圧縮荷重下におけるモードⅡ型き裂進展に関する破壊力学的考察

Mode II Crack Extension Behavior under Compressive Loads

鱸 洋一*・矢富盟祥** Yoichi SUZUKI and Chikayoshi YATOMI

*正会員 博士(工学) 金沢大学助手 工学部土木建設工学科(〒920-8667 金沢市小立野二丁目40-20) **正会員 Ph.D. 金沢大学教授 工学部土木建設工学科(同上)

In this paper, we examine the existence of conditions that the mode II crack extensions occur under compressive loads. It is important to elucidate the fracture criterions under compressive loads such as the explanation of the existence and the creation of long faults, landslide in slope ground and so on. We find, by using the maximum energy release rate criterion, that the mode II crack extensions occur by the shear stress with the necessary parallel compressive stresses for a crack surface. We also find that the mode II crack extensions do not occur by the well-known maximum stress criterion.

Key Words : mode II crack extension, maximum energy release rate criterion, maximum stress criterion

1. まえがき

土木工学の分野においても構造物の最終的な耐荷力 の決定には、き裂進展メカニズムの把握が重要である. そのき裂進展メカニズムについては鉄、セラミックと いった比較的均質性の高い材料に対する加工、設計に 破壊力学的手法を用いる事によりかなりの成果をおさ めている.それに対し、土木工学の分野で用いるコン クリート、岩盤、地盤などの材料においては(工学的 スケールでは)不均質性が強く、破壊力学の適用を大 きく遅らせている.

しかし、土木工学の分野においては、鋼、コンクリ ート構造物の破壊はもとより、地すべり、地震の活断 層といった自然を相手にした破壊現象の把握という意 味においても、今後ますます破壊力学の土木工学への 応用は重要であると考える.

破壊力学は、き裂が"いつ"、"どの方向に"進展す るかという破壊規準を解明することを目的とした、力 学分野においては比較的新しい学問であるが、コンピ ュータの進歩により計算力学、非線形破壊力学として 近年急速に進歩している.

コンピュータの進歩により破壊メカニズムの解明と いう意味で様々な問題(特に地球規模での大規模な問 題やミクロなメカニズムまで含めた問題など)が解く ことが可能となっているが,未だ圧縮荷重下の破壊規 準,3次元の破壊規準という難問が山積している.

コンクリート,岩盤,地盤材料における一軸圧縮荷 重下の(ないし多軸圧縮荷重下においても)破壊面は 図-1のようにモードII型で,供試体側面から見ると, ほとんどの場合,直線的ないし曲線的になめらかにモ ードⅡ型で進展している.一方,モルタルやアクリル ライト板などの材料にあらかじめ斜め初期き裂を挿入 しておくと,図-2のように,き裂面は最大引張り方 向に折れ曲がって,圧縮荷重が負荷されている方向に なめらかに進展するウィングクラック型進展をする. したがって圧縮荷重下で,どのような条件のもとで上 記のようなモードⅡ型のまま,き裂が進展するかを定 量的に把握するのは非常に興味ある,かつ,重要な問 題となる.

地震の断層生成メカニズム解明を意図して Melin は. どのような時,モードⅡ型のき裂進展するのか?と題 した論文¹⁾(1986)を報告しており,その中でき裂面 に対して等方圧縮応力とせん断応力の比によりモード Ⅱ型進展が起こる条件を議論している.また,Scholz らは長い直線的な断層(き裂)の生成メカニズムに対 して実験的な論文を報告²⁾(1988)しており,せん断 応力下では一般的に,き裂は折れ曲がり進展すること より,長いせん断的な不連続面の存在は矛盾であり, 単一き裂では説明できず,複数のき裂が連結する干渉 により説明できるとしている.

筆者らは既報³⁾において,無限板内に存在する直線 的初期き裂に多軸圧縮荷重が載荷されるという簡単な 問題設定をし,理論解析および数値解析を行う事より, ある条件の混合モード下において元のき裂と同方向に モードⅡ型のままで,き裂が進展する可能性を示唆す る結果を得た.

本論文においてはモードII型き裂進展に着目し、さらに解析を進め、それらモードII型き裂進展は圧縮荷 重下でなければ起こらないと考えられること、また、 どのような条件であれば起こるかということ、その際

に破壊規準として従来から有効であると考えられてい る最大周応力破壊規準と最大エネルギ解放率破壊規準 との関係などの新たに分かった知見について報告する.

2. 圧縮荷重下におけるき裂先端近傍の応力

図-3に示すような2次元での平面ひずみ圧縮荷 重下にある無限板内に存在するき裂を考える. 圧 縮荷重下にあるき裂は図-3のように無限から与 えられる応力と,き裂面上での反力および摩擦力 による応力の重ね合わせである.

