditions because of its 

large variations, but most values are within the µg L-1 range (Cullen and Reimer, 1989). Arsenic 

concentrations in some major contaminated freshwater (rivers and lakes) and marine (open oceans and 

estuaries) systems are summarized in Table 2. The data gives a broad indication of the occurrence of 

arsenic in the surface waters and its provable bioaccumulation in the aquatic food chain. 

 

2.1. Freshwaters 

Concentration of arsenic in surface freshwater systems (rivers and lakes) vary by more than four 

orders of magnitude depending on the source, availability, and geochemistry of the catchments 

(Smedley and Kinniburgh, 2002). Baseline concentrations of arsenic in waters of various contaminated 

rivers range between 0.1 and 2.1 µg L-1 with an average of 0.8 µg L-1 (Table 2), which might be due to 

the source of contamination, surface recharge, base flow, and the bedrock lithology. High 

concentrations of naturally occurring arsenic have been reported in the Waikato River, New Zealand 

(32 µg L-1) (McLaren and Kim, 1995; Robinson et al., 1995a), Madison and Missouri Rivers in USA 
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(10-370 µg L-1) (Nimick et al., 1998), Owens River, CA, USA (85-153 µg L-1) (Wilkie and Hering, 

1998), and others (Table 2). The high concentrations of arsenic in rivers are the result of geothermal 

inputs, evaporation, and groundwater contamination. For example, extremely high concentrations of 

arsenic (up to 21,000 µg L-1) in Lao River of northern Chile is due to the above-mentioned processes 

(Cáceres et al., 1992). Mining activity can also result in the occurrence of high arsenic in river waters. 

Streams adjacent to the tailing deposits in the Clubs Lake, British Columbia, contained up to 556 µg L-1 

arsenic (Azcue and Nriagu, 1995). Water of Mole River, New South Wales, Australia also contained 

high levels of arsenic (110-600 µg L-1, up to 13900 µg L-1) from mining and processing of arsenopyrite 

ores (Ashley and Lottermoser, 1999). 

Arsenic concentrations in lake waters are close to or lower than that reported for river waters. 

Studies showed that the concentrations of arsenic in lakes around British Columbia, Canada ranged 

between 0.2 to 2.08 µg L-1 (Azcue et al., 1994; Azcue and Nriagu, 1995), which has been transported 

from the abandoned Cariboo Gold Quartz mine tailings of that area, and has accumulated in bottom 

sediments of the lakes in high concentration (up to 1104 µg g-1) (Azcue and Nriagu, 1995). Increased 

concentrations of arsenic have also occurred in lake waters from geothermal sources and due to mining 

activities (Smedley and Kinniburgh, 2002). Arsenic concentrations in mine-affected lake waters are 

relatively low due to its adsorption onto Fe-oxides under neutral pH (Smedley and Kinniburgh, 2002), 

and also due to its accumulation in bottom sediments (Azcue and Nriagu, 1995).  

Thermal stratification of arsenic concentrations in lake waters has been reported in literature 

(Azcue and Nriagu, 1995; Hasegawa, 1996; Sohrin et al., 1997; Hasegawa et al., 2010). The dissolved 

arsenic concentration in the Moira Lake, Ontario, Canada was highest during summer with an average 

concentration of 47.0 µg L-1 in surface water, compared to 22.0 µg L-1 in winter (Azcue and Nriagu, 

1995). Similar trends in the occurrence of arsenic concentrations in lake waters have also been reported 
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by other researchers (Hasegawa et al., 2009). Thermal stratification in lake water also cause the release 

of iAs into the water column from bottom sediments due to depletion of O2 levels in the hypolimnion 

(due to increased biological activities) and its subsequent redistribution throughout the lake (Smedley 

and Kinniburgh, 2002; Hasegawa et al., 2010). This may influence thermal stratification of arsenic 

concentrations in lake waters.  

 

2.2. Marine waters 

Arsenic is the 22nd most abundant chemical element in marine waters, and its average 

concentrations tend to be less variable in marine waters than those of freshwaters (Neff, 1997; Smedley 

and Kinniburgh, 2002). Average arsenic concentration in open marine waters is around 1.5 µg L-1, and 

its concentrations in deep Pacific and Atlantic waters is between 1.0 - 1.8 µg L-1 (Cullen and Reimer, 

1989), 1.5 µg L-1 in southeast coast of Spain (Navarro et al., 1993), and 1.1 - 1.6 µg L-1 in coastal 

waters of southern Australia (Maher, 1985a) (Table 2). Ishikawa et al. (1987) reported mean 

concentration of 3.1 µg L-1 in marine waters of the Pacific coast near Nakaminato (Ibaraki, Japan), and 

0.6 µg L-1 near Onagawa (Miyagi, Japan).  

The concentrations of arsenic in estuarine waters are more uniform than those of open marine 

waters (Table 2). Arsenic concentrations in the estuarine waters may be affected by industrial and 

mining effluents and geothermal water (Smedley and Kinniburgh, 2002). The simple physical mixing 

of the fresh- and sea water masses and salinity may influence the concentration of dissolved arsenic in 

estuaries and continental shelves. For example, a linear increase in total arsenic concentrations, ranging 

from 0.13 µg L-1 in freshwaters to 1.8 µg L-1 in offshore waters, with the increase in salinity has been 

reported in Krka Estuary, Yugoslavia (Seyler and Martin, 1991). Bioactivities of aquatic organisms 

(e.g., phytoplankton and bacteria) also influence arsenic speciation and concentration in estuarine 
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waters. Depletion of phosphate concentrations in biologically productive surface waters is related to the 

decrease in AsV concentrations in oxic estuarine waters, and the AsV profile showed a slight increase 

with depth, while AsIII and DMAA(III+V) maxima were observed in biologically productive surface 

waters (Hasegawa, 1996). Thermal stratification influences arsenic distributions in estuarine water. For 

example, Abdullah et al. (1995) found that arsenic distributions in Vestfjord estuary in Norway were 

fairly uniform in the water column ranging between 0.75 and 1.05 µg L-1, while total arsenic 

concentrations in Bunnefjord estuary were lower in surface water (0.52-0.75 µg L-1), which increased 

to 1.04-1.20 µg L-1 in midwater, and 1.5-1.9 µg L-1 at 100 m depth. 

 

3. Determination of arsenic species in biota 

3.1. Arsenic speciation and toxicity 

Although iAs is generally more toxic than organoarsenic species, toxicity of iAs species for 

aquatic organisms remains contentious. With many exceptions, marine phytoplankton are more 

sensitive to AsIII, while freshwater phytoplankton are highly sensitive to AsV (Knauer et al., 1999; 

Yamaoka et al., 1999; Levy et al., 2005). For example, the marine phytoplankton Dunaliella sp. and 

Polyphysa peniculus are more sensitive to AsV than AsIII (Cullen et al., 1994; Takimura et al., 1996). 

Pawlik-Skowronska et al. (2004) reported that AsV and AsIII exerts equal toxicity to freshwater 

phytoplankton Stichococcus bacillaris at pH 8.2 with phosphate levels between 0.03 and 0.3 mg L−1. 

They also reported that the toxicity of AsV to the phytoplankton is higher than AsIII at lower pH. Equal 

toxicity of AsIII and AsV was reported for freshwater phytoplankton Chlorella sp. at pH 7.6, while other 

reported AsV to be more toxic than AsIII for another freshwater phytoplankton Monoraphidium 

arcuatum at the same pH (Levy et al., 2005). Thus, it is evident that the toxicity of arsenic is highly 

dependent on its chemical speciation, and the determination of total arsenic in environmental and 
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biological samples is not adequate to assess the risks associated with consumption of arsenic-

containing foodstuffs. Therefore, much attention has been given to the elemental speciation of arsenic 

in environmental and biological samples. More than twenty arsenic species have been identified from 

environmental and biological samples (Gong et al., 2002), and a wider diversity of arsenic species were 

observed in organisms comprising the food chain of aquatic systems. The identification of these arsenic 

species in environmental and biological samples was possible with significant development of 

analytical techniques over the last couple of decades.  

 

3.2. Methods for extracting arsenic species from biological samples 

The extraction and clean-up procedures comprise critical steps for analyzing biological samples 

due to possible losses of analytes, changes of the species, or incomplete extraction of the arsenic 

compounds that may lead to poor or erroneous results (Gomez-Ariza et al., 2000). A number extraction 

procedure has been employed for the extraction of arsenic species from biological samples such as: 

enzymatic digestion (Branch et al., 1994; Lamble and Hill, 1996), methanol, methanol–water, 

methanol–water–chloroform mixtures (either with manual agitation, vortex agitation, or sonication) 

(Shibata and Morita, 1992; Thomas and Sniatecki, 1995; Ochsenkühn-Petropulu et al., 1997), HCl 

solubilization and microwave-assisted distillation (Munoz et al., 1999a; Munoz et al., 1999b), semi-

automated accelerated solvent extraction (Gallagher et al., 2001). The methanol-water method is 

commonly used to extract arsenic species from food (Gomez-Ariza et al., 2000; McSheehy et al., 2001; 

Suner et al., 2001), while the sequential extraction procedure has been employed to extract arsenic 

species in fish tissue (McKiernan et al., 1999). McKiernan et al. (1999) found that about 5% of arsenic 

is extracted by acetone in the fish tissue and the extraction efficiencies of arsenic in the polar fraction 

were 84.9–87% by using sonication. Chloroform is another solvent that has been used to remove the 
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lipid and fat soluble fractions of arsenic in fish and biological marine samples (Branch et al., 1994; 

Albertí et al., 1995). 

Solubilization with HCl and microwave-assisted distillation methods have been used for the 

extraction of total iAs from seafood products (Munoz et al., 1999a; Munoz et al., 1999b). These 

methods, however, are not suitable for the determination of AsIII and AsV species individually because 

AsV is converted to AsIII during the hydrolysis and extraction processes. A semi-automated accelerated 

solvent extraction method was also tested for the extraction of arsenic species in seaweed products 

(Gallagher et al., 2001). Results showed that the extraction efficiencies for ribbon kelp was 

approximately 72.6%, which were fairly independent of pressure, static time and particle size, and no 

significant changes of the arsenosugars were observed with this method except under high-temperature 

(Gallagher et al., 2001). 

 

3.3. Analytical methods for the determination of arsenic species in biological samples 

Arsenic in biological samples is mainly found in the form of organic species (Cullen and 

Reimer, 1989), Arsenobetaine (AsB), the main species of arsenic in a number of marine organisms 

such as fish, molluscs and crustaceans, was first isolated and identified in the Western rock lobster by 

Edmonds et al. (1977) using vapor generation atomic absorption spectrometry following digestion of 

the sample with a mixture of perchloric and nitric acids. After that, a number of analytical methods 

were developed and successfully applied to determine arsenic species in biological samples. 

The analytical approaches for the speciation of arsenic in biota samples generally involve the 

use of separation techniques coupled with a sensitive atomic detector. High performance liquid 

chromatography (HPLC) has been successfully coupled directly to inductively coupled plasma-optical 

emission spectrometry (ICP-OES) (Amran et al., 1997) and inductively coupled plasma-mass 
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spectrometry (ICP-MS) (Goessler et al., 1998). Other atomic detectors such as atomic absorption 

spectrometry (AAS) (Velez et al., 1996) and atomic fluorescence spectrometry (AFS) (Le et al., 1996) 

include hydride generation (HG) as an intermediate step, which converts the arsenic compounds into 

volatile arsines prior to their detection. However, organoarsenic compounds such as AsB and AsS do 

not form volatile hydrides, and the destruction of the organic part of the molecules before hydride 

generation is required. This has been achieved by the use of both on-line microwave digestion (Le et al., 

1994a) and photooxidation with UV radiation (Gomez-Ariza et al., 1998; Tsalev et al., 1998). Other 

approaches based on hydride generation of the arsines and their preconcentration using cold trapping 

(CT) provide very good sensitivity for measuring iAs, monomethylarsonic acid (MMAA) and 

dimethylarsinic acid (DMAA) (Hasegawa et al., 1994; Featherstone et al., 1998). However, HG-AAS-

CT does not allow for the determination of AsB and AsS, and therefore is not usually considered for 

arsenic speciation analysis in biota. 

