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Abstract. Neuron has the characteristic of reacting to a specific stimulus. The char-
acteristic is said to be from the dendritic morphology of neuron. A neuron which reacts
to a specific stimulus has its unique dendritic morphology. Traditional McClloch-Pitts
neuron model failed to include such dendritic functions. In this paper, we propose a neu-
ron model that includes such nonlinear functions on dendrite and show that the model
is capable of learning Expansion/Contraction movement detection without teacher’s sig-
nals. The proposed model consists of the retina, LGN (lateral geniculate nucleus), V1
(primary visual cortex) and MST (medial superior temporal area). The neuron model of
MST learns the Expansion/Contraction movement detection function by plasticity. Plas-
ticity of the model neuron is expressed by back-propagation-like algorithm. Furthermore,
we propose a method of creating teacher’s signals automatically from the output state of
the neuron in MST. We initialize the model neuron with an arbitrarily dendrite randomly
and use the model neuron to learn to detect the movement of Expansion/Contraction.
Our simulation results show that the model neuron can learn the movement detection of
Expanision/Contraction pattern without teacher’s signals and can develop its dendritic
structure, such as the location of synapses and type of synaptic inputs by eliminating
un-useful dendritic branches and synapse.
Keywords: Neuron, Dendrite, Learning, Response selectivity, Plasticity, Teacher’s sig-
nal

1. Introduction. In recent years, a detailed analysis of nerve cells has made more and
more characteristics of nerve cells become more and more apparent although they are still
partial. Hundreds of neurons have been identified, and each of the neurons has a unique
shape of dendritic tree. In addition, it is also been found that a slight variation on these
morphological differences would generate a great functional difference. For example, with
respect to visual motion, [1,2], the cells to detect the direction of motion have been found
in MT (Middle Temporal) area and 4B of V1 (first-field primary) of monkey cortex, and
cells in MST area (Medial Superior Temporal) which react to horizontal movement, or
expansion/contraction movement, or the rotation movement around a point [1-3]. It is
very nature to think that each of them has different dendritic trees. Furthermore, recent
researches have found that such dendrite serves as computational building blocks, which
may play a key role in overall computation performed by the neurons [4-7]. However, the
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detailed dendrites of these neurons are still unknown and there is no effective method to
identify them.
In our previous papers [8,9], we proposed a neuron model with interaction among

synapses on dendrite and trained the model to learn the directionally selective problem
and the depth rotation problem successfully [10-14]. In this paper, we train the neuron
model to learn the two-dimensional expansion/contraction motion detection problem us-
ing a simple learning algorithm that requires no teacher signal for the output, and hence,
no comparisons to predetermined ideal responses. The training set consists of solely in-
put vector and desired output pattern comes from the input patterns. We describe how
such an unsupervised rule may allow the neuron to modify synapses from moving stimuli,
and show that such an unsupervised learning can be used to train 2-dimensional expan-
sion/contraction motion detection problem. The resulting dendrite after the unsupervised
learning tells its dendritic structure, such as the location of synapses and type of synaptic
inputs, and at least gives a predictive dendritic structure of the neuron. The method
could be used in experimental understanding to neurons that are usually hard to see or
measure, and neuron computer – a device that can perform more powerful calculations
using the nonlinear function of dendritic mechanics.

2. Model.

2.1. Neuron model. The first neuron model was proposed by McClloch and Pitts in
1943 [19], and has been widely used for almost 70 years. However, the model was designed
to mimic the first-order characteristics of biological neuron. The nonlinear function of
dendrite, i.e., the second-order characteristic was not considered, resulting in that the
single-layer networks were incapable of solving many simple problems, even a simple
logical exclusive-or operation [20].
Focusing on the function and plasticity of dendrites of biological neurons, the authors

have proposed the neuron model that includes the nonlinear interaction on dendrites
and can adjust the input-output relationship by changing the state of synapses on the
dendrites through supervised learning [8,9].

Figure 1. The model neuron
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The proposed neuron model has a four-layer structure as shown in Figure 1. The first
layer is the connection layer, representing synaptic connections to dendrite of neurons.
The second layer is the AND layer, representing the interaction among synapses on the
dendrites of nerve cells. The third layer is the OR layer, representing a branch point
dendrites of nerve cells. It can be expressed as a logical OR function. The fourth layer is
the Soma layer, acting as the nerve cell bodies. Note that it is because we add a Soma
layer that unsupervised learning becomes possible.