その時の Westergaard の応力関数は次式のように示される⁴⁾.

$$\begin{cases} Z_{I} \\ Z_{II} \end{cases} = \frac{z}{\sqrt{z^{2} - a^{2}}} \begin{cases} \sigma_{y}^{\infty} - \sigma_{0} \\ \tau_{xy}^{\infty} - \tau_{0} \end{cases} + \begin{cases} \sigma_{0} \\ \tau_{0} \end{cases} + i \begin{cases} 0 \\ \frac{\sigma_{x}^{\infty} - \sigma_{y}^{\infty}}{2} \end{cases}$$
(1)

ここでaはき裂の半分の長さ(= $\ell/2$)であり、 σ_x° 、 σ_y° 、 τ_{xy}° (<0) はそれぞれ無限遠での、き裂面に

図-3 圧縮荷重下にある2次元無限板内のき裂 (なお矢印の向きはすべて負の向きである)

平行, 垂直, せん断方向の圧縮応力である. また, σ_0 , τ_0 はき裂面上の反力, 摩擦力である. よって,

$$\begin{aligned} \sigma_0 &= \sigma_y^{\infty} & \text{if } \sigma_y^{\infty} < 0 \\ \sigma_0 &= 0 & \text{if } \sigma_y^{\infty} \ge 0 \end{aligned}$$
 (2)

$$\begin{cases} \tau_{0} = \pm \mu \mid \sigma_{y}^{\infty} \mid & if \mid \tau_{xy}^{\infty} \mid \geq \mu \mid \sigma_{y}^{\infty} \mid \\ \tau_{0} = \tau_{xy}^{\infty} & if \mid \tau_{xy}^{\infty} \mid < \mu \mid \sigma_{y}^{\infty} \mid \end{cases}$$
(3)

と表せる.

一方, 物体内の応力は Westergaard の応力関数 を用いて

$$\begin{cases} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{cases} = \begin{cases} \operatorname{Re} Z_I - y \operatorname{Im} Z_I' \\ \operatorname{Re} Z_I + y \operatorname{Im} Z_I' \\ - y \operatorname{Re} Z_I' \end{cases} + \begin{cases} 2 \operatorname{Im} Z_{II} + y \operatorname{Re} Z_{II}' \\ - y \operatorname{Re} Z_{II}' \\ \operatorname{Re} Z_{II} - y \operatorname{Im} Z_{II}' \end{cases}$$
(4)

によって表わされる.よって図-4のような座標 を用いることによって応力は以下のように表せる.

$$\sigma_{x} = \frac{r_{0}}{\sqrt{r_{1}r_{2}}} (\tau_{xy}^{\infty} + \mu \mid \sigma_{y}^{\infty} \mid) \left[2\sin\left(\theta_{0} - \frac{\theta_{1} + \theta_{2}}{2}\right) - \frac{a^{2}}{r_{1}r_{2}}\sin\theta_{0}\cos\left\{\frac{3}{2}(\theta_{1} + \theta_{2})\right\} \right] + \sigma_{x}^{\infty}$$
(5a)

$$\sigma_{y} = \frac{r_{0}}{\sqrt{r_{1}r_{2}}} (\tau_{xy}^{\infty} + \mu \mid \sigma_{y}^{\infty} \mid) \frac{a^{2}}{r_{1}r_{2}} \sin\theta$$

$$\times \cos\left\{\frac{3}{2}(\theta_{1} + \theta_{2})\right\} + \sigma_{y}^{\infty}$$
(5b)

$$\tau_{xy} = \frac{r_{0}}{\sqrt{r_{1}r_{2}}} (\tau_{xy}^{\infty} + \mu \mid \sigma_{y}^{\infty} \mid) \left[\cos\left(\theta_{0} - \frac{\theta_{1} + \theta_{2}}{2}\right) - \frac{a^{2}}{r_{1}r_{2}} \sin\theta_{0} \sin\left\{\frac{3}{2}(\theta_{1} + \theta_{2})\right\} - \mu \mid \sigma_{y}^{\infty} \mid$$
(5c)

図 - 5 き裂先端近傍の極座標による応力

き裂右先端近傍の応力分布はき裂長さaに対してrの-1/2のオーダーの特異性を持つ項から始まる級数により展開でき,

$$\sigma_{ij}(r,\theta) = \sum_{n=-1}^{\infty} A_n (\sqrt{r/a})^n f_{ij,n}(\theta)$$
(6)

と表わすことができる.