Capillary electrophoresis (CE) technique has also been used to determine arsenic species in 

water and biological samples (Gosio, 1897; Murray et al., 2003; Meyer et al., 2007; Michalke et al., 

2007; Meyer et al., 2008). Van Holderbeke et a. (2007) and Michalke, and Schramel (2008) were 

successfully separated four anionic (AsIII, AsV, MMAA and DMAA) and two cationic forms (AsB and 

AsC) of arsenic in a single run by coupling CE on-line with inductively coupled plasma mass 

spectrometry (ICP-MS).  Others used  coupling CE to hydride generation atomic fluorescence 

spectrometry (Gosio, 1897) and CE-ICP-MS with a movable reduction bed hydride generation system 

(Michalke et al., 2007). Yeh et al. (2003) measured six arsenic compounds (AsIII, AsV, MMAA, 

DMAA, AsB, and AsC) in fish and oyster tissues by CE-inductively coupled plasma-mass 

spectrometry. 
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Anion-exchange chromatography-inductively coupled plasma mass spectrometry (AEC-ICP-

MS) was used for the quantification of (oxy)thioarsenate (As-S) species in sulfidic waters, and 

electrospraytandem mass spectrometry (ES-MS-MS) for the characterization of those As-S species 

(Raml et al., 2007; Wallschläger and Stadey, 2007). X-ray absorption spectroscopic (XAS) methods 

such as extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure 

(XANES) are being increasingly used for the analysis of arsenic species often in geological samples 

(Mass et al., 2001; Dopp et al., 2010), and also in arsenic-rich biological samples (Fricke et al., 2005; 

Pinyayev et al., 2011). Detail analytical methods for arsenic speciation in environmental samples have 

been adequately reviewed by Francesconi and Kuehnelt (2007).  

 

4. Arsenic concentrations and speciation in aquatic food chains 

AsV is the major and thermodynamically stable form in oxic conditions, and is observed mostly 

in marine waters while the unstable AsIII is transformed by marine phytoplankton and bacteria 

(Francesconi and Edmonds, 1996). The MMAA and DMAA are also found in marine waters, but these 

are significant species in highly productive freshwaters (Hasegawa et al., 2009; Hasegawa et al., 2010). 

Some key plant species of aquatic food chains also contain mostly iAs (Reuther, 1992; Milton and 

Johnson, 1999; Koch et al., 2000; Foster et al., 2005; Peng et al., 2008; Lafabrie et al., 2011) and little 

methylated species (Koch et al., 2000). The occurrence of unknown arsenic compounds (hidden As) in 

marine waters and freshwaters has also been reported by some researchers (De Bettencourt and 

Andreae, 1991; Bright et al., 1996; Hasegawa et al., 1999). 

In general about 85 to > 90% of arsenic found in edible portions of marine fish and shellfish are 

AsB, arsenocholine (AsC), and DMAA and approximately 10% are iAs species. For example, AsB 

concentrations in marine fish, elasmobranchs and teleosts, were about 3.1-44.3 and 0.1-166 mg kg-1 
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wet wt., respectively, which comprised about 94% of the total arsenic in those fishes. DMAA and 

TMAO concentrations in marine lobsters and prawns were 4.7-26 and 5.5-20.8 mg kg-1 wet wt., 

respectively, which represented up to 95% of the total arsenic in them (Table 4). However, less is 

known about the forms of arsenic in freshwater fish, but the available evidence suggests that AsB and 

DMAA are the main species in freshwater fishes (Slejkovec et al., 2004; Soeroes et al., 2005a). For 

example, Slejkovec et al. (2004) found that the major fraction of extractable arsenic [47.1±3.6 - 815±22 

mg kg-1 fresh weight (f. wt.); about 92–100%] is AsB in some species of salmonidae, while DMAA 

predominates (56.5±4.7 mg kg-1 f. wt.; about 75% of extractable arsenic) over AsB (7.4±2.6 mg kg-1 f. 

wt.; about 25% of extractable arsenic) in burbot (Lota lota). AsB is commonly known as “fish arsenic” 

since this species is mostly found in marine fishes. AsC (Lawrence et al., 1986; Benjamin et al., 1987) 

and arsenoribosides (AsR) (Kirby et al., 2002) have also been found in marine animals (fish, shellfish, 

lobsters, shrimp etc.). Arsenic speciation pattern in marine and freshwater fishes is almost identical, 

however, few studies reported iAs as the predominate species over orgAs (AsB, AsC) in freshwater 

fishes (Henry, 2003). 

Lipid soluble arsenicals are the major species in marine macroalgae (Morita and Shibata, 1990), 

and about 16 AsS (four are most common) have been identified from marine macroalgae. Thomson et 

al. (2007) reported that total arsenic concentrations varied between classes of algae, and significant 

differences between algal classes and habitats were found for the proportion of arsenic species. Green 

algae have a higher proportion of lipid soluble arsenic (19–44%) than red inter-tidal (5–34%) or 

estuarine algae (10–24%) (Thomson et al., 2007). However, Vivian et al. (1997) reported that the 

concentrations of arsenic compounds in freshwater macroalgae appear to  have similar patterns to those 

in marine macroalgae.  
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4.1. Marine food chain 

Since the first determination of arsenic in fish and other marine organisms by Thiergardt and by 

Gautier and Clausman (Lunde, 1977), there has been a series of investigations in which researchers 

have analyzed arsenic species in biological and non-biological samples in the marine environment. 

Arsenic concentrations in marine biological samples (flora and fauna) comprising the food chain are 

listed in Table 3. 

AsV and AsIII are the major inorganic forms of arsenic, and the bulk of the total dissolved 

arsenic is iAs in marine waters (Peterson and Carpenter, 1983). Although arsenic should exist almost 

entirely as AsV in oxygenated marine waters, it is found even under anoxic (reduced) waters (Cullen 

and Reimer, 1989). iAs being the major species in waters, they are also found in the biota of marine 

food chains. Phytoplankton is the most common primary producer in marine food chains, which uptake 

AsV from surrounding water and reduce it to thermodynamically unstable AsIII (Sanders et al., 1989); 

but this AsIII is readily oxidized to the more stable AsV form in oxic marine waters upon excretion 

(Francesconi and Edmonds, 1996). The reduction of AsV to AsIII by marine phytoplankton explains the 

observed AsIII/AsV ratios in marine waters. 

Arsenic concentration and speciation vary greatly in macroalgae and phytoplankton, the 

important primary producer in marine food chains. In general, brown algae contain much higher levels 

of total arsenic (up to 230 µg g-1 d. wt.) than green (up to 23.3 µg g-1 d. wt.) and red (up to 39 µg g-1 d. 

wt.) algae (Francesconi and Edmonds, 1993). Higher concentrations of total arsenic have also been 

reported for red macroalgae (4.3-24.7 µg g−1) than green macroalgae (8.0–11.0 µg g−1) and bluegreen 

algae (10.4–18.4 µg g−1) (Thomson et al., 2007). Andreae (1978) in investigating arsenic speciation in 

water and in some marine macroalgae from Southern California, USA, and observed large variations in 

the concentrations of iAs and methylated arsenic species in marine macroalgae. For example, 
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significantly higher concentrations of methylated arsenic species were found in Pelagophycus porra 

compared with iAs species, while the opposite trend was found in other macroalgae (Eisenia arborea, 

Agarum fimbriatum, Cystoseira osmundacea). High concentrations of iAs species in marine 

macroalgae and phytoplankton have also been reported by other researchers (Francesconi and Edmonds, 

1993; Francesconi and Edmonds, 1996). Edmonds et al. (1987) measured substantial amounts of AsV 

(≥ 20% of total water soluble arsenic) in Japanese edible seaweed Hizikia fusiforme. Senders (1979a) 

observed significant variations in total arsenic concentrations in marine macroalgae, ranging from an 

average of 10.3 μg g−1 in the Phaeophyceae to 1.54 μg g−1 in the Chlorophyceae and 1.43 μg g−1 in the 

Rhodophyceae. The chemical speciation in these marine macroalgae revealed that an average of 22% 

of the total arsenic in the Phaeophyceae was iAs species while that in the Chlorophyceae and 

Rhodophyceae it was about 45%.  

The large variations in the concentrations of iAs and methylarsenic species in marine 

phytoplankton were due to the biotransformation of iAs species to methylated species within the 

phytoplankton cell. The variations in the occurrence of inorganic and methylated species may also be 

dependent to the phytoplankton species because of their different biotransformation efficiencies. After 

being taken up by marine phytoplankton from the surrounding water, AsV is incorporated into an array 

of carbohydrate compounds and is biosynthesized to organoarsenicals (Francesconi and Edmonds, 

1993). According to Kaise et al. (1997), most of  the orgAs in marine phytoplankton are AsS, and these 

species are the precursors in the metabolic pathway to AsB and AsC (Hansen et al., 2003). Marine 

algae can hold 1000 times higher arsenic concentration than that in the surrounding water (Sanders and 

Windom, 1980), which may contribute to the trophic transfer of arsenic to higher levels of the marine 

food chain thus posing a real threat to human health. 



15 

 

Fish are the most important consumers in marine food chain. Arsenic is mainly accumulated 

into marine animals from water and lower trophic level organisms, which the animals feed on. Since 

AsV is taken up from water by marine phytoplankton, the most important food for animals of higher 

trophic level, and is converted largely to AsIII, there is a possibility of the existence of iAs species in 

marine animals. Peshut et al. (2008) reported that some marine species of fish and shellfish from the 

islands of American Samoa in the South Pacific contained iAs of about 0.5% (in some samples the 

concentrations ranged between 1 and 5%) of total arsenic. Some studies also found low levels of iAs in 

marine fish and animals (Maher et al., 1999; Kirby et al., 2002). Wrench (1979) investigated the 

bioaccumulation and speciation of arsenic in a three-step marine food chain consisting of an autotroph, 

a grazer, and a carnivore. Results suggested that iAs in marine food chains are derived from in vitro 

synthesis of the primary producer and are transferred through the food chain. Marine animals 

themselves could not form/biosynthesize iAs. Although AsB is the major species in marine animals 

such as fish, lobster, shrimp, and other crustaceans, it occurs in all trophic levels of the marine food 

chain.  AsB concentration also increased (or constituted a greater percentage of the total arsenic) with 

the increase in trophic levels (Francesconi and Edmonds, 1996) suggesting it does  biomagnify through  

the marine food chain. 

 

4.2. Freshwater food chain 

The bulk of the total dissolved arsenic species in freshwaters are also iAs as it is in marine 

waters (Seyler and Martin, 1989; Kuhn and Sigg, 1993). Arsenic concentrations in organisms of 

freshwater food chains are summarized in Table 4. Bioaccumulation of dissolved arsenic in aquatic 

organisms occurs through absorption through the gills or integument and/or consumption of prey. 

Arsenic concentrations in freshwaters are usually higher than that in marine waters because of 
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atmospheric deposition (Nriagu, 1983) and direct input from geothermal and anthropogenic sources as 

well as mine effluent (Bright et al., 1994; Bright et al., 1996; Romero et al., 2003). Therefore, 

freshwater organisms will potentially be exposed to higher arsenic concentrations compared with their 

marine counterparts, which may result in greater bioaccumulation of arsenic in freshwater food chains. 

