防波柵による津波浸水流の低減効果及び 波力に関する実験的研究

棋田 真也1・斎藤 武久2・古路 裕子3・中口 彰人4・石田 啓5

¹正会員 金沢大学准教授 理工研究域環境デザイン学系(〒920-1192石川県金沢市角間町) E-mail:umeda@t.kanazawa-u.ac.jp

²正会員 金沢大学教授 理工研究域環境デザイン学系(〒920-1192石川県金沢市角間町) E-mail:saitoh@t.kanazawa-u.ac.jp

³(株)日本パーツセンター 設計部 (〒920-0211石川県金沢市湊3-12-3) E-mail:furumichi@n-parts.jp

4(株)日本パーツセンター 設計部(〒920-0211石川県金沢市湊3-12-3)

E-mail:nakaguchi@n-parts.jp

5フェロー 金沢大学名誉教授(〒920-1192石川県金沢市角間町)

E-mail:hishida@se.kanazawa-u.ac.jp

海岸護岸上に設置されていた透過性のある防波柵が背後地の被害軽減に役立ったと推測される事例が確認されているものの,防波柵の津波浸水流の低減効果や減災機能の定量的な評価はされていない.本研究では津波に対する防波柵の効果や津波波力の基本特性を明らかにするために,護岸や柵の構造的条件や段波津波の条件を系統的に変化させた段波実験を行い,柵衝突時の段波津波の挙動,重複波高の増幅,浸水深・流速及び波力の低減比率を調べた.その結果,柵の遮蔽率が一定の場合,浸水流速の低減効果は相対的波高が小さい程高まるが,浸水深や作用波力は重複波高が柵高の半分以上柵高以下の段波に対して低減効果が高まること,不透過壁の波力と比べた防波柵の波力の減少量は柵面での遮蔽面積の減少分より大きく,防波柵にかかる波力はかなり低減できる可能性があること等が分かった.

Key Words : tsunami, porous barrier, seawall, inundation flow, tsunami force

1. 序論

防波柵は多数の孔が開いた金属板で構成される透過性 の構造物で,海岸護岸等に併設して,高波浪時の越波や 飛沫拡散を低減するために利用される¹⁾.一方,津波に 対する防波柵の浸水低減効果や減災機能の定量的な評価 は実施されていないものの,2011年東北地方太平洋沖地 震津波の際,防波柵の背後にあった家屋の損傷度合が周 辺に比べて小さい事例,漂流した船舶・コンテナ・木材 等を柵が捕捉して,堤内地の被害軽減に役立ったと推測 される事例等が幾つか確認されている².防波柵は地域 状況に応じて適切に活用することで,波浪と津波の両方 に対して効果的に機能する可能性があり,今後の海岸防 災・減災対策の重要な手段の一つとして期待できる.

既存の海岸保全施設や臨海部の建物・植生等による津 波遡上抑制効果や波力低減効果に関する研究は、津波減 災技術の重要性の認識と伴に近年増えている。離岸堤の 津波遡上抑制効果については例えば宇多ら³により、離 岸堤による海岸堤防への波力低減効果は冨永ら⁴や半沢 ら⁵によって実験的に検討されている.陸上に設置され る防波壁による浸水流の低減効果については,海岸護岸 付近に設置された場合を村上・山口⁹が,海岸砂丘背後 に設置された場合を松山ら⁷が最近報告している.また, 防潮林の津波減災効果については,首藤³⁰や原田・今村⁹ などによって多面的な研究成果が蓄積されている.臨海 部の家屋群に作用する津波波力や浸水流の低減効果は例 えば岡本ら¹⁰により詳細な実験計測が行われている.