この応力を図-5で表すような極座標系におけ る応力に変換し, rの-1/2のオーダーをもつ第1 項(特異項)は

$$\begin{cases} \sigma_{r} \\ \sigma_{\theta} \\ \tau_{r\theta} \end{cases} = \frac{K_{1}}{\sqrt{2\pi r}} \begin{cases} \frac{5}{4}\cos(\theta/2) - \frac{1}{4}\cos(3\theta/2) \\ \frac{3}{4}\cos(\theta/2) + \frac{1}{4}\cos(3\theta/2) \\ \frac{1}{4}\sin(\theta/2) + \frac{1}{4}\sin(3\theta/2) \end{cases}$$

$$+ \frac{K_{11}}{\sqrt{2\pi r}} \begin{cases} -\frac{5}{4}\sin(\theta/2) + \frac{3}{4}\sin(3\theta/2) \\ -\frac{3}{4}\sin(\theta/2) - \frac{3}{4}\sin(3\theta/2) \\ \frac{1}{4}\cos(\theta/2) + \frac{3}{4}\cos(3\theta/2) \end{cases}$$
(7)

となり、第2項(定数項)は

$$\begin{cases} \sigma_r \\ \sigma_\theta \\ \tau_{r\theta} \end{cases} = \begin{cases} \sigma_x^{\infty} \cos^2 \theta + \sigma_y^{\infty} \sin^2 \theta + 2\tau_{xy}^{\infty} \sin \theta \cos \theta \\ \sigma_x^{\infty} \sin^2 \theta + \sigma_y^{\infty} \cos^2 \theta - 2\tau_{xy}^{\infty} \sin \theta \cos \theta \\ (\sigma_y^{\infty} - \sigma_x^{\infty}) \sin \theta \cos \theta + \tau_{xy}^{\infty} (\cos^2 \theta - \sin^2 \theta) \end{cases}$$
(8)

と表せる. なお式(7)中のK₁, K₁は引張り荷重下

$$K_{1} = \sigma_{y}^{\infty} \sqrt{\pi a}, \quad K_{11} = \tau_{xy}^{\infty} \sqrt{\pi a}$$
(9)

であり, 圧縮荷重下では

$$K_1 = 0, \quad K_{11} = (\tau_{xy}^{\infty} + \mu | \sigma_y^{\infty} |) \sqrt{\pi a}$$
 (10)

である.

では

上式より、き裂先端近傍の応力は式(7)で近似されるが、 σ_{θ} などの大きさは K_1 、 K_1 に無関係な σ_{\star}^* の影響が大きくなり、式(8)の項(Tstress とも呼ばれている)が無視できなくなる.以後、式(7)と式(8)の和でもって σ_r 、 σ_{θ} 、 $\tau_{c\theta}$ を近似して議論する.

3. 圧縮荷重下でのき裂折れ曲がり瞬間時の エネルギ解放率の有限要素解析

前章で考えた、2次元で圧縮荷重を受ける無限板 内に存在する、き裂右先端でのエネルギ解放率を求 める. 圧縮荷重下での進展き裂のエネルギ解放率の 解析には、前報で筆者らが提案しているき裂面上で の接触条件を考慮できる有限要素法とE積分を用い た解析手法を用いる. この方法を用いると、圧縮荷重 下でのエネルギ解放率が理論解と比較することにより 非常に精度良く求まることが立証されている³⁾. また次 式で表される、き裂面上での摩擦力を考慮した補ひ ずみ型E積分公式は、経路独立に精度良くエネルギ 解放率が求まるだけでなく、折れ曲がり瞬間時のエネ ルギ解放率も求めることができる.

$$E(\ell) = \frac{\partial}{\partial \ell} \left[\int_{\Gamma \cap C^{\pm}} \left(\frac{1}{2} \mathbf{s} \cdot \mathbf{u} \right) ds \right] - \int_{\Gamma \cap C^{\pm}} \left(\frac{\partial \mathbf{s}}{\partial \ell} \cdot \mathbf{u} \right) ds \quad (11)$$

ここで ℓ はき裂長さ、 Γ はき裂先端を含む閉領域 の境界、 C^{\pm} は閉領域内のき裂上下面である.また sおよびuはそれぞれ、境界 Γ およびき裂上下面 C^{\pm} 上での表面カベクトルと変位ベクトルである. この式を数値解析して計算する場合、図-6に示 すような、き裂長さ ℓ の基本モデルと、き裂が微 小長さ $\Delta \ell$ 伸びたき裂進展モデルの2つのモデル の解析を行い、き裂長さによる偏微分項は2点差 分近似することにより求める.また経路積分は表 面力と変位をそれぞれ離散化した等価節点表面力 s, と節点変位u, を用い、積分経路上の全節点で和 をとることにより求めた.すなわち、式(11)の数 値解公式は次式のようになる.

$$E = \sum_{i=1}^{n} \left\{ \frac{\mathbf{s}_{i}(\ell + \Delta \ell) \cdot \mathbf{u}_{i}(\ell + \Delta \ell) - \mathbf{s}_{i}(\ell) \cdot \mathbf{u}_{i}(\ell)}{2\Delta \ell} - \frac{\mathbf{s}_{i}(\ell + \Delta \ell) - \mathbf{s}_{i}(\ell)}{\Delta \ell} \cdot \mathbf{u}_{i}(\ell) \right\}$$
(12)

図-6 基本モデルと、き裂進展モデル

ここでnは積分経路上の節点数であり、(ℓ)および ($\ell + \Delta \ell$)はそれぞれ基本モデル、き裂進展モデル の物理量であることを示している.