As in marine waters, phytoplankton and macroalgae are also important primary producers in 

freshwater food chains. Arsenic content in freshwater algae is lower than that in marine algae, and most 

of the arsenic compounds in them are water-soluble (Kaise et al., 1988; Phillips, 1990). Lai et al. 

(1997) report that 93% of total arsenic in Nostoc sp. was oxo-arsenosugar-glycerol, while Koch et al. 

(1999) found AsV to be the dominant species. In accordance with the previous reports, AsS in the 

freshwater green alga Cladophora sp. is oxo-arsenosugar-glycerol (Schaeffer et al., 2006). Schaeffer et 

al. (2006) investigated arsenic species in biological samples from the Danube River in Hungary and 

found AsS as the dominant arsenic species in freshwater algae, whereas AsV was present only as a 

minor constituent. Kaise et al. (1997) studied the arsenic species in freshwater algae and observed that 

the content of water-soluble dimethylarsenic was significantly higher than other arsenic species. The 

concentrations of dimethylarsenic compounds in freshwater green algae (Clodophora glomerata) and 

diatoms were 0.39 and 0.10 µg g-1 f. wt. (85 to 81% of the total arsenic, respectively), while iAs 

content was 0.044 and 0.01 µg g-1 f. wt., respectively. The results indicates that the accumulated iAs in 

the green algae and diatoms were converted mainly to dimethylarsinic compounds in their tissue (Kaise 

et al., 1997). 

Arsenic enters the aquatic food chain through direct consumption of water or biota, and through 

non-dietary routes such as uptake through absorbing epithelia. Gills, skin, and digestive tract are 

potential sites of absorption of water soluble arsenic species for fishes. Skin may serve as a particularly 

important arsenic absorbing site for small fishes because of their high surface area to volume ratio of 
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their bodies. Although AsB is the main species of arsenic in marine fish, there have been contentious 

reports about arsenic speciation in freshwater food chains. Chemical speciation of arsenic in whole 

body tissue of consumers of the freshwater food chain varies greatly between species. Caddisfly larvae 

and pupae have been reported to contain mostly DMAA comprising about 86 and 56% of the total 

arsenic, respectively, while its content in the marsh snail was about 27% (Henry, 2003). The remainder 

of the total arsenic in the marsh snail was orgAs compounds (mainly AsB and AsC), and a little amount 

of iAs (Henry, 2003). 

Kaise et al. (1997) found that the major arsenic species in fishes from the Hayakawa River was 

iAs (93%) followed by trimethylarsenicals (7%). Other researchers reported AsB as the major arsenic 

species in freshwater fish (Shiomi et al., 1995; Slejkovec et al., 2004), while Zheng and Hintelmann 

(2004) found trace amounts of AsB, and Lawrence et al. (1986) did not detect AsB at all in freshwater 

fish. Koch et al. (2001) and Soeroes et al. (2005b) reported AsS as the predominant species in some 

freshwater fishes, while AsB was found in a small amount. Kaise et al. (1997) found that the content of 

trimethylarsenicals was higher than dimethylarsenicals in freshwater fishes and the marsh snail except 

for Tribolodon hakoensis.  

Burger et al. (2002) investigated arsenic bioaccumulation in 11 species of freshwater fishes 

from the Savannah River near the Savannah River Site, USA representing different trophic levels of the 

food chain. Arsenic concentrations in fish of lower trophic level was higher (0.32 µg g-1 f. wt. in the 

bowfin (Amina calva); a primary consumer) than that in fish of higher trophic level (0.03 µg g-1 f. wt. 

in the spotted sucker (Minytrema melanops); a top level consumer) (Table 4). On the basis of the above 

discussion, it can be concluded that arsenic speciation and distribution in freshwater organisms are 

more diverse and complicated than that in marine organisms. This might be due to greater spatial and 
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seasonal variability in arsenic mobilization in various studied catchments, contamination, and sources 

of contamination. 

 

5. Biosynthesis and biotransformation of arsenic species in aquatic food chain 

Arsenic is ubiquitous in living tissues and is oxidized, reduced, or otherwise metabolized. 

Background arsenic concentrations in living organisms are usually < 1 µg g-1 f. wt. in terrestrial flora 

and fauna, birds, and freshwater biota. Plants and animals collected from naturally arseniferous areas or 

near anthropogenic sources, however, may contain significantly elevated tissue residues of arsenic. 

Marine organisms, especially crustaceans, may contain more than 100 µg g-1 d. wt., usually as water 

soluble AsB that poses less risk to the organism or its consumer.  

It has been assumed that the occurence of AsB in this organism was the consequence of 

biological cycling of As in the marine environment. AsV, the stable and predominant species of arsenic 

in aquatic environment, is transformed to AsIII by phytoplankton, methylated to MMAA and DMAA by 

phytoplankton (Aurilio et al., 1994; Sohrin et al., 1997; Hasegawa et al., 2001; Hellweger and Lall, 

2004). Kuroiwa et al. (1994) studied the biotransformation of arsenic compounds (AsV, MMAA, 

DMAA, and AsB) in the freshwater shrimp (Neocaridina denticulata) and the killifish (Oryzias latipes). 

The shrimps and fishes were cultured in 1.5, 10, 40, and 150 μg mL−1 of AsV, MMAA, DMMA, and 

AsB, respectively. Results showed that N. denticulata accumulated arsenic from the aqueous phase 

containing 1.5 μg mL−1 of AsV, 10 μg mL−1 of MMAA, 30 μg mL−1 of DMAA or 150 μg mL-1 of AsB, 

and biotransformed, and excreted a part of these species. Both methylation and demethylation of the 

arsenicals were observed in vivo. The accumulation of methylated arsenic species relative to the total 

arsenic increased successively with the elevation in the trophic level. Only trace amounts of MMAA 

were detected in the shrimp and fish tested.  
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In the biotransformation pathway, phytoplankton actively absorb AsV because they mistake it for 

PO4
3-, and the similarities between AsV and PO4

3- break down inside the their cells and AsV produce 

toxicity to the organism (Hellweger and Lall, 2004). The biotransformation of arsenic species by 

phytoplankton is summarized in Figure 1. In the biotransformation pathway, phytoplankton reduce AsV 

to AsIII, and methylate to MMAA and DMAA. Some researchers speculated this process of arsenic 

biotransformation as a detoxification mechanism of phytoplankton (Knauer et al., 1999; Murray et al., 

2003), while others opposed this assumption, since AsIII and trivalent methylated species (DMAAIII and 

MMAAIII) are highly toxic (Petrick et al., 2000; Mass et al., 2001; Dopp et al., 2010). However, a study 

by Hasegawa et al. (Hasegawa et al., 2001) showed that freshwater phytoplankton (Closterium 

acicolare) convert AsV predominantly (~80%) into pentavalent methylated intermediate (DMAAV), 

which is less toxic, and the order of arsenic toxicity to organisms (most to least) is MMAAIII > AsIII > 

AsV > MMAAV = DMAAV (Mass et al., 2001). Therefore, biotransformation of iAs to methyl- and 

organoarsenicals followed by excretion is the main detoxification/defense mechanisms in 

phytoplankton. 

The phytoplankton biotransformation of AsV to AsIII, and subsequent methylation to DMAA, 

MMAA are correlated to the growth rate of the organisms and to the phosphorus nutrient status in the 

environment (Hellweger et al., 2003). At slow growth rates and under P-limited conditions, the 

phytoplankton take up more AsV, reduce it to AsIII, methylate it to MMAA and DMAA, and then 

excrete it as DMAA (Fig. 1). In contrast, at fast growth rates under P-sufficient conditions, AsV is 

biotransformed to both AsIII and DMAA, but the reduction to AsIII is faster than the methylation to 

DMAA (Hellweger and Lall, 2004). Besides the methylation of AsV to DMAA and MMAA by 

phytoplankton, demethylation of methylarsenicals by bacteria has also been reported. Maki et al. 

(2006a) isolated MMAA-mineralizing bacteria. The demethylation and oxidation of methylarsenicals 
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by bacteria have been studied in marine waters by Senders (1979b) and in freshwaters by Maki et al. 

(2005; 2006b).  

 

5.1. Inorganic arsenicals 

The main source of iAs in organisms in the aquatic food chains is water they live in. Both in 

marine and freshwater food chains, phytoplankton take up iAs and therefore, these compounds 

constitute a significant fraction in them (Cullen et al., 1994). AsV uptake by aquatic phytoplankton is 

supposed to occur unintentionally through the phosphate uptake mechanisms due to the chemical and 

structural similarities between arsenate and phosphate (Hellweger and Lall, 2004). The 

biotransformation and cycling of arsenic species within the aquatic components/organisms is shown in 

Figure 2. 

Biotransformation of iAs by trophic level 2 organisms such as fish, shellfish, crustaceans have 

not been evident. In general, for trophic level 2 organisms exposed to either AsV or AsIII under 

laboratory conditions, approximately 80% of their tissue burden remained in the iAs forms, while less 

than 20% was biomethylated (Henry, 2003). Suhendrayatna and Maeda (2001) studied 

bioaccumulation and biotransformation of AsIII by the waterflea (Daphnia magna) and red cherry 

shrimp (Neocaridina denticulate). Results showed that upon exposure to AsIII for 7 days under static 

conditions, D. magna contained about 63-75% AsIII and 24-36% AsV, with geometric means of 

approximately 70% and 28%, respectively. The relative fraction of DMAA measured in their whole 

body tissues was less than 2%. In contrast N. denticulate contained from 37-48% AsIII and 22-56% AsV, 

with geometric means of approximately 43% and 35%, respectively. The relative fraction of DMAA in 

N. denticulate was markedly higher (about 7-32%) than that in D. magna.  

Suhendrayatna and Maeda (2001) also studied the biotransformation of iAs within the 

freshwater food chain by feeding a diet of AsIII-dosed phytoplankton (Chlorella vulgaris) to 
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herbivorous grazers (D. magna and N. denticulata) and then the herbivores were fed to the carnivorous 

fish (Tilapia mossambica and Zacco platypus). Results showed that feeding a diet of AsIII-dosed C. 

vulgaris containing 83% AsV, 9% AsIII and 6% DMAA, tissue AsV and AsIII concentrations were 44% 

and 56% for D. magna, respectively, while these were 9% and 91% for N. denticulate, respectively. In 

both cases, regardless of exposure type (water or dietary phytoplankton), iAs accumulated and 

remained as the predominant species in these organisms, with relatively little indication of 

biomethylation. In other studies, Suhendrayatna et al. (2002a; 2002b) investigated bioaccumulation and 

biotransformation of AsV and AsIII by Japanese Medaka (Oryzuas latipes) and T. mossambica, and 

observed a similar trend to that of Suhendrayatna and Maeda (2001) for T. mossambica and Z. platypus. 

Similar observations were also reported for the red cherry shrimp exposed to AsV (Maeda et al., 1990b; 

Maeda et al., 1992a; Maeda et al., 1993). It is evident from these studies that AsIII and AsV were 

accumulated as the predominant species in freshwater organisms, and the concentrations of total 

arsenic in the organisms decreased by an order of magnitude for each trophic step up the food chain. 

Little methylation of arsenic in organisms occurred at each step in the food chain (Suhendrayatna and 

Maeda, 2001). 