一方,防波柵ついては,波浪に対する越波軽減機能等の評価は実施されているものの,津波に対する浸水流の 低減効果や津波波力に関する研究は未だ報告されていない.そこで本研究では,直立護岸上に設置された防波柵 の津波浸水流の低減効果や作用波力の基本特性を明らか にすることを目的として,護岸や柵の構造的条件や津波 外力条件を変化させた水理模型実験を行い,柵衝突時の 段波津波の挙動,段波重複波高の増幅率,浸水流の低減 比及び柵にかかる波力について検討した.

2. 実験方法及び条件

実験では防波柵と直立護岸・背後陸域の模型を水平床 にした開水路(12m×04m×0.4m)に設置し,図-1に示 すように水路中央部に据え付けた堰板を急開して段波を 発生させた.段波の波高,水深,柵の有無や遮蔽率を変 化させて,水位,流速及び波力を計測した.波高・浸水 深は海域2地点(図-1のW1とW2)と陸域2地点(W3と W4)を容量式波高計で,流速はそれぞれ1地点(V1と V2)をプロペラ流速計で測定した.波力は柵模型の支 柱に接続した板バネ部の歪を計測して求めた.各データ のサンプリングは500Hzで行い,同一条件の設定で3回計 測を繰り返し,平均値を用いて計測結果を整理した.

護岸や柵の諸元は一般に様々であるが、模型縮尺は概 ね1/50を想定した. 護岸を乗り越える高さの段波を対象 に、表-1のような実験条件を設定した. 護岸根元の静水 深hは8cm(護岸の天端高h=2.5cmに対応)と5cm (h=5.5cm)の高低2つの潮位を対象にした. 堰板によ る貯留水深h」を変化させ、波高の異なる段波を作用させ た. 段波の入射波高ムはW1地点の測定結果より求めた値 であり、この範囲は約2.4~8.2cmであった. 段波の形態は 中川ら¹¹⁾の分類による不連続な波頭を持つ移動跳水がほ とんどで、(h₁, h₂)=(15cm, 8cm)の条件のみ不安定な波状段 波が確認された.柵模型は金属製で,有孔面材は高さ H=10.5cm,幅39.5cmで,直径4.0~4.5mmの円形の孔が多 数開いている.透過性の異なる3種類の防波柵(遮蔽率 σ=50,60,70%),不透過壁(σ=100%),及び護岸上に 構造物が無い場合(σ=0%)を比較した.なお、遮蔽率 σは面材部分の不透過な面積の割合で定義している.

表-1 防波柵・護岸及び段波の条件

防波柵の遮蔽率 σ(%)	0, 50, 60, 70, 100	
護岸根元の水深 h ₂ (cm)	5	8
護岸の天端高 h _c (cm)	5.5	2.5
堰による貯留水深 h ₁ (cm)	15, 20, 25, 30	
段波の入射波高 ζ(cm)	2.4 - 8.2	
段波の重複波高 ζ _s (cm)	4.9 - 18.6	

3. 実験結果及び考察

(1) 衝突時の段波の挙動及び水位・流速の時間変化

移動跳水型の段波が護岸に衝突し、越流が始まる初期 段階における水面の挙動が防波柵の設置によってどのよ うに変化するかを知るために、段波発生条件が同じで柵 が無い場合とある場合の段波の変形の様子を図-2に示す. 図には段波が護岸に衝突する前のある時刻taまたはthを基 準にした時間を表示した.段波の先端部は波高計W1の 沖1m付近から砕け始め、気泡を巻き込みながら進行し (i), 護岸に衝突する. 衝突直後(ii), 段波先端部の水塊は 護岸壁面に沿って跳ね上がる. その後(iii),柵が無い場 合(図-2(a)),段波は進行方向斜め上方に波しぶきを上 げながら護岸天端に乗り上げ(iv),陸域へ侵入する(v). 段波は護岸から沖方向へ一部反射し、入射波と重なるの で,護岸付近の沖側の水面が盛り上がる(vi).一方,柵 がある場合(図-2(b)),先端部の水塊は柵に沿って跳ね 上がる部分、柵孔を通過して陸域へ侵入する部分、及び 柵の海側に留まり反射波を形成する部分に分かれる(iii). 護岸のみの場合に比べて、 衝突直後の波しぶきや越流水 の侵入を防波柵は低減し(iv-v),段波の重複波高を増加さ せることが確認できる(vi).