有限要素解析に用いたモデルを図-7に示す.用 いた要素は8節点四辺形アイソパラメトリック要 素と6節点三角形アイソパラメトリック要素で あり、き裂先端にはモードI型の特異性だけでな く、モードⅡ型、すなわちせん断変形時にも精度 良く特異性を表現できる特異要素⁵⁾⁶⁾を用いた. 基本モデルの節点数は920であり、き裂進展モデ ルは基本モデルのき裂先端近傍での節点を解除す ることによりモデル化しているため、節点数は2 つ増え922となる、要素数は基本モデル、き裂進 展モデルともに 332 である. き裂はモデル中央に 存在し、き裂長さℓは4.0cmに対して、縦80.0cm, 横 80.0cm で無限板を近似している. ヤング率Eは 68.6GPa, ポアソン比vは 0.3 とした. き裂進展 長さと、き裂長さの比 $\Delta \ell / \ell$ は、理論解のある問題 で幾つか試行解析し、0.0078とした、き裂先端近 傍においてき裂折れ曲がり進展角度γ(図‐6 参 照)が19種類変化できるように要素分割している. なお, き裂折れ曲がり角度 γ は, 元のき裂と同方 向を0度とし、反時計回りの方向を正としている. 積分経路については図-8に示したように、進展き裂先端 を囲むように計3とおり設定した. き裂右進展側先端を囲 む経路(図中一点鎖線)を経路1,き裂両先端を囲む経路 2、3(それぞれ図中点線、二点鎖線)とした. すべての

解析においてこれらの経路における経路独立性を 調べたところ,非常に精度良く経路独立性が成り 立っていたので,以後のエネルギ解放率の解析結 果は,すべて物体境界における経路3の結果を表 している.

4.最大周応力破壊規準と最大エネルギ解放 率破壊規準

断層の生成メカニズム解明への破壊力学の応用 や、コンクリートのせん断破壊メカニズムの解明 などの問題に対して破壊力学的手法を用いる際に モードII型き裂進展という言葉がしばしば用いら れている.それらの中には応力状態がモードIIの みの場合であるき裂進展開始の限界値という意味 合いから、進展開始後は元のき裂と同方向に進む 場合と折れ曲がって進む場合のいずれの場合もモ ードII型き裂進展という言葉で混在して用いられ ている.本論文では混乱を避けるためモードII型 き裂進展という言葉は進展開始後に元のき裂と同 方向に進む場合に限定することに注意したい.

き裂が進展開始後にどの方向に進展するかを議

図-9 純モードⅠ型と純モードⅡ型問題

- 論するための破壊規準として代表的なものに
- 最大周応力破壊規準 (Maximum Stress Criterion)
- 2. 最小ひずみエネルギ密度破壊規準
- (Minimum Strain Energy Density Criterion) 3. 局所対称破壊規準

(Criterion of Local Symmetry) $[k_{11} = 0$ 説]

4. 最大エネルギ解放率破壊規準

(Maximum Energy Release Rate Criterion)

などが挙げられる.

これらの内どれが有用であるかは現在でも議論され ており、どれが最も有効かはその考えられた物質によ って異なるものであろうが、き裂進展前の状態で簡単 に求まることもあり、1の最大周応力破壊規準が汎用 されている. この規準は、式(7)、(8)で表される周方 向応力が引張り側で最大になる方向に、き裂は進展開 始すると考える. 直感的に理解し易い破壊規準であり, 一般に材料は引張りに弱いため実験などにおいても良 くき裂進展方向を表しているとされる規準ではあるが、 き裂先端では理論上応力が無限大となるため、周応力 を測る点の距離に依存してしまう欠点がある. 4の最 大エネルギ解放率破壊規準は、Griffith⁷⁾のエネルギ解 放率の概念に始まり, エネルギ解放率が最大となる方 向にき裂は進展開始するという有用な規準として, Wu⁸⁾や Hayashi⁹⁾ らによって精力的な研究が行われ た.

本研究の方法によっても同様な議論が行えるか 簡単な境界値問題によって検証する.検証は図-9

図-10 純モード I 型応力状態下におけるき裂先端近 傍の応力分布

図-11 純モード I 型応力状態下におけるき裂折れ曲 がり角度とエネルギ解放率の関係

に示すような純粋なモードⅠのみの応力状態と純 粋なモードⅡのみの応力状態の境界値問題で行う. なお最大周応力破壊規準を検討する際の計算に使 用する,き裂先端からの距離rは,ことわらない 限り0.01cmを用いる.