Because the input to a model neuron is either 0 or 1, a desired input-output relationship
of the model neuron can be realized by changing the connection state of the connection
layer. In this paper, we use the back-propagation-like rule (hereinafter referred to as the
BP rule) to adjust the connection status of the connection layer of the model neuron
although it is unknown that such mechanism is actually carried out in vivo. However,
a similar phenomenon that pulse is propagated reversely in nerve cells has been found
from Stryker and Fregnacfs experimental results [15]. In order to apply the BP rule, we
substitute the logic AND function of the second layer and the logic OR function of the
third layer with a continuously differential soft-minimum function, and a soft-maximum
function, respectively.

Then, the first layer is the connection layer that represents the interaction among the
synaptic connections on the dendrites. The connection from input to AND layer has four
states: 0-connection, 1-connection, direct connection and inversed connection. Because
both input and output are either 0 or 1, the connection state from the i-th input Xi(t)
(0 ≤ i ≤ n) to the j-th (0 ≤ j ≤ N) dendrite of model neuron k (0 ≤ k ≤ N) can be
described as the following sigmoid function:

Ykij = f(ukij) =
1

1 + e−gukij
(1)

where ukij = wkijXi + θkij(1 − Xi(t)), wkij and θkij are the connection parameters, and
Ykij is the output from the synapse to the dendrite. In addition, g is a constant. From the
relationship of the connection parameters of the sigmoid function, the connection can be
classified into one of the 4 connection states as shown in Figure 2. In our previous papers
[8,9], we have used the model neuron to learn one-dimensional directionally selective
problem successfully [10-14].

However, learning was based on supervised one that compares desired and actual out-
puts, feeding processed corrections back through the network. It is difficult to conceive
of such a training mechanism existing in the brain [21]. In this paper, we propose a far
more plausible mode of learning in the biological system. We assume that the last layer
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Figure 2. Sigmoid function output characteristics and its equivalent con-
nection states
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is the Soma layer that receives and sums the inputs (ORk) from layer OR. Soma has an
internal state (Uk) and a threshold (θsomak), and the internal state is initialized to 0 when
input pattern to a model neuron is completed. The model neuron fires (Ok = 1) when
the accumulated internal state exceeds the threshold value. Once a model neuron fired,
it will not ignite within a certain period of time (Timer) no matter how high the internal
state of the model neuron becomes (refractory period). It is possible to prevent only a
specific model neuron to be ignited for all input patterns by learning. The relationship
between the output of the Soma (Ok) and its internal state (Uk) is given by,

Uk =

p∑
t=1

ORk(t) (2)

Ok =

 1 (Uk − θsomak ≥ 0 and Timer = 0)
0 (Uk − θsomak ≥ 0 and Timer > 0)
0 (Uk − θsomak < 0)

(3)

where p is the time to input patterns and the output of the Soma is the output of the
model neuron. However, if a model neuron once fired, the Timer is set to a positive
constant A (Timer = A) and it will be decreased by 1 until it gets to zero when a new
pattern is applied.

2.2. Network model for motion detection. In this section, we propose a network
model that can detect movement. In the last section, we described a neuron model that
can be used to learn movement direction selection function and the model neurons have
been trained to react selectively with respect to the four directions of movement, i.e., right,
left, up and down directions [10-14]. Using these model neurons, we propose a network
for two-dimensional expansion/contraction movement detection. Figure 3 shows a block
diagram of the proposed network model. The stimulus from the retina (receptive field) is
applied to the primary visual cortex (V1) layer through the large lateral geniculate nucleus
(LGN) layer. After processed by the directional detection neurons of the V1 layer, the
neurons in the MST field detect the two-dimensional expansion/contraction movement.

Retina (receptive field)

LGN

Movement Directional 
       Selective Cells

Movement Detection Cells

V1

MST

Figure 3. A network model for expansion/contraction motion detection

First, the processing in the retina layer serves only to convey stimulus. Next, a neuron
in the larger cell LGN layer serves to indicate the transient response of the input. It is
said that the cells of the LGN layer respond only to input change. Thus, we assume that
the neuron of the LGN layer responsed as

Lx,t =

{
1 | Rx,t −Rx,t−1 |> 0
0 | Rx,t −Rx,t−1 |= 0

(4)
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where Lx,t is the output of the neuron x of the LGN layer at time t, and Rx,t is the input
to the neuron x of the LGN layer at time t.

Then, the directionally selective cells in V1 have four types of cells that react to se-
lectively to four directions (down ↓, left ←, up ↑ and right →) on the inputs from the
LGN receptive field. For example, a right direction detection neuron fires to the stimulus
that moves to in the right direction (→) on the retina, and never ignites for any other
directions (↓, ↑, ←). Such one-directional detection neurons have been synthesized using
the model neurons, [10-14] and they react differently to the different directional motion
inputs from the retina. Output state of the directionally selective cells of the V1 layer
is then transmitted to the two-dimensional Expansion/Contraction movement detection
cells of the MST field.