次に,現象の時間変化過程を捉えるため,海域・陸域の4点の水位(W1~W4)とV2で計測した浸水流の流速の時系列を図-3に示す.なお,段波発生条件は図-2と同一で,陸域のW3とW4で計測した浸水深は,海域の初期

(a) 直立護岸のみの場合 (σ=0%)

(b) 護岸上に遮蔽率σ=60%の防波柵を設置した場合 図−2 護岸衝突前後の段波の変形の様子(h=25cm, h2=5cm)

静水面を基準にした浸水高に換算した。 図横軸の時間t は段波先端がW1に到達した時刻を基準にした. この条 件のW1の水位は段波が到達して約0.1秒で水位が急上昇 し、段波通過中のt=0.2~2.0秒は水位がほぼ一定になる. この時間帯のW1地点の平均水位から求められる静水面 を基準にした波高を段波の入射波高くと定義した. 護岸 直前にあるW2地点では、段波の先端が到達する=0.8秒 頃に水位が急上昇し、1.0秒付近で最大値に達した後、 1.2秒以後は水位が安定する. このW2地点の安定的な水 位はW1地点の=3秒以後の平均水位とほぼ一致し、段波 の入射成分と護岸や柵で反射した成分の重ね合わせによ って増加した重複波高に対応する. 前述の波しぶきの打 ちあがりを除くために、ここではW2地点で最大水位を 記録した後に生じる極小水位とその後に生じる極大水位 の中間の時刻(図-3の条件では約t=1.2s)を基準に、そ れ以後の概ね一定水位が持続する時間帯の平均水位を算 出して、静水面との差を段波の重複波高なと定義した.

W3とW4の浸水高は各地点に浸水流が到達してから2 秒程度かけて徐々に増加し、一定値に漸近する.図-3の 条件下の浸水高は重複波高くに比べて護岸のみの場合は 2cm程度低く、遮蔽率60%の柵がある場合は5cm以上低く なり、柵により越流時の海側と陸側の水位差が増す. V2地点の浸水流速は浸水流到達直後に急増して最大と なり、その後徐々に減少して、+4秒以後は浸水流速は 安定する.この時、W3やW4地点の浸水深及びW1やW2 地点の段波波高も同様に時間的変動成分は定常成分に比

図-3 水位と流速の時間変化(h=25cm, h=5cm)

べて小さく,W1~W4の区間における流体運動は準定常 的な状態になる.周期が長く,重複波高が護岸天端を超 える段波津波の場合,津波が護岸に衝突し,打ち上がる 浸水初期の過渡的な状態に比べて,前述のような準定常 的な状態が長く続く.そのため準定常状態での浸水流量 は陸域への総浸水量の多くを占めると考えられる.そこ で本研究では,準定常的状態の浸水深や浸水流速に着目 して,柵による浸水低減効果を検討した.なお,津波浸 水流の戻り流を考慮しない本実験では,この準定常状態 の浸水深は計測地点における最大浸水深とほぼ等しい.