図-10 は、式(7)、(8)を用いた純モード I 型の 引張り応力状態下における、き裂先端近傍での応 力である. 横軸はき裂先端近傍における角度 θ (図 -5参照)であり、元のき裂と同方向をゼロとし て反時計回りの方向に正として示してある. 縦軸 は極座標表示による応力であり、図中それぞれ、 口は σ_r 、〇は σ_θ 、 Δ は $\tau_{r\theta}$ である. 図中、周応力 σ_θ を見ると $\theta = 0$ 方向、すなわち元のき裂と同方向が 引張り最大であり、最大周応力規準に従うならば、 元のき裂と同方向に進展開始するという自明的な 結果が得られる.

図-11 は純モード I 型の応力状態下での,き裂折れ 曲がり瞬間時のエネルギ解放率を,E積分を用いた有 限要素解析により求めた結果である.横軸はき裂折れ 曲がり角度y(図-6参照),縦軸は無次元化した エネルギ解放率である.エネルギ解放率の無次元化は 元のき裂と同方向に進む場合のエネルギ解放率の理論 解,すなわち引張り荷重下においては

図-12 純モードⅡ型応力状態下におけるき裂先端近傍 の応力分布

図-13 純モードⅡ型応力状態下におけるき裂折れ曲 がり角度とエネルギ解放率の関係

$$G_{0} = \frac{\pi a}{\mathsf{E}'} \left\{ (\sigma_{y}^{\infty})^{2} + (\tau_{xy}^{\infty})^{2} \right\}$$
(11)

圧縮荷重下においては

$$G_{0} = \frac{\pi a}{\mathsf{E}'} (\tau_{xy}^{\omega} + \mu \mid \sigma_{y}^{\omega} \mid)^{2}$$
(12)

により無次元化する. なお, ここでE' はヤング率E, ポアソン比v を用いて次のように表される.

$$E' = \begin{cases} E (平面応力) \\ E/(1-\nu) (平面ひずみ) \end{cases}$$
 (13)

図-11より分かるようにエネルギ解放率は0度方向 に最大が表れており、最大エネルギ解放率破壊規準に 従うならば、この手法によっても元のき裂と同方向に 進展するという自明的な結果が得られる.

図-12 は純モード II 型の応力状態下における, き裂先端近傍での応力を表しており,図-13 は同 応力状態下でのき裂折れ曲がり角度とエネルギ解 放率の関係である.これらよりそれぞれの規準に 従うならばどちらも約 70 度方向に進展開始する ことが示されている.

よって、このような単一モードの境界値問題に おいては、最大周応力破壊規準と最大エネルギ解 放率破壊規準に差異は認められない事が分かる.

図-14 引張混合モード応力状態下におけるき裂折れ 曲がり角度とエネルギ解放率の関係;

 $\tau_{xy}^{\infty} = -1.0$, $\sigma_{x}^{\infty} = 0.0$, $\sigma_{y}^{\infty} = 0.0 \sim 3.0$.

図-15 引張混合モード応力状態下におけるき裂先端近 傍の応力分布; $\tau_{xy}^{\infty} = -1.0$, $\sigma_x^{\infty} = 0.0$, $\sigma_y^{\infty} = 3.0$.

次に引張り応力下での混合モード状態について 考えてみる.まず無限遠でのせん断応力τッを一定 にし、き裂面に垂直な方向の引張り応力 σ_{v}° をせん 断応力に比べて相対的に変化させる. $\tau_{w}^{\circ} = -1.0$ と し、 σ_{ν}° を0.0から3.0まで0.5おきに変化させ、そ れぞれの応力状態でエネルギ解放率の解析を行っ た結果が図-14である.ここで応力の単位は、す べてパスカル (Pa) である. この図から純粋なモ ードⅡの状態である□は、き裂折れ曲がり角度が 約 70 度付近でエネルギ解放率の最大値が表れて おり、垂直方向の引張り応力を大きくするに連れ てエネルギ解放率が最大値を示すき裂折れ曲がり 角度は元のき裂と同方向に近づいていく事が分か る. 図-15 は τ_{xy}^{∞} = -1.0, σ_{y}^{∞} = 3.0 の場合のき裂先 端近傍の応力であるが、図-14と比べることによ りこの応力状態では周応力引張り最大になる角度 とエネルギ解放率が最大になる角度はどちらも約

図-16 引張混合モード応力状態下におけるき裂折れ 曲がり角度とエネルギ解放率の関係;

図-17 引張混合モード応力状態下におけるき裂先端近 傍の応力分布; $\tau_{xy}^{\infty} = -1.0$, $\sigma_{x}^{\infty} = 3.0$, $\sigma_{y}^{\infty} = 0.0$.