 

5.2. Methylarsenicals 

Methylarsenicals in aquatic systems are produced by phytoplankton, bacteria, and microbial 

degradation of biological materials from iAs. Biomethylation of iAs to di- and trimethylated species 

has been observed in both marine and freshwater systems. Diatoms such as Skeletonema sp. and 

Rhizosolenia delicatula are also produce DMAA (Howard et al., 1995; Hasegawa et al., 2001). The 

cryptophyte, Chroomonas spp., has been reported to be associated with the production of MMAA in 

Chesapeake Bay (Sanders and Osman, 1985). The occurrence of methylated arsenic compounds in 
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marine waters has long been attributed to methylation by phytoplankton (Howard et al., 1995; 

Hasegawa et al., 2009) (Fig. 1). Anderson and Bruland (1991) dispute the direct production of DMAA 

by phytoplankton in field samples. Since photochemical degradation by sunlight contributes a little to 

the production of DMAA in lake waters, microbial degradation of complex orgAs compounds is 

assumed to be the possible reason for DMAA production too (Hasegawa et al., 1999). Thus, it is 

evident that AsV is taken up by phytoplankton in the euphotic surface waters and subsequently 

converted to AsIII, DMAA, and MMAA and released back to the water column (Howard et al., 1995; 

Sohrin et al., 1997; Hasegawa et al., 1999; Hasegawa et al., 2009). For freshwater phytoplankton, 

generally MMAAV, DMAAV and some trimethylated species were found (Murray et al., 2003). Other 

studies also revealed that freshwater phytoplankton (e.g., Closterium acicolare) biotransform iAs 

predominantly to pentavalent methylarsenicals (MMAAV and DMAAV) (Hasegawa et al., 2001), prior 

to release into the water.  

Methylarsenicals are the intermediate compounds in the biosynthesis of complex arsenosugars 

in marine phytoplankton. In this biosynthetic pathway, marine phytoplankton reduce iAs to 

methylarsenicals through stepwise oxidative methylation from S-adenosylmethionine to DMAAV, 

which is then reduced to DMAAIII (Murray et al., 2003). The production of methylarsenic species is 

related to the growth phage or phytoplankton and nutrient status. Hasegawa (2001) observed that the 

production of DMAAV was increased gradually, while trimethylarsenicals (DMAAIII and MMAAIII) 

remain relatively steady during the stationary phage of phytoplankton (Closterium acicolare) growth. 

The production of DMAAV is high when the ratio of phosphate and arsenate decreases in the culture 

medium indicating that DMAAV production is increased at P-replete conditions (Hasegawa et al., 2001; 

Hellweger and Lall, 2004). 
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In addition to the methylation by phytoplankton, anaerobic members of archaea and bacteria 

have also been reported to biotransform iAs species into both volatile (e.g., methylarsines) and 

nonvolatile (e.g., MMAA and DMAA) compounds (Bentle and Chasteen, 2002; Meyer et al., 2008). 

The biosynthesis of volatile arsenic compounds, which was subsequently identified as trimethylarsenic, 

by several ascomycetes was reported by Gosio (1897) for the first time. Recent studies have also reveal 

that several methanoarchaea e.g., Methanosphaera stadtmanaea DSM 3091T, Methanococcus vannielii 

DSM 1224T, Methanoplanus limicola DSM 2279T, Methanobacterium formicicum DSM 1535T 

(Michalke et al., 2007), Methanobrevibacter smithiia DSM 2374 (Meyer et al., 2008) and bacteria e.g., 

strain ASI-1 of the species Clostridium glycolicum (Meyer et al., 2007) produce volatile methylarsenic 

species. Maeda et al. (1992b) identified two arsenic-resistant bacteria (Klebsiella oxytoca and 

Xanthomonas sp.) that can bioaccumulate and biomethylate AsV. It has been revealed that 

microorganisms such as phytoplankton, archaea and bacteria have the ability to biotransform iAs 

species to methylarsenicals (MMAA and DMAA) and/or high order organoarsenic species such as 

arsenosugars. 

 

5.3. Thioarsenicals 

Thioarsenicals, structural analogues of oxyarsenicals in which sulfur replaces oxygen, are 

formed by exposure of oxyarsenicals to hydrogen sulfide (H2S) (Fricke et al., 2005). The existence of 

thioarsenicals in the environment has not been reported until the recent development of analytical 

techniques. Based on geochemical considerations, it was predicted that reduced (oxy)thioarsenic 

species should be produced from the reaction between arsenite and sulfide, and Wallschläger and 

Stadey (2007) have shown the evidence that four homologue (oxy)thioarsenates (AsO3S
3-, AsO2S2

3-, 

AsOS3
3- and AsS4

3-) can be formed in geochemical model reactions between AsIII and sulfide under 
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anoxic conditions. They hypothesized that these compounds appear to be major arsenic species in 

natural sulfidic waters. In a recent study, Wallschläger and London (2008) have confirmed the 

existence of four methylated thioarsenicals [monomethylmonothioarsenate, (CH3)AsO2S
2-; 

monomethyldithioarsenate, (CH3)AsOS2
2-; dimethylmonothioarsenate, (CH3)2AsOS-; and 

dimethyldithioarsenate, (CH3)2AsS2
-] in groundwater collected from an aquifer impacted by methylated 

arsenic pesticides.  

Biosynthesis of thioarsenicals, either from the inorganic forms or from the methylated forms, by 

aquatic microorganisms (e.g., phytoplankton, bacteria) has not been reported to date; however, it has 

been shown that some thioarsenicals are formed during the metabolism of arsenic oxyanions in animal 

tissues (Hansen et al., 2004; Suzuki et al., 2004). Thiolated arsenicals have also been detected in 

human’s gastrointestinal tissue and urine after exposure to iAs and DMAAV (Naranmandura et al., 

2006; Raml et al., 2007). Studies have also shown that anaerobic microbiota from mouse cecum or 

human feces can convert DMAAV into thiolated metabolites (e.g., dimethylthioarsenate; DMMTA) and 

trimethylated metabolites (trimethylarsine oxide; TMAO, and trimethylarsine sulfide; TMAS) 

(Kubachka et al., 2009). The prevalence of H2S-producing organisms in the microbiota and the 

relatively high pH of the distal gastrointestinal tract favour the production of thioarsenicals (Pinyayev 

et al., 2011).  

The toxicological relevance of thioarsenical compounds to organisms are still unclear, but there is some 

evidence that methylated thioarsenic compounds are significantly more toxic than their oxyanion 

counterparts (Styblo et al., 1997). Most studies have been dealing with the production of thioarsenicals 

in underground drinking water and animals (e.g., in gastrointestinal tissues of human) because of 

toxicological relevance of these compounds to human. Since anaerobic condition favour the production 

of the thioarsenic compounds (Kubachka et al., 2009), microorganisms in sulfide-rich anaerobic 



25 

 

aquatic sediments may play a crucial role in the production of thioarsenicals in the aquatic environment 

that may affect the health of aquatic organisms. But there is no report on biosynthesis and 

biotransformation of thioarsenicals by aquatic organisms. Since this review mainly focuses on the 

biotransformation of arsenic in aquatic systems, in-depth discussion on thioarsenic compounds in 

animals is not continued. 

 

5.4. Organoarsenicals 

5.4.1. Arsenosugars 

The presence of AsS in marine organisms was not confirmed until the isolation and 

identification of these species from the brown kelp (algae) Ecklonia radiata (Edmonds and Francesconi, 

1981). After that a total of 15 AsS has been identified from brown algae and other algal families 

(Francesconi and Edmonds, 1993). McSheehy et al. (2002) identified 15 orgAs species in Tridacna 

derasa kidney, eight of which were ribofuranosides. Dimethylarsinoylribosides mostly being the AsS 

in marine sources, trimethylarsonioribosides have also been identified and isolated from a marine 

brown algae (Francesconi and Edmonds, 1996). Two triaklylarsonioriboside diastereoisomers have also 

been isolated as a mixture from marine brown algae (Francesconi et al., 1991). Details of the synthesis 

and characterization of AsS are described elsewhere (Francesconi and Edmonds, 1996). 

Although the reason is unclear, it has been suggested that marine algae absorb AsV from marine 

waters and convert it to AsS (Edmonds and Francesconi, 2003). It is supposed that, like other plant 

species, marine algae readily absorb dissolved AsV through the phosphate uptake mechanism. Sanders 

and Windom (1980) demonstrated an antagonistic relationship between AsV and phosphate during 

uptake by phytoplankton while other workers reported independent uptake of AsV and phosphate in 

phytoplankton (Andreae and Klumpp, 1979) and macroalgae (Klumpp, 1980). Since AsV uptake into 
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the macroalgae Fucus spiralis and Ascophyllum nodosum was not inhibited by phosphate levels in the 

water (Klumpp and Peterson, 1979), a common mechanism for AsV and phosphate uptake into algae is 

suggested (Francesconi and Edmonds, 1993). So, arsenic uptake mechanisms are not identical for all 

organisms in marine food chains, and the mechanism differs between phytoplankton species. 

Whatever the uptake mechanisms of arsenic, marine phytoplankton convert AsV to AsIII and 

transform it, through several chemical reactions, into less toxic orgAs that dissolves in fats and 

membranes of the plants. Klumpp and Peterson (1981) reported that the macroalgae Fucus spiralis 

transforms AsV into one major lipid-type arsenical and 12 water-soluble orgAs compounds. A number 

of other studies have shown that marine algae produce AsS (Cooney and Benson, 1980; Edmonds and 

Francesconi, 1981; Edmonds et al., 1982; Edmonds and Francesconi, 1983; Francesconi et al., 1998) as 

by-products of their detoxification process (Edmonds and Francesconi, 1987; Francesconi and 

Edmonds, 1993), and is provably biosynthesized by various arsenic methylation pathways (methylation 

and adenosylation) by microorganisms (Edmonds and Francesconi, 2003). The possible pathway for 

the methylation and adenosylation of arsenic to produce dimethylarsinoylribosides has been discussed 

in detail elsewhere (Francesconi and Edmonds, 1993; Edmonds and Francesconi, 2003), and the 

pathway was supported by the discovery of the intermediate dimethylarsinoyladenosine in the giant 

clam (Tridacna maxima) kidney (Francesconi et al., 1992). It is noted that AsS has not been identified 

outside the marine environment apart from their presence in the urine of humans who had eaten 

seafood (Le et al., 1994b). 

 

5.4.2. Arsenobetaine 

AsB has been reported mainly in marine animals. The biosynthesis of a number of AsB 

compounds in the marine and freshwater food chains has been reported in a number studies (Hanaoka 



27 

 

et al., 1995; Ochsenkühn-Petropulu et al., 1997; Goessler et al., 1998; Francesconi et al., 2000).  

Dimethylarsinylribosides and trimethylarsonioribosides have been assumed to be the precursors of AsB 

within the marine food chain (Francesconi and Edmonds, 1993; Edmonds and Francesconi, 2003). 

Several studies have shown that direct conversion of dimethylarsinylribosides to AsB is not possible in 

marine animals (Cooney and Benson, 1980; Edmonds and Francesconi, 1981) and in the marine food 

chain (Klumpp and Peterson, 1981). The conversion of dimethylarsinylribosides to AsB requires 

cleavage of the C3-C4 bond of the ribose ring which might occur in marine sediments with subsequent 

oxidation at C4 and reduction and further methylation of arsenic (Francesconi and Edmonds, 1993). 

There are a number of reports of AsB coexisting with dimethylarsinoylribosides in marine animals, but 

it is unclear whether they were biosynthetically connected or accumulated independently (Edmonds 

and Francesconi, 1998). However, the metabolism of dimethylarsinoylribosides in Tridacna derasa 

kidney suggests that it might be at least one pathway of the biosynthesis of the ubiquitous AsB 

(McSheehy et al., 2002). AsS contained therein were degraded by successive oxidation and 

decarboxilation to yield dimethylarsinoylacetic acid which only requires methylation to be converted to 

AsB (Edmonds and Francesconi, 2003). 

 

6. Bioavailability and bioaccumulation of arsenic in aquatic food chains 

6.1. Bioavailability 

It has been argued that, because the bioavailability of arsenic varies with environmental 

matrices, a single default value is not recommended for risk assessment in all environmental settings. 