(2) 段波の入射波高に対する重複波高の増幅率

段波の入射波高くに対する重複波高くの比(増幅率) と入射波高に対する護岸の相対的な天端高h。戊との関係 を図-4に示す.なお、図には遮蔽率o及び水深hの違い が区別できるように記号を変えて表示している. 重複波 高の増幅率は本実験条件の範囲では約1.6~2.5の間で各 パラメータによって複雑に変わるが、 遮蔽率は大きく、 水深は小さい方が増幅率は大きくなる傾向にある.相対 天端高と増幅率の関係は柵の有無・遮蔽率によって異な り、護岸のみの場合(の0%)は、相対天端高が低くな るにつれて増幅率は減少するのに対し、不透過壁の場合 (σ=100%)は増加傾向を示す.一方,透過性柵の場合 は、相対天端高に対する増幅率の変化は両者に比べて小 さいことが分かる. 天端高が一定の護岸のみの場合には, 入射波高の増大につれて護岸を乗り越え浸水する割合が 増え、沖側に反射する割合が減少するため、増幅率は相 対天端高の低下と共に減少する. それに対し, 同じ入射 波条件で不透過壁を設置して浸水が抑えられると、壁を 越流しない範囲で,反射波高は入射波高と共に増加して, 増幅率は相対天端高が低下するにつれて増加する.

次に,段波の重複波高ζを入射波高や護岸・柵等の条 件から簡便に推定するための実験式を得るため,図-5に, 増幅率ζζと次式で定義した重複波高を基準にした護 岸・柵断面の不透過の度合いを表す無次元パラメータγ との関係を示す.

$$\gamma = \begin{cases} [h_c + (\zeta_s - h_c)\sigma]/\zeta_s & \text{for } \zeta_s < H + h_c \\ [h_c + H\sigma]/\zeta_s & \text{for } \zeta_s \ge H + h_c \end{cases}$$
(1)

yが増加するにつれて重複波高の増幅率は概ね増加傾向 が見られることから、図-5には実験結果に基づいて得た 次式の回帰直線を表示している.

$$\zeta_{s} / \zeta = A + B\gamma = 1.56 + 0.70\gamma$$
(2)

γは重複波高くの関数であるので、式(2)からくを求めると、 次式のような2次方程式の解の形になる.

$$\zeta_s^{cal.} = (-b + \sqrt{b^2 - 4c})/2 \tag{3}$$

図-6 段波重複波高の実験結果と計算結果の比較

 $\zeta_{\rm s}^{\rm exp.}$

10

(cm)

15

5

ここでb及びcは(2)式の実験係数AとB,柵の遮蔽率σ,護 岸天端高h。及び入射波高ζを用いた次式で定義する.

$$b = \begin{cases} -(A + B\sigma)\zeta & \text{for } \zeta_s < h_c + H \\ -A\zeta & \text{for } \zeta_s \ge h_c + H \end{cases}$$
(4)

$$c = \begin{cases} -B(1-\sigma)h_c\zeta & \text{for } \zeta_s < h_c + H \\ -B(h_c + H\sigma)\zeta & \text{for } \zeta_s \ge h_c + H \end{cases}$$
(5)

式(4)及び(5)の計算を行う際,重複波高 ζ は未知であるの で、まず柵高を超えない($\zeta < h_c + H$)と仮定して $b \ge c \varepsilon$ 計算し、式(3)を用いて重複波高 ζ^{cd} を算定する.もし計 算重複波高が先の仮定を満たさなければ、柵を超える条 件で $b \ge c \varepsilon$ 求めて重複波高を計算し直す必要がある.

式(3)で算定される段波の重複波高と計測値との比較

を図-6に示す.計算結果は実験結果と良好に一致し,相 対誤差は±10%以下の範囲内にある.本実験条件の範囲 では,式(3)のような簡単な式で,護岸・柵衝突後の段 波の重複波高を推定できる.

(3)柵を透過・越流した浸水流の低減効果

防波柵による背後陸域への津波浸水流の低減効果を評価するため、ここでは(1)節で述べた準定常的な状態の 浸水流の水深,流速及び流量の柵の有無による変化を比 較する.まず,段波の入射波高ζが同じ条件において, 護岸上に構造物が無い場合のW3地点の浸水深η⁰に対す る遮蔽率σの柵が設置された場合の同地点の浸水深η³の 比(浸水深の低減比)を図-7に示す.浸水深の低減比は 遮蔽率が高いほど小さく,浸水深の低減効果が高まる. 遮蔽率一定の場合,護岸天端を基準とした柵高Hに対す る相対越流水深(ζ-h₀)/Hが0.6~1.0付近で低減比は小さい ため,重複波高が柵の半ば以上柵高以下程度の段波に対 して浸水深の低減効果が高まる傾向が見られる.