The Expansion/Contraction detection cells in the MST field receive the output states
of the one-directional selection cells of the V1 layer, and respond selectively to motion.
Because there are more than one neuron to perform motion detection in the same recep-
tive field of the MST field, these neurons will be referred to as column for convenience
in this paper. It is these neurons that are used to learn the two-dimensional Expan-
sion/Contraction movement detection problems.

Figure 4 shows the response states of the directionally selective cell of the V1 layer with
respect to the Expansion/Contraction motion stimuli. The inputs to the V1 layer from
the retina is divided into 64 areas with 8× 8. We call it as the receptive field. Each area
(the receptive field) has four directionally detective cells that respond to the movements

Figure 4. The state of V1 at the time of Expansion/Contraction pattern
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at the directions (down ↓, left ←, up ↑ and right →), respectively. Symbols ↓, ←, ↑, →
in Figure 4 indicate that cells detected the movements at the directions (down ↓, left ←,
up ↑ and right→) and fired. The blank areas mean that no such movement was detected.
Thus, the two-dimensional expansion/contraction motion detective cells in the MST layer
would respond selectively to the patterns of the expansion/contraction motions shown in
Figure 4.

2.3. Learning algorithm. Recently, researches on the self-organization and synaptic
plasticity of neuronal cells have been extensively carried out and the mechanism of neu-
ronal plasticity has become clear though still very few. It has been found that the neuronal
plasticity is achieved by adjusting the stimulated synapse and its neighbor synapses. In
1949, Hebb first suggested a synaptic learning rule as that “the transmission efficiency of
synaptic connections is higher if both neurons fire at the same time” [16]. This law has
been demonstrated by the results of recent researches. Furthermore, it has been revealed
that the brain nerve cells with the reaction selectivity to react only to specific patterns
show a column structure and the layer structure and network in the same layer of such a
column have some effect on the self-organization of the nerve cells. Toyama invested the
evolution of the lateral geniculate body II, III and IV layers of the cat pups, and found
that a large plasticity was found in II, III and IV layers, and little plasticity in IV layer to
visual signal. It is also found that visual signal was transmitted from the lateral geniculate
IV layer to II, III layers. As a result, Toyama et al. guessed that the neurons in the IV
layer that have response selectivity would perform some kind of teacher’s function and
guidance of learning the neurons of the II and III layers. In addition, experimental results
have shown that they were formed according to Hebb rule [17]. In this paper, we propose
a simple learning algorithm that produces teacher’s signal for BP learning mentioned in
2.1 using a network with one-layer of the column structure of the nerve cells.
The one-layer column consists of more than one proposed model neurons and a simple

rule for teacher’s signal is created. The simple rule is to make a neuron fire more easily
if the neuron fired to an input pattern and a neuron to fire more difficultly if the neuron
did not fire and other neurons fired to an input pattern. Also, if no any neuron fires in
the column, all neurons will be encouraged to fire. Thus, the model neurons in the same
column will share to fire to different input patterns to the column.

o1 o2 oN

Column

Neuron  1 Neuron  2 Neuron  N

Figure 5. Structure of column by the model neurons
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Figure 5 shows a column consisting of the N model neurons model. The model neuron
in Figure 5 has a structure as shown in Figure 3, respectively. If a neuron receives a
signal I(

∑N
k=1Ok) from a fired neuron in the same column, the connection parameters

wkij and θkij of the model neuron will be adjusted to be unfired, meaning a teacher’s signal
(T = 0) is applied to the model neuron. In addition, if a neuron fired to an input pattern,
the connection parameters wkij and θkij will be adjusted to fire more easily, meaning a
teacher’s signal (T = 1) ia applied to the neuron. In other words, the firing information
the neurons in the same column can be used to create teacher’s signal. However, if there is
no any neuron fired to an input pattern, the connection parameters wkij and θkij of these
neurons will be adjusted to fire more easily, meaning teacher’s signals (T = 1) will be
applied to all neurons of the column. In other words, the teacher’s signal can be obtained
with the rule mentioned above. The rule can be simply expressed as,

Tk =

 1 (Ok = 1 )
1 (Ok = 0 and I = 0)
0 (Ok = 0 and I > 0)

(5)

ηk =

 η1 (Ok = 1 )
η2 (Ok = 0 and I = 0)
η3 (Ok = 0 and I > 0)

(6)

∆wkij = −ηk
p∑

t=1

(ORk(t)− Tk) ·
∂ORk(t)

∂wkij(t)
(7)

∆θkij = −ηk
p∑

t=1

(ORk(t)− Tk) ·
∂ORk(t)

∂θkij(t)
(8)

where ηk are learning parameters with ηk > 0. Using this learning rule, the model neurons
are capable of learning without a teacher’s signal.