Many studies on the toxicity of heavy metals have shown that health risks to humans or animals do not 

always correlate with the external exposure dose of the metals. This is because virtually all risk 

estimates ignore the bioavailability component in the assessment process.  
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Bioavailability represents the percentage of the external dose that reaches the systemic 

circulation of the organism, that is the fraction of the external dose absorbed (Caussy, 2003). 

Bioavailability of arsenic is generally expressed in absolute or relative terms. Absolute bioavailability 

is the function or percentage of the absorbed dose to the administered dose (Candy et al., 1997) while 

the relative bioavailability is a measure of the extent of absorption between two arsenic compounds 

(Caussy, 2003). Relative bioavailability is important for environmental studies. Bioavailability is 

usually determined by dosing an experimental organism with various concentrations of arsenic and 

measuring the response. The key determinants of bioavailability are the ability of arsenic to be released 

from its environmental matrices, the chemical species and molecular structure, and complex interaction 

of the host and chemical factors. These factors include reactivity, solubility, and ability to form organic 

metal complexes, oxidation state and physical forms (Caussy, 2003).  

 

6.2. Bioaccumulation 

The term “bioaccumulation” refers to the net accumulation of a chemical by an aquatic 

organism as a result of uptake from environmental sources. Aquatic organisms accumulate and retain 

certain chemicals when exposed to these chemicals through water, their diet, and other sources. The 

magnitude of bioaccumulation can vary widely depending on the chemicals and their properties. The 

biomagnification of chemicals, a process whereby chemical concentrations increase in aquatic 

organisms of each successive trophic level due to increasing dietary exposures (e.g. increasing 

concentrations from algae, to zooplankton, to forage fish, to predator fish), may also occur in aquatic 

food chains (Henry, 2003). 

Bioaccumulation of arsenic and/or its metabolites in some aquatic organisms such as algae and 

lower invertebrates that are consumed by predator fishes has been reported by a number of researchers 
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(Maeda et al., 1990a; Chen and Folt, 2000; Mason et al., 2000). Rooted aquatic macrophytes are 

presumed to have a function in arsenic toxicity because these plants are directly associated with 

sediments. Studies on aquatic macrophytes of lakes contaminated from gold mine effluent in the 

Northwest of Canada (Dushenko et al., 1995; Koch et al., 2000); Taupo Volcanic Zone, New Zealand 

(Robinson et al., 2006) and Waikato River system, North Island, New Zealand (Robinson et al., 1995b) 

showed that macrophytes tended to bioaccumulate more arsenic compared to other aquatic biota. This 

suggests that most of the arsenic occurs in a highly bioavailable form in the aquatic system and is a 

function of many conditions such as the environmental compartment it is in (water column, sediment 

pore water), sediment particle type and size, pH, and presence of other metals (Caussy, 2003). 

 

6.3. Bioaccumulation of arsenic in freshwater food chain 

Although arsenic bioaccumulation is obvious, its biomagnification in the aquatic food chain is 

not frequent (Henry, 2003). Arsenic biomagnification has been reported in fishes (Maher and Butler, 

1988) and gastropods (Goessler et al., 1997), but mainly as AsB, a rapidly eliminated and less toxic 

form of arsenic, which may pose less of a health risk to humans (Maher et al., 1999; Caussy, 2003). 

Despite the recent attention on arsenic uptake and accumulation in aquatic biota, much uncertainty still 

exists on the mechanisms and bioaccumulation potential of the various forms of arsenic in the 

environment. It has been reported that about 85 to > 90% of the total arsenic found in edible portions of 

marine fish and shellfish are orgAs (AsB and AsC) and DMA and approximately 10% is iAs (Goessler 

et al., 1997; Ochsenkühn-Petropulu et al., 1997; De Gieter et al., 2002). Less is known about the forms 

of arsenic in freshwater fish, but it is evident from field (Kaise et al., 1987) and laboratory (Maeda et 

al., 1990a; Maeda et al., 1990b; Maeda et al., 1992a; Maeda et al., 1993) studies that orgAs would be 

dominant. 
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6.4. Bioaccumulation factor (BAF) for arsenic in freshwater food chain 

The United States Environmental Protection Agency (USEPA) presented a methodology and 

guidelines for the estimation of Bioaccumulation factors (BAFs) for various contaminants to reflect the 

uptake of contaminants by aquatic organisms such as fishes, shellfish, etc. from all sources (e.g. foods, 

sediment, etc.) rather than just from the water column (USEPA, 2000). The BAF is the ratio of the 

concentration of a chemical in water to its concentration in commonly consumed aquatic organisms in 

a specified trophic level where both the organism and its food are exposed (USEPA, 2000; Henry, 

2003). The BAF for arsenic can be calculated as: 

.................................................................................
wAs

tAs

C

C
BAF   (Equ. 1) 

, where; tAsC  is the concentration of arsenic in wet tissue (whole organism or specific tissue) 

and wAsC  is the concentration of arsenic in water. 

Several attributes of the bioaccumulation process are important to understand and use BAF. The 

concept of bioaccumulation is broader than that of bioconcentration. Bioaccumulation refers to the 

uptake and retention of a chemical by an aquatic organism from all surrounding sources (e.g. water, 

food, sediment, etc.) while bioconcentration refers to uptake from water only (USEPA, 2000). There 

are two procedures for the measurement of BAF for inorganic and organometallic chemicals, and 

procedure 5 (one of the two procedures) is recommended for deriving BAFs for arsenic (Henry, 2003).  

The BAF for arsenic in organisms of aquatic trophic levels can be derived from available field 

data or can be predicted from acceptable laboratory-measured BCFs using the Equation 1. Henry 

(2003) derived BAFs for arsenic in trophic levels 2, 3, and 4 of freshwater and marine food chains from 

available field- and  laboratory-measured data. Spehar et al. (1980) estimated BCFs for four freshwater 
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invertebrate species and for rainbow trout exposed for 28-days to AsIII, AsV, DMA, or MMA. Results 

showed that stoneflies, snails, and daphnids accumulated greater amounts of arsenic than fish. Tissue 

arsenic concentrations in treated rainbow trout were generally the same as those in control fish while in 

stoneflies and snails they were generally higher. Total arsenic accumulation in stoneflies and snails 

exposed to 1,000 μg L-1 of arsenic did not appear to be greatly affected by the form of arsenic in water, 

although some animals exposed to inorganic arsenicals did exhibit higher tissue concentrations than 

that in the environment. Chen et al. (2000) studied the accumulation and fate of arsenic in large and 

small zooplankton from numerous lakes in the northeastern USA, and found that arsenic BAFs of small 

zooplankton and large phytoplankton were significantly higher (between 369 and 19,487) than those of 

larger zooplankton (between 154 and 2,748). Chen and Folt (2000) also studied the trophic transfer of 

arsenic in a metal-contaminated Upper Mystic Lake in NY, USA on a seasonal basis and observed that 

arsenic concentrations in small zooplankton reflected the fluctuation of arsenic concentrations in water 

while arsenic in larger zooplankton progressively increased, indicating the potentially greater influence 

of dietary arsenic on the larger size class organisms. 

Henry (2003) calculated arsenic BAFs for freshwater lotic organisms from field data of Mason 

et al (2000) and (1997). From the study of Mason et al. (2000), it was calculated that BAFs for 

herbivorous aquatic insects (trophic level-2 organisms) from Blacklick Run (2401–5619) were 

consistently higher than those from Harrington Creek Tributary (393–2543), western Maryland. Kaise 

et al (1997) investigated arsenic in water and biota samples from the Hayakawa River, Japan. BAFs 

were calculated on the basis of estimated concentration of dissolved arsenic in this river water and 

caddisfly larvae, caddisfly pupa, and marsh snails. Results showed that BAFs were 81, 9, and 7 for 

caddisfly larvae, caddisfly pupa, and marsh snails, respectively (Henry, 2003). 
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Chen et al. (2000) studied arsenic bioaccumulation in large phytoplankton, macro- and 

microzooplankton from a numbers of lakes around the northeastern United States. Results showed that 

arsenic BAFs for microzooplankton and large phytoplankton (369–19487) were significantly higher 

than those for macrozooplankton (154–2748) (Henry, 2003). In another study, Chen and Folt (2000) 

measured arsenic bioaccumulation in five different forage fish species: alewife, black crappie, bluegill 

sunfish, killifish, and yellow perch to investigate bioaccumulation and biodiminution (trend of 

decreased chemical concentration in tissues of organisms as trophic level increases) of arsenic in food 

chain of Upper Mystic Lake, NY. Results showed that arsenic burdens for all fishes in the lake were 30 

to 100 times lower than its burdens in zooplankton. Alewife and killifish (predominantly planktivor 

fish species) had higher burdens than those of other fish species. Two other studies (Baker and King, 

1994; Chen and Folt, 2000) also reported that the average arsenic burden for largemouth bass (trophic 

level 4 organism) was approximately 60 to 95 times lower than its burdens in zooplankton.  

Baker and King (1994) measured the total arsenic concentrations in water and fish from San 

Carlos Reservoir and Talkalai Lake, Arizona. From the estimated concentration of dissolved arsenic in 

the water of San Carlos Reservoir and in fish (whole body), the BAFs were calculated to be 30 for 

channel catfish and 15 for carp. The BAF for carp from Talkalai Lake was 30 (Henry, 2003). Skinner 

(1985) determined trace element concentrations in wastewater treatment basin-reared fishes to 

determine if fish consumption from those treatment basin posed any risk to human health. Henry 

(2003) calculated arsenic BAFs for fishes from reported arsenic concentrations in water and fish tissue. 

Since arsenic concentrations in most fish tissue were below the detection limit, BAF for carp from 

various basins were calculated to be between 2 and 71.  

In addition to forage fishes, Chen and Folt (2000) also measured arsenic concentrations in the 

whole body of largemouth bass from Upper Mystic Lake. The average arsenic burden in the bass was 
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approximately 0.36 µg g-1, and had arsenic BAF of 46. Baker and King (1994) also found a similar 

BAF value (45) for largemouth bass from Upper Gila River, Arizona (Henry, 2003). In a recent study, 

Culioli et al. (2009) investigated bioaccumulation and trophic transfer of arsenic in food chain of Presa 

and Bravona Rivers in Corsica, France. They determined arsenic in a wide range of bryophytes, benthic 

macroinvertebrates, and fishes of the rivers and calculated BAFs for the organisms. Arsenic 

concentrations in waters of Presa and Bravona Rivers were about 18.2–2330.8 µg L-1 and 7.4–313.7 8 

µg L-1, respectively. Results showed that BAFs for benthic macroinvertebrates ranged between 10 and 

827 from Presa River. Culioli et al. (2009) also reported arsenic diminish at the higher trophic level of 

the food chain in Presa and Bravona Rivers. A number of other studies also showed that the fish 

species of lower trophic level (alewife, killifish) had higher BAFs than those species of higher trophic 

level (perch, crappie, catfish, carp, sunfishes) (Skinner, 1985; Chen and Folt, 2000).  

 

6.5. Bioaccumulation of arsenic in marine food chain 

Marine organisms have been reported to bioaccumulate high concentrations of arsenic 

(Francesconi and Edmonds, 1996). Kirby et al. (2002) measured arsenic concentrations and species in 

marine animals and epiphytic algae/fungi from a temperate mangrove ecosystem, NSW, Australia. 

They found that epiphytic algae/fungi associated with mangrove fine roots had higher arsenic 

concentrations than that on the main roots of mangrove plants. They reported that arsenic accumulation 

in various feeding groups of the mangrove ecosystem differed sugnificantly. The concentrations of 

arsenic in detritivores (8.5–55 µg g−1) were significantly higher than that of the major primary 

producers (0.3–1.5 µg g−1), herbivores (8.0–14.0 µg g−1) and omnivores (2–16.6 µg g−1). In addition, 

there was a significant difference in arsenic concentrations within the feeding group of omnivore 
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species. Zooplankton (16 µg g−1) had the highest arsenic concentration followed by oyster S. 

commercialis (now S. glomerata) (8.6 µg g−1) and palemonid shrimps (7.7 µg g−1). 