次に,浸水深の低減比と同様な方法で定義したV2地 点の浸水流速の低減比V2^のV2⁰を図-8に示す.なお,浸水 深が非常に浅く,流速の測定精度に問題があると判断さ れた条件は除外している.浸水流速の低減比は遮蔽率が 大きく,相対越流水深が小さくなるに従って概ね単調に 減少する.相対越流水深に対する浸水流速の低減比の変 化傾向は浸水深のものと大きく異なる.浸水流速と浸水 深の低減比を同一段波条件で比較すると,浸水深の低減 効果の方が高く,段波波高の変化に対して安定している.

図-9 浸水流量の低減比と相対越流水深との関係

W3とW4地点の平均浸水深とV2地点の浸水流速の積から計算した浸水流量について、図-9に流量低減比q^eq^eと 相対越流水深,遮蔽率との関係を示す.遮蔽率50~70% の防波柵による浸水流量の低減比は本実験条件では0.4 ~0.8程度の範囲であり,柵の遮蔽率,波高及び水深等 の条件による変動幅は浸水深や浸水流速の場合に比べて 大きい.重複波高が柵の半ば以上柵高以下程度の段波に 対して流量低減効果が安定して得られることが分かる.

本節では、柵による浸水低減効果が越流高に応じてど う変化するかを明らかにするため、重複波高を用いた相 対越流水深で各低減比を整理した.これらの結果を利用 して入射波の諸元から各低減比を求める場合は式(3)が 役立つ.また、入射波条件で直接整理する場合に比べて、 重複波高で整理した本節の結果は水深h₂が低減比に与え る影響を捉えやすく、様々な条件下に設置される防波柵 の浸水低減効果を把握するのに適している.

(4)防波柵に作用する波力の時系列と低減比

最後に,防波柵に作用する津波による波力の基本的な 変動特性を把握するため、護岸上に同様に設置した不透 過壁に作用する波力との比較を行い、遮蔽率や入射波条 件の違いによる透過性柵の波力の変化を調べた. 図-10 は同一の入射波条件における防波柵及び不透過壁に作用 する波力の時間変化を示す. 図中の横軸で示した時間to は波力が作用し始めた時刻を基準とした. 遮蔽率のに関 わらず波力の時間的な変動パターンは類似しており、波 力はto=0.35秒前後でピークに達し、その後一時的に減 少して極小値を取った後、少し増加して、波力が一定の 値に落ち着く.最大波力は段波が護岸・柵に衝突した初 期段階で発生する.この時,段波は図-2(b)の(iv)のよう に大きく変形している. 護岸で跳ね上がった水が柵に激 しく衝突すると共に、柵付近の水面形は下に凸の状態で、 柵に接近するにつれて水面が急上昇し、段波の進行に伴 う水流が柵に作用する. そのため最大波力は衝撃的に生 じる動水圧の大きさに左右されると推測される.一方. t₀=0.6~0.7秒以後の安定した波力(重複波力と以下呼

図-11 護岸上の不透過壁の波力に対する防波柵の波力比

ぶ)は、柵前面の水面変動が落ち着き、ある一定の重複 波高が持続する時間帯で生じ、主に静水圧の影響を強く 受ける.最大波力及び重複波力は共に柵の遮蔽率を小さ くする程減少する.不透過壁の波力と比べた防波柵の波 力の低減量は、遮蔽率σで表される柵面での遮蔽面積の 減少分より大きく、対象段波の波力低減効果は高い.こ の主な理由は、透過性柵の場合、最大波力発生時には水 や空気を孔から逃がして、衝撃的な力の発生を緩和し、 重複波力発生時には前述したように重複波高の増幅を抑 え、不透過壁に比べて水圧の作用面積を減らすことがで きるからである.