30度で、ほぼ一致している事が分かる.

図-16 は $\tau_{rv}^{\circ} = -1.0$ とし、き裂面に平行な方向の引 張り応力σ % を0.0 から3.0 まで0.5 おきに変化させた 応力状態下での、き裂折れ曲がり角度とエネルギ解放 率の関係である. き裂面に平行な方向の引張り応力を 大きくすると、エネルギ解放率が最大となるき裂折れ 曲がり角度は約70度の付近で変化しないことが分かる. 図-17 は τ_{xy}^{∞} = -1.0, σ_{x}^{∞} = 3.0 の場合のき裂先端近 傍の応力であるが, 図−12の純モードⅡ型の場合 と比較すると絶対値の大きさは変化しているが, 応力分布はあまり変化していない事が分かる. 図 -16 と図-17 より、せん断応力とき裂面に平行 な方向の引張り応力がある混合モードの場合も, 周応力が引張り最大になる角度とエネルギ解放率 が最大になる角度は、ほぼ一致している事が分か り、最大エネルギ解放率破壊規準と最大周応力破 壊規準による進展開始方向の予測は、同じ結果を 得ることが分かる.

図-18 圧縮混合モード応力状態下におけるき裂れ地が り角度とエネルギ解放率の関係; $\tau_{xy}^{\circ} = -1.0$, $\sigma_{x}^{\circ} = 0.0$, $\sigma_{y}^{\circ} = 0.0 \sim -3.0$, $\mu = 0.0$.

次に無限遠でのせん断応力 $\tau_{x_n}^*$ を一定にし,き裂面に対し垂直な応力 $\sigma_{y_n}^*$,き裂面に対し平行な応力 $\sigma_{x_n}^*$ を圧縮側に相対的に大きくする圧縮混合モード応力状態を考える.

図-18 は τ_{xy}° = -1.0 とし, σ_{y}° を0.0 から -3.0 ま で0.5 おきに変化させた応力状態下での,き裂折れ 曲がり角度とエネルギ解放率の関係である.き裂 面に対して垂直な圧縮荷重が載荷された場合,き 裂面は閉じて接触するが,図-18 は摩擦係数 μ が 0.0 の場合である.図から分かるようにき裂面に 垂直な圧縮応力は大きさを変化させても,エネル ギ解放率の大きさや,最大値を示す角度にはあまり影 響を与えていない事が分かる.

図-19 はき裂面に対して垂直な圧縮応力,平行な圧縮応力の両方を等方的に与えた場合のエネル ギ解放率である.この場合,等方圧縮応力 ($\sigma_x^{\circ} = \sigma_y^{\circ}$)が,大きくなるにつれて最大である約 70 度方向のエネルギ解放率が小さくなって行き, $\tau_{xy}^{\circ} = -1.0$ に対して $\sigma_x^{\circ} = \sigma_y^{\circ} = -2.5$ となるところで相 対的に元のき裂と同方向のエネルギ解放率の方が大き くなっている事が分かる.したがって,最大エネルギ 解放率破壊規準に従うとすれば,き裂面に対してせん 断応力が一定で,等方圧縮応力がある値以下であると, き裂は図-2のようなウィングクラック型進展をし, 等方圧縮応力がある値以上になると図-1のようなモ ードII型進展となることを表している.

最大エネルギ解放率破壊規準に従うならば, せん断応力と等方圧縮応力が同時に作用する圧縮混 合モード応力状態下で, モードⅡ型き裂進展が起 こる状態が存在することを示唆する結果が得られ たが、さらに σ_x^* と σ_y^* のうち、どちらが主な要因 であるか調べるために、せん断応力を一定にして き裂面に平行な圧縮応力のみを変化させた応力状 態下でのき裂折れ曲がり角度とエネルギ解放率の 関係が図-20である. $\tau_{xy}^* = -1.0$ とし、 σ_x^* を0.0か ら-3.0 まで0.5 おきに変化させた応力状態を考え た. 図から分かるように $\tau_{xy}^* = -1.0$ に対して $\sigma_x^* = -3.0$ となったところで元のき裂と同方向の 角度のエネルギ解放率が大きくなった. これまで 折れ曲がりき裂に対する理論解は見つかっていな

図-19 圧縮混合モード応力状態下におけるき裂折れ 曲がり角度とエネルギ解放率の関係;

図-20 圧縮混合モード応力状態下におけるき裂折れ 曲がり角度とエネルギ解放率の関係; $\tau_{xy}^{\infty} = -1.0$, $\sigma_{x}^{\infty} = 0.0 \sim -3.0$, $\sigma_{y}^{\infty} = 0.0$, $\mu = 0.0$.