Foster et al. (2006) also studied arsenic accumulation in marine animals of saltmarsh 

ecosystems in Australia and found that the range of arsenic concentrations in gastropods, crabs, and 

amphipods were similar to those reported in marine/terrestrial herbivorous gastropods and crabs (Kirby 

et al., 2002), but lower than those normally found in carnivorous gastropods (Francesconi et al., 1998). 

The large variability in arsenic concentrations in gastropods and amphipods could be partially 

explained by the relationship between arsenic concentrations in S. quinqueflora, which is the primary 

source of detritus (food) for the gastropods and amphipods in the saltmarsh ecosystems (Foster et al., 

2006). Thus, arsenic accumulation in marine animals cannot be attributed to their position in the food 

web or feeding mode, but is likely to be related to their dietary intake and ability to assimilate, 

metabolize, and retain arsenic species inside their body (Kirby et al., 2002). 

Goessler et al. (1997) investigated arsenic bioaccumulation in a tree-organism food chain 

(seaweed (Hormosira banksii), gastropod (Austrocochlea constricta), and gastropod (Morula 

marginalba)) within a rock pool at Rosedale, NSW, Australia. They found that total arsenic 

concentration in the seaweed (H. banksii) (primary producer in the trophic level) was 27.2 µg g−1 d. wt. 

(mainly dimethylarsine oxide). Arsenic concentration in herbivorous gastropod A. constricta (trophic 

level 2 organism), which consumed the seaweed, was 74.2 µg g−1 d. wt., most of which was 

transformed to AsB by the gastropod. Finally, arsenic concentration in carnivorous gastropod M. 

marginalba (trophic level 3 organism), which ate A. constricta, was 233 µg g−1 d. wt. The results reveal 

arsenic biomagnification in the aquatic food chain although some researchers disagree with this finding. 

Bioaccumulation of arsenic from water and sediments in different species of molluscs from a 

coastal area in Taiwan was investigated by Hung et al. (2001). Different size specimens of molluscs 



35 

 

were collected along the western coast of Taiwan over 1994–1998. Results showed that the 

bioaccumulation of arsenic in Perna viridis (29.1 µg g-1) was higher than that in Littoraria scabra (22.3 

µg g-1). The bioaccumulation of arsenic in 13 finfish species and three crustacean species from the 

Arabian Gulf have been reported by Attar et al. (1992). The range was 0.16–32.3 µg g-1 wet wt. for 

finfish, and averages of 15.8, 6.28, and 12.7 µg g-1 wet wt. for the prawn, crab, and lobster, respectively. 

Maher (1985b) investigated the distribution of arsenic in marine animals in relation to their diet. 

Results revealed that the ranges of arsenic concentrations were 20–60, 8–22, and 7–84 µg g-1 d. wt. in 

plankton, herbivores, and carnivores, respectively. Arsenic in marine animals was mainly of methanol-

water soluble and lipid soluble orgAs (70–98% of the total arsenic), and the relative proportion of each 

form depends not only on the animal species but also on their diet (Maher, 1985b). In another study, 

Maher and Clarke (1984) measured total arsenic concentrations in some selected macroalgae specimens 

from Stenhouse Bay, Yorke Peninsula, and offshore from Aldinga Beach, St. Vincent's Gulf, South 

Australia. They found that Phaeophyta contained elevated concentrations of arsenic (42.2–179 and 

26.3–65.3 µg g-1) compared to those of Rhodophyta (17.6–31.3 and 12.5–16.2 µg g-1) and those of 

Chlorophyta (6.3–16.3 and 9.9–10.8 µg g-1) from both areas.  

Marine organisms usually do not contain iAs or simple methylated arsenicals, but contain a 

variety of orgAs species. The main arsenic compounds in these organisms are AsB (animals) and 

arsenoribosides (macroalgae) (Morita and Shibata, 1990). Small amounts of tetramethylarsonium ion, 

phosphatidylarsenocholine, AsC, and trimethylarsoniopropionate are also found in them (Francesconi 

et al., 2000; Kirby et al., 2002). Kirby et al. (2002) reported that most marine animal tissues, collected 

from a mangrove ecosystem, NSW, Australia, contained large percentages of AsB (28 – 81%) followed 

by glycerol arsenoribose (1–23%) arsenoriboside in the digestive tissues of two crab species (13–23%), 

trimethylarsoniopropionate (1–8%), tetramethylarsonium ion (1–7%), sulfate arsenoribose (2–13%) 
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and trace amounts of AsC (<1%), trimethylarsine oxide (TMAO) (<1%), DMAA (<2%), phosphate 

arsenoribose (<2%), arsenate (<1%), and sulfonate arsenoribose (<3%). They did not find 

methylarsonic acid in any tissues of these animals although unknown cationic arsenic compounds (1–

2%) and three anionic arsenic compounds (1–17%) were measured in some of the animals’ tissues. 

 

6.6. Bioaccumulation factor (BAF) for arsenic in marine food chain 

Bioaccumulation of arsenic in marine organisms can occur from the water, from suspended 

particles, from sediments, and through food chains. The accumulation rate depends not only on the 

availability of this metalloid, but also on biological, chemical and environmental factors. Arsenic 

speciation, biological activities, phytoplankton density, water temperature, pH, concentrations of other 

nutrients, especially iron, aluminum and phosphorus, dissolved oxygen, and seasonal variation 

influence the bioavailability and bioaccumulation of arsenic in the marine food chain (Sohrin et al., 

1997; Jain and Ali, 2000; Hellweger and Lall, 2004; Price and Pichler, 2005; Hasegawa et al., 2009; 

Casado-Martinez et al., 2010; Hasegawa et al., 2010). The BAF for arsenic in marine food chain may 

also be influenced by these factors since BAF is calculated from its concentration in organisms and 

water. Both field and laboratory studies have been performed to determine bioaccumulation of arsenic 

in marine food chain, however, results of field investigations may produce more reliable BAF for the 

metalloid because the biological, chemical and environmental factors, which influence arsenic 

bioavailability and bioaccumulation, were not modified in the field. The BAF for arsenic in marine 

food chains, presented in this review, have been calculated from available data on arsenic 

bioaccumulation in organisms and its concentrations in water. 

Giusti and Zhang (2002) investigated trace element distribution in sediments, marine water and 

mussel Mytilus galloprovincialis from four sites of the Venetian Lagoon around the Island of Murano, 



37 

 

Italy. Arsenic concentrations were measured between 12–18 µg g-1 d. wt. with a mean of 14.6 µg g-1 d. 

wt. in soft tissue of M. galloprovincialis, and between 0.4–2.7 µg g-1 d. wt. in the shells of the animals. 

Dissolved arsenic in water from the corresponding sites ranged between 1–4.7 µg L-1 with a mean of 

2.4 µg L-1. The calculated BAF for arsenic in M. galloprovincialis was between 383 and 12000. In a 

recent study, Valette-Silver et al. (1999) investigated the arsenic concentrations in bivalve (oysters and 

mussels) samples collected from the southeastern coasts of the USA, from North Carolina to the 

Florida panhandle. Results showed that the BAFs for arsenic in oysters and mussels collected from the 

mouth of the Miami River, Biscayne Bay were 8382 and 5303, respectively (Henry, 2003). 

 

Conclusion 

Bioaccumulation is obvious in aquatic food chains. Aquatic organisms accumulate arsenic 

mainly as inorganic forms, and some of the organisms such as phytoplankton, bacteria, etc. transform 

them into methylated and organic forms. The biotransformation of toxic iAs species into less toxic 

MMAAV, DMAAV, and orgAs species was supposed to be the detoxification mechanism of these 

organisms. Thus, aquatic organisms play important roles in arsenic speciation and cycling in marine- 

and freshwater environments. Although bioaccumulation of arsenic in aquatic organisms is apparent, it 

may pose less effect to health of the organisms because of their ability to metabolize this metalloid.  

Besides bioaccumulation, biomagnification is unusual in aquatic food chains. With some 

exceptions, most of the studies reveal that arsenic concentrations decrease with the increase of trophic 

level in both marine- and freshwater food chains. Dietary exposure to arsenic from aquatic foods would 

not be a serious problem for humans due to its biodiminution and biotransformation to less toxic orgAs 

species. But aquatic foods would contribute to the total dietary intake of arsenic by humans in addition 

to other sources such as drinking water, rice, vegetables etc. in which iAs species are dominant. 
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Previous studies mainly focused on arsenic speciation, bioaccumulation, and biotransformation 

in the marine environment. Since large populations in South and South-East Asia consume 

considerable amounts of freshwater fishes and other foods in their daily diet, knowledge on arsenic 

speciation and bioaccumulation in freshwaters is important. In addition, more intensive studies on 

trophic transfer of arsenic in both marine- and freshwater food chains are necessary to understand and 

predict the real health hazard of this element for humans, especially in some  Asian countries were 

arsenic contamination is extensive. Unfortunately, little or no studies have been done on arsenic 

speciation, bioaccumulation and trophic transfer in freshwaters in this region.  
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Table 1: Chemical forms of arsenic found in aquatic systems 

 Name Abbreviation Formula/Structure organisms Reference 
Inorganic arsenicals     
Arsenious acid or arsenite AsIII As3+(OH)3 Fish, Gastropods, Crustacean, 

Carnivores, Herbivores, Saltmarsh 
plants, Marine algae, Diatom, 
seaweed 

(Edmonds et al., 1997; Goessler et al., 1997; 
Gallagher et al., 2001; Kirby et al., 2002; 
Rattanachongkiat et al., 2004; Foster et al., 
2006) 

Arsenic acid or arsenate AsV H3As5+O4 Fish, Gastropods, Crustacean, 
Carnivores, Herbivores, Saltmarsh 
plants, Marine algae, Diatom, 
seaweed 

(Goessler et al., 1997; Gallagher et al., 2001; 
Kirby et al., 2002; Rattanachongkiat et al., 
2004; Foster et al., 2006) 

     
Methylated arsenicals     
Monomethylarsonous acid MMAAIII CH3As(OH)2 Aquatic animals, Fish, Crustacean, 

Marine and freshwater algae 
(Ackley et al., 1999; Hasegawa et al., 2001; 
Rattanachongkiat et al., 2004) 

Dimethylarsinous acid DMAAIII (CH3)2AsOH Aquatic animals, Fish, Crustacean, 
Marine and freshwater algae 

(Andreae, 1978; Goessler et al., 1997; Kaise 
et al., 1997; Ackley et al., 1999; Gallagher et 
al., 2001; Hasegawa et al., 2001; 
Rattanachongkiat et al., 2004) 

Monomethylarsonic acid MMAAV AsO(OH)2CH3 Aquatic animals, Fish, Crustacean, 
Marine and freshwater algae, 
Seaweed 

(Goessler et al., 1997; Ackley et al., 1999; 
Gallagher et al., 2001; Hasegawa et al., 2001; 
Rattanachongkiat et al., 2004) 

Dimethylarsinic acid  DMAAV AsO(OH)(CH3)2 Aquatic animals, Fish, Crustacean, 
Marine and freshwater algae, 
Seaweed 

(Goessler et al., 1997; Kaise et al., 1997; 
Ackley et al., 1999; Hasegawa et al., 2001; 
Kirby et al., 2002; Rattanachongkiat et al., 
2004) 

Trimethylarsine acid TMAA (CH3) 3As Marine animals (Anderson and Bruland, 1991; Francesconi 
and Edmonds, 1996; Francesconi et al., 2000)