3. Simulations. In this paper, we performed numerical simulations on the model neu-
ron to show how the model neuron learned to selectively react to the two-dimensional
expansion/Contraction movement without teacher’s signal.

In simulations, we used the column consisting of the model neurons of Figure 5 to learn
to react selectively to the two-dimensional expansion/contraction movement of Figure 2
without teacher’s signals. The connection parameters were initialized randomly within
−1 < Wkij, θkij < 1. In simulations, we used the learning parameters as shown in Table
1. A column with 10 model neurons and each neuron having 10 dendritic branches (the
number of AND was 10) was used to simulate the two-dimensional expansion/contraction
movement problem. The stimuli were applied with an expansion pattern and a contraction
pattern alternately. In addition, in simulations, a neuron once fired to an input pattern
would not be allowed to fire again until the input pattern was applied (A = 1).

Table 1. Learning parameters

The learning constant η1 0.2
The learning constant η2 0.1
The learning constant η3 0.5
The learning constant θsomak 0.65
The positive constant g of sigmoid function 5.0
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Table 2. The internal state (U) and output (O) of the model neurons
before learning

Neuron number 1 2 3 4 5 6
Expansion Ok 0 0 0 0 0 0

(Uk) (0.570) (0.567) (0.570) (0.573) (0.551) (0.521)
Contraction Ok 0 0 0 0 0 0

(Uk) (0.564) (0.574) (0.583) (0.566) (0.540) (0.516)

Neuron number 7 8 9 10
Expansion Ok 0 0 0 0

(Uk) (0.609) (0.605) (0.588) (0.554
Contraction Ok 0 0 0 0

(Uk) (0.604) (0.607) (0.594) (0.553)

Table 3. The internal state (U) and output (O) of the model neurons after learning

Neuron number 1 2 3 4 5 6
Expansion Ok 0 0 0 0 0 0

(Uk) (0.570) (0.567) (0.570) (0.573) (0.551) (0.521)
Contraction Ok 0 0 0 0 0 0

(Uk) (0.564) (0.574) (0.583) (0.566) (0.540) (0.516)

Neuron number 7 8 9 10
Expansion Ok 1 1 0 0

(Uk) (2.532) (3.306) (0.372) (0.209)
Contraction Ok 0 0 1 0

(Uk) (0.485) (0.376) (3.253) (0.206)

Figure 6. Change of the internal state (U8) of the model neuron (k = 8)



NEURON MODEL CAPABLE OF LEARNING MOVEMENT DETECTION 4939

Figure 7. Change of the internal state (U9) of the model neuron (k = 9)

Figure 8. The OR8(t) of the model neuron (k = 8) after learning

The stimuli patterns were applied 1000 times. Tables 2 and 3 show the outputs (Ok)
and the sum of the internal state (Uk) to the expansion pattern and the contraction
pattern before learning (Table 2) and after (Table 3) learning. As can be seen from
Tables 2 and 3, no any neuron fired to all input patterns before learning, while different
neurons fired to different input patterns after learning. The model neurons k = 7 and
8, fired to the expansion patterns and model neuron k = 9 to the contraction patterns,
which means that the proposed model neuron was capable of learning the two-dimensional
expansion/contraction movement problem without teacher’s signals. Figures 6 and 7
show the change of the internal states of the expansion detection neuron (k = 8) and the
contraction detection neuron (k = 9) to the expansion stimuli and the contraction stimuli,
respectively. From Figures 6 and 7, we can see that up to 2000 learning, the internal
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Figure 9. The OR9(t) of the model neuron (k = 9) after learning

states of the model neurons seemed to increase to both expansion input patterns and
contraction input patterns, and then started to respond selectively to the input patterns,
i.e., the expansion detection neuron (k = 8) to only the expansion movement and the
contraction detection neuron (k = 9) to only the contraction movement. Figures 8 and
9 show the stimuli transmitted to the cell body (OR8(t), OR9(t)) of k = 8, and 9 after
learning when the expansion and contraction movement patterns were applied. Obviously
the stimuli to the model neurons were very different with different input patterns.

4. Conclusions. In this paper, we have proposed a neuron model including the synap-
tic interaction on the dendrites and used it to learn Expansion/Contraction movement
detection without teacher’s signals. We initialized the model neuron with an arbitrarily
dendrite randomly and used the model neuron to learn to detect the movement of Ex-
pansion/Contraction. Our simulation results showed that the model neuron was capable
of learning the movement detection of Expansion/Contraction pattern without teacher’s
signals and could develop its dendritic structure, such as the location of synapses and
type of synaptic inputs by eliminating un-useful dendritic branches and synapse.
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