(d) r = 0.000001図-21 圧縮混合モード応力状態下におけるき裂先端近 傍の応力分布; $\tau_{xy}^{\omega} = -1.0$, $\sigma_{x}^{\omega} = -3.0$, $\sigma_{y}^{\omega} = 0.0$, $\mu = 0.0$.

図-22 圧縮混合モード応力状態下におけるき裂肌 曲が り角度とエネルギ解放率の関係; τ_{xy}° = -1.0,

図-23 圧縮混合モード応力状態下におけるき裂折れ 曲がり角度とエネルギ解放率の関係;

> $\tau_{xy}^{\infty} = -1.0$, $\sigma_{x}^{\infty} = 0.0 \sim -2.0$, $\sigma_{y}^{\infty} = 0.0 \sim -2.0$, $\mu = 0.3$.

いこともあり理論的には議論されていなかったが, き裂に対して平行な方向の圧縮応力が,元のき裂 と同方向に進展する,すなわちモードII型き裂進展に 大きな影響を与えていることが分かった.これは折れ 曲がり瞬間時のエネルギ解放率を求めることができる E積分を,圧縮荷重下における接触条件を考慮するこ との可能な数値解析に応用したため分かった結果であ り,過去にこのような報告は筆者の知る限り見当たら ない.

図-21 は τ_{xy}^{∞} = -1.0, σ_{x}^{∞} = -3.0 とした場合のき 裂先端周辺の応力である.最大周応力破壊規準は き裂先端からの距離rに依存している点があいま

図-24 圧縮混合モード応力状態下におけるき裂抗れ曲が り角度とエネルギ解放率の関係; $\tau_{xy}^{\circ} = -1.0$, $\sigma_{x}^{\circ} = 0.0 \sim -3.0$, $\sigma_{y}^{\circ} = 0.0$, $\mu = 0.3$.

いであるため, $r \ge 0.000001$ cm から 10.0cm まで 変化させて,周応力が引張りで最大になる角度を 調べた. rが 0.000001cm であると特異性が強く 影響して,約 70 度方向に引張り最大が表れる. rが大きくなるにつれて元のき裂と同方向である 0 度方向へ最大値は変化するが,き裂長さの半分aが 2.0cm に対してrが 10.0cm になったところで あっても約 20 度付近が最大であった.よって,最 大周応力破壊規準ではこの応力状態下でモード II 型き裂進展は起こらない事が分かる.

図-22 から図-24 は、き裂面上の摩擦力によ る影響を調べるため摩擦係数μを 0.3 とした場合 のき裂折れ曲がり角度とエネルギ解放率の関係で ある. μが 0.0 の場合と比較して, エネルギ解放 率の最大値が表れる角度は同じような傾向が言え る. ただし図-23より分かるように, μが 0.0の 場合,等方圧縮応力 ($\sigma_r^{\circ} = \sigma_r^{\circ}$) が, -2.0 から-2.5 の間で元のき裂と同方向にエネルギ解放率の 最大値が表れるようになったが, μが 0.3 の場合 は、等方圧縮応力 ($\sigma_x^{\infty} = \sigma_y^{\infty}$) が-1.5 から-2.0 の間で元のき裂と同方向にエネルギ解放率の最大 値が表れた. すなわち, き裂面上に摩擦力が存在 すると、摩擦力が存在しない場合に比べて、同じ せん断応力に対して,より小さな等方圧縮応力の 下でモードⅡ型き裂進展する可能性を示唆してい る.

図-25 は τ_{xy}° = -1.0, σ_{y}° = -2.0 の場合, 図-26 は τ_{xy}° = -1.0, σ_{x}° = σ_{y}° = -2.0 の場合, 図-27 は τ_{xy}° = -1.0, σ_{x}° = -2.0 の場合の, き裂面上に摩擦力 が存在する際の, き裂先端近傍の応力分布である. これらより, き裂面上に摩擦力が存在する場合

図-25 圧縮混合モード応力状態下におけるき裂先端近 傍の応力分布; $\tau_{x}^{\circ} = -1.0$, $\sigma_{x}^{\circ} = 0.0$, $\sigma_{x}^{\circ} = -2.0$, $\mu = 0.3$.

図-26 圧縮混合モード応力状態下におけるき裂先端近 傍の応力分布; $\tau_{xy}^{*} = -1.0$, $\sigma_{x}^{*} = -2.0$, $\sigma_{x}^{*} = -2.0$, $\mu = 0.3$.

図-27 圧縮混合モード応力状態下におけるき裂先端近 傍の応力分布; $\tau_{xy}^{\circ} = -1.0$, $\sigma_{x}^{\circ} = -2.0$, $\sigma_{y}^{\circ} = 0.0$, $\mu = 0.3$.