     
Thioarsenicals     
Monomethylmonothioarsenate MMMTAsV (CH3)AsO2S

2- Groundwater (Wallschläger and London, 2008) 

Monomethyldithioarsenate MMDTAsV (CH3)AsOS2
2- Groundwater (Wallschläger and London, 2008) 

Dimethylmonothioarsenate DMMTAV (CH3)2AsOS- Groundwater (Wallschläger and London, 2008) 
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Dimethyldithioarsenate DMDTAV (CH3)2AsS2
- Groundwater (Wallschläger and London, 2008) 

     
Organoarsenic compounds     
Arsenocholine AsC (CH3)3As+CH2CH2O Fish, Shellfish, Shrimp, Seafood, 

Lobster 
(Mürer et al., 1992) 

Arsenobetaine AsB (CH3)3As+CH2COO- Marine animals, Fish, Lobster, 
Shrimp, Crustacean, Gastropod, 
Seaweeds 

(Goessler et al., 1997; Goessler et al., 1998; 
Kirby et al., 2002; Edmonds and Francesconi, 
2003; Rattanachongkiat et al., 2004) 

     
Arsenosugars AsS    
Arsenoribosides   Marine animals (Kirby et al., 2002) 
Sulfate arsenoribose   Marine animals (Kirby et al., 2002) 
Sulfonate arsenoribose   Marine animals (Kirby et al., 2002) 
Phosphate arsenoribose   Marine animals (Kirby et al., 2002) 
Glycerol arsenoribose   Marine animals (Kirby et al., 2002) 
Dimethylarsinoylribosides 
 

  Marine algae, Shellfish 
 

(Larsen, 1995; Francesconi et al., 2000; 
Madsen et al., 2000; Edmonds and 
Francesconi, 2003) 

Trimethylarsonioribosides   Marine brown algae (Francesconi and Edmonds, 1996) 
Triaklylarsonioribosides   Marine brown algae (Madsen et al., 2000; Edmonds and 

Francesconi, 2003) 
Trimethylarsoniopropionate   Marine animals (Kirby et al., 2002) 
Tetramethylarsonium ion   Marine animals (Kirby et al., 2002) 
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Table 2: Arsenic concentrations in some major aquatic systems (rivers, lakes, estuaries and marine) 
 

Aquatic systems and Location Arsenic concentrations 
(average/range (µg L-1) 

References 

Rivers   
Dordogne, France 0.7 (Seyler and Martin, 1990) 
Po River, Italy 1.3 (Pettine et al., 1992; Pettine et al., 1997) 
Cordoba, Argentina 7-114 (Lerda and Prosperi, 1996) 
Madison and Missouri rivers, USA 44 (19-67), 10-370 (Robinson et al., 1995b; Nimick et al., 1998) 
Waikato, New Zealand 32 (28-36) (McLaren and Kim, 1995; Robinson et al., 1995b)
Ron Phibun, Thailand 218 (4.8-583) (Williams et al., 1996) 
Ashanti, Ghana 284 (<2-7900) (Smedley et al., 1996) 
Owens River, CA, USA 85-153 (Wilkie and Hering, 1998) 
Mole River, NSW, Australia 110-600 (up to 13900) (Ashley and Lottermoser, 1999) 
   
Lakes   
Moira Lake, Ontario, Canada 20.4 (22.0-47.0) (Azcue and Nriagu, 1995) 
Lake Biwa, Japan 2.2 (0.6-1.7) (Hasegawa et al., 2010) 
Mono Lake, California, USA 10000-20000 (Maest et al., 1992) 
   
Marine and Estuaries   
Vestfjord, Norway 0.7-1.0 (Abdullah et al., 1995) 
Bunnefjord, Norway 0.5-1.9 (Abdullah et al., 1995)
Saanich Inlet, B.C., Canada 1.2-2.5 (Peterson and Carpenter, 1983) 
Uranouchi Inlet, Japan 22.0-32.0 (Hasegawa, 1996)
Rhone Estuary, France 2.2 (1.1-3.8) (Seyler and Martin, 1990) 
Krka Estuary, Yugoslavia 0.1-1.8 (Seyler and Martin, 1991) 
Tamar Estuary, UK 2.7-8.8 (Howard et al., 1988) 
Schelde Estuary, Belgium 1.8-4.9 (Andreae and Andreae, 1989) 
Deep Pacific and Atlantic 1.0-1.8 (Cullen and Reimer, 1989) 
Coastal Malaysia 1.0 (0.7-1.8) (Yusof et al., 1994) 
Southeast coast, Spain 1.5 (0.5-3.7) (Navarro et al., 1993) 
Coastal Nakaminato, Japan 3.1 (Ishikawa et al., 1987) 
Southern coast, Australia 1.3 (1.1-1.6) (inorganic) (Maher, 1985a) 
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Table 3: Arsenic concentrations in organisms (flora and fauna) comprising the marine food chain 

Organisms Arsenic con. 
(mg kg-1) 

Trophic group 
(rank in the food 
chain, 1-5) 

Diet References 

Typical Taxa     
All taxa 0-2,739 d. wt.   (Neff, 1997) 
Algae 0.1-382 d. wt. Primary producer  (Neff, 1997) 
Seagrass 0.16-0.6 d. wt. Primary producer   (Neff, 1997) 
Zooplankton 0.2-24.4 d. wt. Primary producer   (Neff, 1997) 
Polychaetes 5-2739 d. wt. Consumer (1) Tiny aquatic animals and plants. (Neff, 1997) 
Crustaceans 0.1-270.5 d. wt. Consumer (1) Insects, algae, worms, molluscs and 

small fish. 
(Neff, 1997) 

Bivalves 0.6-214 d. wt. Consumer (1) Microorganisms suspended in the water. (Neff, 1997) 
Snails 8.0-533 d. wt. Consumer (1) Plant and vegetation. (Neff, 1997) 
Cephalopods 4.0-49.5 d. wt. Consumer (2) Carnivores (Neff, 1997) 
Fish 0.05-449.5 d. wt. Consumer (1) 

Consumer (2) 
Consumer (3, 4, 5) 

Phytoplankton, plant, algae, small fish. (Neff, 1997) 

Marine mammals 0.05-0.9 d. wt. Consumer (3, 4, 5) Fish, squid, seals, shellfish, other 
mammals. 

(Neff, 1997) 

     
Plants     
Algae     

Laminaria japonica 43.2 d. wt. Primary producer   (Hulle et al., 2002) 
Porphyra crispata 31.0 d. wt. Primary producer   (Hulle et al., 2002) 
Eucheuma denticulatum 5.6 d. wt. Primary producer   (Hulle et al., 2002) 
Fucus vesiculosus up to 40 d. wt. Primary producer   (Stoeppler et al., 1986) 
Phacelocarpus adopus 26.2 d. wt. Primary producer   (Maher and Clarke, 1984) 
Dictymenia harveyana 17.6 d. wt. Primary producer   (Maher and Clarke, 1984) 
Gigartina sp. 20.1 d. wt. Primary producer   (Maher and Clarke, 1984) 
Coelarthrum muelleri 31.3 d. wt. Primary producer   (Maher and Clarke, 1984) 
Areschougia congesta 24.5 d. wt. Primary producer   (Maher and Clarke, 1984) 
Sargassum bracteolosum 62-125 d. wt. Primary producer   (Maher and Clarke, 1984) 
Ecklonia radiata 84.7 d. wt. Primary producer   (Maher and Clarke, 1984) 
Cystophora platylobium 179 d. wt. Primary producer   (Maher and Clarke, 1984) 
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Cystophora moniliformis 65.3-123 d. wt. Primary producer   (Maher and Clarke, 1984) 
Cystophora monilifera 35.5-42.2 d. wt. Primary producer   (Maher and Clarke, 1984) 
Cystophora racemosa 83.8 d. wt. Primary producer   (Maher and Clarke, 1984) 
Cystophora subfarcinata 37.3-54.9 d. wt. Primary producer   (Maher and Clarke, 1984) 
Cyst ophora siliquosa 61.3 d. wt. Primary producer   (Maher and Clarke, 1984) 
Ulva sp. 11.6 d. wt. Primary producer   (Maher and Clarke, 1984) 
Caulerpa cactoides 16.3 d. wt. Primary producer   (Maher and Clarke, 1984) 
Caulpera flexilis 12 d. wt. Primary producer   (Maher and Clarke, 1984) 
Caulerpa scalpellif ormis 13.4 d. wt. Primary producer  (Maher and Clarke, 1984) 
     

Seaweeds     
Sarcocornia quinqueflora 0.03-6.0 d. wt. Primary producer   (Foster et al., 2006) 
Sargassum fluitans 19.5 d. wt. Primary producer   (Eisler, 1988) 
Sargassum linearif olium 58.4 d. wt. Primary producer  (Maher and Clarke, 1984) 
Laminaria digitata 42.0-109.0 d. wt. Primary producer   (Lunde, 1977; NAS, 1977) 
Laminaria saccharina 45.0-52.5 d. wt. Primary producer   (NAS, 1977) 
Lobospira bicuspidata 29.4 d. wt. Primary producer  (Maher and Clarke, 1984) 
Dictyota dichotoma 26.3 d. wt. Primary producer  (Maher and Clarke, 1984) 
Halidrys siliquosa 26.0-30.0 d. wt. Primary producer   (NAS, 1977) 
Ecklonia radiata 49.6 d. wt. Primary producer  (Maher and Clarke, 1984) 
Fucus nodosus 45.0 d. wt. Primary producer   (NAS, 1977) 
Fucus serratus 28.0-67.5 d. wt. Primary producer   (NAS, 1977) 
Entarompha compressa 11.2 d. wt. Primary producer   (NAS, 1977) 
Piocamicum coccineum 7.5 d. wt. Primary producer   (NAS, 1977) 
Ulva latissima 6.0 d. wt. Primary producer   (NAS, 1977) 
Gigartina mammillosa 4.5-17.2 d. wt. Primary producer   (NAS, 1977) 
Laminaria hyperborea 142.0 d. wt. Primary producer   (Eisler, 1988) 
Pelvetia canaliculata 15.0-22.0 d. wt. Primary producer   (NAS, 1977) 
Ascophyllum nodosum 22.0-44.0 d. wt. Primary producer   (Lunde, 1977) 
     

Animals     
Talitrid amphipod 5.9-8.0 d. wt. Detritivores Debris. (Foster et al., 2006; Peshut et 

al., 2008) 
Oyster 

Saccostrea cuculluta 
1.8-40.0 f. wt. 
8.3-32.9 d. wt. 

Consumer (1) Planktons. (Lunde, 1977) 
(Peshut et al., 2008) 

Striostrea cf mytloides 9.5-38.4 d. wt. Consumer (1) Planktons. (Peshut et al., 2008) 
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Arc clams (Anadara sp.) 13.0-23.0 d. wt. Consumer (1) Planktons. (Morrison et al., 1997) 
Mullet (Mugilidae spp.) 0.3-1.9 f. wt. Consumer (1) Detritus, diatoms, algae. (Peshut et al., 2008) 

Gafarium sp. 3.4-80 d. wt. Consumer (1) Planktons. (Peshut et al., 2008) 
Asaphis violascens 1.3-5.9 f. wt. Consumer (1) Planktons, diatoms, algae. (Peshut et al., 2008) 

Carpetshark (Orectolobus ornatus) 9.0-31.0 d. wt. Consumer (1) Invertebrates. (Foster et al., 2006) 
Striped Surgeon (Acanthurus 
lineatus) 

0.3-0.6 f. wt. Consumer (1) Planktons, algae. (Peshut et al., 2008) 

Chamids (Chama brassica) 23.6-51.6 d. wt. Consumer (1) Planktons. (Denton et al., 1999) 
Sardine (Sardina sp.) 5.8 d. wt. Consumer (1) Phytoplankton and small zooplankton. (Rattanachongkiat et al., 2004) 
Spondylus sp. 33.0-195.0 d. wt. Consumer (1) Planktons. (Peshut et al., 2008) 
Chamids (Chama lazarus) 21.6-331 d. wt. Consumer (1) Phytoplankton, diatom. (Denton et al., 1999) 
Tigerprawn (Penaeus monodon) 11.0 d. wt. Consumer (1) Molluscs, crustaceans, polychaete 

worms. 
(Rattanachongkiat et al., 2004) 

Grooved tiger prawn (Penaeus 
semisulcatus) 

6.05-35.2 f. wt. Consumer (1) Molluscs, crustaceans, polychaete 
worms. 

(Attar et al., 1992) 

Shellfishes 1.1-30.0 f. wt. Consumer (1) Phytoplankton, Zooplankton. (FDA, 1993) 
White-spotted spinefoot (Siganus 
canaliculatus) 

0.25-0.77 f. wt. Consumer (1) Benthic algae and some seagrass (Attar et al., 1992) 

Golden toothless trevally 
(Gnathanodon speciousus) 

4.51-7.08 f. wt. Consumer (2) Small fishes. (Attar et al., 1992) 

Black-banded bream 
(Acanthopagrus bifasciatus) 

8.36-73.7 f. wt. Consumer (2) Molluscs (Attar et al., 1992) 

Blackspotted Rubberlips 
(Plectorhinchus gaterinus) 

7.54-14.4 f. wt. Consumer (2) Benthic invertebrates (Attar et al., 1992) 

Sharp-tooth snapper 
(Pristipomoides typus) 

2.38-4.44 f. wt. Consumer (2) Benthic invertebrates and fishes. (Attar et al., 1992) 

Spider Crab (Neosarmatium 
meinerti) 

9.0-16.0 d. wt. Consumer (2, 3) Small fishes. (Foster et al., 2006) 

Crab (Lupa pelagica) 4.21-10.7 f. wt. Consumer (2, 3) Small fishes. (Attar et al., 1992) 
Narrow-barred Spanish mackerel 
(Scomberomorus commerson) 

1.37-3.89 f. wt. Consumer (2, 3) Small fishes like anchovies, clupeids, 
carangids, squids and shrimps. 

(Attar et al., 1992) 

Cobia (Rachycentron canadus) 2.87-4.80 f. wt. Consumer (2, 3) Crustaceans, fish, and squids. (Attar et al., 1992) 
Brassy trevally (Caranx papuensis) 0.3-0.9 f. wt. Consumer (2, 3) Fishes. (Peshut et al., 2008) 

Orange-spotted trevally 
(Carangoides bajad) 

0.84-5.21 f. wt. Consumer (2, 3) Fishes. (Attar et al., 1992) 
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Greater amberjack (Seriola 
dumerili) 

< 0.25-1.02 f. wt. Consumer (2, 3) Fishes. (Attar et al., 1992) 

Torpedo scad (Megalaspis cordyla) 1.2-1.6 f. wt. Consumer (2, 3) Fish, squid and cuttlefish, shrimps, 
prawns, crabs etc. 

(Peshut et al., 2008) 

Squirrelfish (Sargocentron spp.) 2.1-60.0 f. wt. Consumer (2, 3) Small fish, invertebrates. (Peshut et al., 2008) 

Flathead locust lobster (Thenus 
orientalis) 

4.91-19.6 f. wt. Consumer (2, 3) Small fish, invertebrates. (Attar et al., 1992) 

Lobsters (Panulirus sp.) 19.8-98.2 f. wt. Consumer (2, 3) Fish, mollusks, worms, crustaceans. (Peshut et al., 2008) 
Spangled emperor (Lethrinus 
nebulosus ) 

1.03-3.58 f. wt. Consumer (2, 3) Echinoderms, mollusks, crustaceans, 
and some polychaetes and fish. 

(Attar et al., 1992) 

Halibut (Hippoglossus sp.) 2.5-10.0 d. wt. Consumer (3, 4, 5) Almost any animal they can fit into their 
mouths. 

(Lunde, 1977) 

Mackerel (Scomberomorus sp.) 2.0-6.6 d. wt. Consumer (3, 4, 5) Fishes (Lunde, 1977) 
Shark (Carcharhinus sp.) 1.9-5.9 d. wt. Consumer (4, 5) Fishes, crustaceans, squid, other aquatic 

animals. 
(Lunde, 1977) 
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Table 4: Arsenic concentrations in organisms (flora and fauna) comprising the freshwater food chain 

Organisms Arsenic con. 
(mg kg-1) 

Trophic group (rank 
in the food chain, 1-5) 

Diet References 

Plants     
Green alga     

 Clodophora glomerata 0.45 f. wt. Primary producer  (Kaise et al., 1997) 
Clodophora sp. 5.06-9.33 d. wt. Primary producer  (Schaeffer et al., 2006) 

Diatom 0.12 f. wt. Primary producer  (Kaise et al., 1997) 
Hot water algae 1058-8617 d. wt. Primary producer  (Robinson et al., 2006) 
Cold water algae 7.3-184.9 d. wt. Primary producer  (Robinson et al., 2006) 
Pondweed (Potamogeton sp.) 11-436 d. wt. Primary producer  (Eisler, 1988) 
Water-milfoil (Myriophyllum sp.) 5.42 d. wt. Primary producer   
Hornwort (Ceratophyllum demersum) 3.4 d. wt. Primary producer   
     
Animals     
Bowfin (Amina calva) 0.32 f. wt. Consumer (1) Piscivore. (Burger et al., 2002) 
Largemouth bass (Micropterus salmoides) 0.03 f. wt. 

0.05-0.22 f. wt. 
Consumer (1, 2) Piscivore, carnivorous (small 

fish, crayfish, worms, frogs, 
insects) 

(Eisler, 1988; Burger et 
al., 2002) 

Smallmouth bass (Micropterus dolomieui) 0.05-0.3 f. wt. Consumer (1, 2) Carnivorous (small fish, 
crayfish, worms, frogs, 
insects) 

(Eisler, 1988) 

Striped bass (Morone saxatillis) 0.2-0.7 f. wt. Consumer (1, 2) Carnivorous (small fish, 
crayfish, worms, frogs, insects, 
crustaceans) 

(Eisler, 1988) 

Coho salmon (Oncorhynchus kisutch) 0.07-0.5 f. wt. Consumer (1) Plankton and insects (in fresh 
water). 

(Eisler, 1988) 

Lake trout (Salvelinus namaycush) 0.06-0.7 f. wt. Consumer (1, 2) Plankton, whitefish, grayling, 
sticklebacks, and sculpins. 

(NAS, 1977) 

Rainbow trout (Salmo gairdneri) < 0.4 f. wt. Consumer (1, 2) Insects, flies, small mollusks, 
Fish eggs and baitfish. 

(NAS, 1977) 

Carp (Cyprinus carpio) 0.05-0.6 d. wt. Consumer (1, 2, 3, 4) Plants, insects, crayfish, dead 
fish, mollusks. 

(NAS, 1977; Wiener et 
al., 1984) 

Channel catfish (Ictalurus punctatus) 0.09 f. wt. 
0.05-0.3 f. wt. 

Consumer (2) Large invertebrates, piscivore. (Burger et al., 2002) 
(NAS, 1977) 



60 

 

Chain pickerel (Esox niger) 0.05 f. wt. Consumer (2) Large invertebrates, piscivore. (Burger et al., 2002) 

Northern pike (Esox lucius)  0.05-0.9 f. wt. Consumer (2, 3) Fish, Frogs, insects, leeches. (NAS, 1977) 
Yellow perch (Perca flavescens) 0.05 f. wt. 

< 0.16 f. wt. 
Consumer (3) Large invertebrates, small fish. (Burger et al., 2002) 

(Eisler, 1988) 
Black crappie (Pomoxis nigromaculatus) 0.04 f. wt. Consumer (3) Large invertebrates, small fish. (Burger et al., 2002) 

Green sunfish (Lepomis cyanellus) 19.7-64.2 d. wt.  Insects and small fish. (Eisler, 1988) 

American eel (Anguilla rostrata) 0.04 f. wt. Consumer (4) Detritus, invertebrates, 
piscivore. 

(Burger et al., 2002) 

Shellcracker (Lepomis microlophus) 0.06 f. wt. Consumer (5) Medium-large invertebrates. (Burger et al., 2002) 

Bluegill sunfish (Lepomis macrochirus) 0.05 f. wt. 
0.2-1.3 f. wt. 

Consumer (5) Medium-large invertebrates. (Burger et al., 2002) 
(Eisler, 1988) 

Red-breasted sunfish (Lepomis auritus) 0.07 f. wt. Consumer (5) Medium-large invertebrates. (Burger et al., 2002) 
Spotted sucker (Minytrema melanops) 0.03 f. wt. Consumer (6) Plant and invertebrates. (Burger et al., 2002) 
White sucker (Catostomus commersoni) 0.05-0.16 f. wt. Consumer (6) Plants and animals. (NAS, 1977) 
     
Some freshwater fishes    (Kaise et al., 1997) 

Plecoglossus altivelis 0.05 f. wt.   (Kaise et al., 1997) 
Pncorhynchus masou 0.15 f. wt.   (Kaise et al., 1997) 
Rhinogobius sp. 0.33 f. wt.   (Kaise et al., 1997) 
Phoxinus steindachneri 0.27 f. wt.   (Kaise et al., 1997) 
Tribolodon hakonensis 0.10-0.37 f. wt.   (Kaise et al., 1997) 

Prawn (Macrobranchiura nipponense) 0.82 f. wt.   (Kaise et al., 1997) 
Marsh snail (Semisulcospira libertina) 0.19 f. wt.   (Schaeffer et al., 2006) 
Sponge (Ephydatia fluviatilis) 8.07 d. wt.   (Schaeffer et al., 2006) 
Mussel (Unio pictorum) 9.31-11.60 d. wt.   (Schaeffer et al., 2006) 
White bream (Blicca bjoerkna) 0.48-1.58 d. wt.   (Schaeffer et al., 2006) 
Roach (Rutilus rutilus) 0.37-0.48 d. wt.   (Schaeffer et al., 2006) 
Razorfish (Pelecus cultratus) 0.42 d. wt.   (Schaeffer et al., 2006) 
Ide (Leuciscus idus) 0.25 d. wt.   (Schaeffer et al., 2006) 
Pikeperch (Stizostedion lucioperca) 0.26 d. wt.   (Schaeffer et al., 2006) 
Frog (Rana sp.) 2.52 d. wt.   (Schaeffer et al., 2006) 
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Fig. 1: Transformation of iAs species to methylated species by phytoplankton in the aquatic 

environment. Arrows represent the phosphate (P) condition in the medium (thick and thin 

arrows are for P-limited and P-replete conditions, respectively). 
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Fig. 2: The roles of microorganisms (e.g., phytoplankton and bacteria) in biotransformation and 

biogeochemical cycle of arsenic species in aquatic systems. Phytoplankton, the most important 

primary producers and food sources of higher trophic levels of the food chains in aquatic 

systems, bioaccumulate inorganic arsenicals (iAs), biotransform to methylarsenicals and 

complex organoarsenicals inside their cells, and then release back to the water. Arsenic release 

in water could occur from phytoplankton lysis mediated by viruses, bacteria and grazing by 

other planktonic microorganisms. Bacteria involve in the demineralization of methyl- and 

organo-arsenicals producing iAs species in the aquatic systems.  As illustrated here 

phytoplankton and bacteria play important roles in arsenic speciation and cycling in the aquatic 

systems. 

 