も,き裂面に対して垂直な方向の圧縮応力とせん 断応力が存在する場合は、周応力が最大となる方向と、 エネルギ解放率が最大となる方向は、約70度でほぼ一 致するが、せん断応力と等方圧縮応力がある場合や、 せん断応力とき裂面に平行な方向の圧縮応力がある場 合は、その両者の規準によるき裂折れ曲がり進展開始 方向は一致しない事が分かる.

5. まとめ

本研究では引張り・圧縮荷重下でのき裂先端周 辺の応力を求め、また圧縮荷重下ではき裂面上の 接触条件を考慮したE積分有限要素解析手法を用 いて、き裂進展時のエネルギ解放率を求めた.そ れにより汎用されている最大周応力破壊規準と最 大エネルギ解放率破壊規準を比較検討することに より、次に列挙するような知見を得た.

- (1)最大エネルギ解放率破壊規準と最大周応力破 壊規準は一般に、き裂の進展方向に関しては、 ほぼ同じ結果が得られるとされているが、き 裂面と平行な方向の圧縮応力があると2つの 規準は異なるき裂進展角度を与える場合があ る事を新たに見出した。
- (2)最大エネルギ解放率破壊規準に従うとすると、 元のき裂と同方向に進展するき裂、すなわち モードⅡ型き裂進展は、引張混合モード応力 状態下では起こらず、圧縮混合モード応力状 態下でなければ起こらないことを示した。
- (3)圧縮荷重下で元のき裂と同方向にき裂が進展 する可能性は、既往の報告と同様にき裂面に 対するせん断応力+等方圧縮応力の応力状態 で起こりうることが最大エネルギ解放率破壊 規準を用いた本研究でも示されているが、当 方圧縮応力の中でもき裂面に対して平行な方 向の圧縮応力が影響していることが分かった.
- (4)最大エネルギ解放率破壊規準に従うとすると モードⅡ型き裂進展が起きる条件は、き裂面 に平行な方向の圧縮応力がせん断応力に対し て約2~3倍になった状態である.さらに垂 直な方向の圧縮応力があると、より少ない平 行な方向の圧縮応力でモードⅡ型のき裂進展 をする可能性があることが分かった.
- (5)最大周応力破壊規準では、コンクリート、岩盤、地盤や地震の断層などのようなせん断による不連続面生成メカニズムを説明するのは難しいが、最大エネルギ解放率破壊規準に従うとすれば、高い等方圧縮応力を受けている状態で、少しの主応力の差が生まれさえすれば、せん断的に長い不連続面が生成されることの物理的メカニズムを説明することが可能である。

以上のように、最大エネルギ解放率破壊規準を 用いると、土木工学の分野で重要な圧縮荷重下で のモードII型のき裂進展性状の説明に有用である ことが分かった. なお、今回はき裂面上の摩擦力という非線形性 は考慮しているが、物体は完全に線形等方弾性体 を仮定しての議論であり、脆性的な不安定破壊現 象の予測への応用にはそれほど問題がないが、延 性的な破壊まで含めて考えるならば弾塑性体など の非線形性の考慮が課題として残る.

今後,実験などを含めて材料定数である破壊靭 性値を精度良く測定する方法を確立し,"いつ" または"どの方向に"き裂が進展開始するかを含 めて,総合的に圧縮荷重下での破壊現象の解明す ることが課題であり,それが地震の予知や地すべ り現象の予測へ応用されることが望まれる.

参考文献

- Solveig Melin : When does a crack grow under mode II conditions?, *Int. J. Fract.*, 30, pp. 103-114, 1986.
- S. J. D. Cox anad C. H. Scholz : On the formation and growth of faults : an experimental study, J. Struct. Geology, 10, No.4, pp.413-430, 1988.
- 3) 矢富盟祥, 鱸 洋一: 圧縮荷重下にある進展き裂のE

積分によるエネルギ解放率の有限要素解析, 土木学 会論文集, No.612, I-46, pp.251-263, 1999.

- 4) 岡村弘之:線形破壞力学,培風館, 1976.
- 5) Barsoum, R.S. : On the use of isoparametric finite elements in linear fracture mechanics, *Int. J. Numer. Methods Eng.*, 10, pp. 25–37, 1976.
- Barsoum,R.S. : Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements, *Int. J. Numer. Methods Eng.*, 11, pp. 85–98, 1977.
- Griffith, A.A. : The phenomena of rupture and flow in solids, *Phyl. Trans. Soc.*, London, A221, pp.163-198, 1921.
- Wu, C. H. : Maximum-energy-release-rate criterion applied to a tension-compression specimen with crack, *J. Elasticity*, Vol. 8, No.3, pp.235-257,1978.
- K. Hayashi and S. Nemat-Nasser : Energy-release rate and crack kinking under combined loading, J. Appl. Mech., Vol. 48, pp.520-524, 1981.

(2000年4月21日 受付)