防波柵の波力低減効果と入射波条件,遮蔽率との関係 を明らかにするため、図-11に不透過壁に作用する最大 波力F^{tao}に対する遮蔽率σの防波柵の最大波力F^oの比 F^{*}F^{tao}(波力比と以下呼ぶ)を示す.水深h₂=8cmで相対 越流水深が約0.25の条件(h_f=15cm)のみ、不安定な波状 段波が作用して、波力比が0.4~0.8程度とその他の段波 条件に比べて少し高くなっているものの、移動跳水が作 用するそれ以外の条件下では、波力比は0.3~0.6程度と 柵の遮蔽率σより小さな値になる.遮蔽率一定の場合、 相対越流水深が0.5~1付近で波力比が小さく、最大波力 の低減効果が高まる傾向が見られる.同様の変化傾向は W3地点の浸水深の低減効果にも見られた.

4. 結論

直立護岸上に設置した透過性柵による津波浸水流の低 減効果と柵に働く波力の基本特性を明らかにするために, 外力と構造条件を変化させた実験を行い,柵衝突時の段 波の越流挙動,重複波高の増幅率,浸水深・流速等の低 減比及び波力と相対越流水深や遮蔽率との関係を調べた. ここで主な結果をまとめて結論とする.

段波の入射波高に対する重複波高の増幅率は本実験条件の範囲では約1.6~2.5で、主に護岸の天端高、柵の遮蔽率及び入射波高によって変化する.これらの条件から 段波の重複波高を推定可能な簡便な実験式(3)を提案するとともに、その式を用いた推定誤差は±10%以下に収 まることを検証した.なお、本研究と同規模の水路・護 岸模型を使用した従来研究の結果[®]に対して式(3)は概ね 良好な推定値を与えることは確認されたが、異なる規模 の条件に対する汎用性は今後調べる必要がある.

遮蔽率が高い柵ほど浸水深の低減効果は高い.遮蔽率 一定の場合,重複波高が柵の半ば以上柵高以下程度の段 波に対して低減効果は高い.遮蔽率が高く,相対越流水 深が小さいほど浸水流速の低減効果は高い.ただし,浸 水深の低減効果に比べると浸水流速の低減効果は低い. 遮蔽率50~70%の浸水流量の低減比は0.4~0.8程度で,そ の変動幅は浸水深・流速の低減比の範囲に比べて大きい.

不透過壁の波力と比べた防波柵の波力の減少量は, 柵面材の遮蔽面積の減少分より大きく,透過性柵の波力 低減効果は高い.砕波段波に対する遮蔽率50~70%の防 波柵の最大波力は不透過壁の最大波力の0.3~0.6倍の範囲 で,波力比は遮蔽率より小さくなる.

謝辞:水理模型実験の際は、(株)日本パーツセンタ ーの松本光徳さん、金沢大学水工学研究室の大学院生の 五十嵐美咲さん,当時学部4年生の橋谷田和正さん,室 谷祥大さんの協力を得た.ここに記して謝意を表します. 参考文献

- (株)日本パーツセンター:有孔折板の津波漂流物の捕捉状況報告(オンライン), http://www.n-parts.jp/、参照 2013-03-27.
- 宇多高明,小俣篤,横山揚久:離岸堤の津波遡上抑 制効果,海岸工学講演会論文集,第 33 巻, pp.461-465, 1986.
- (4) 冨永数男、中野晋、天羽誠二:海岸堤防に作用する 段波津波の実験、海岸工学論文集、第 54 巻、pp.826-830、2007
- 5) 半沢稔,松本朗,田中仁,山本方人:離岸堤の津波 防災効果に関する実験的研究,土木学会論文集 B2 (海岸工学), Vol.66, No.1, pp.886-890, 2010.
- 村上啓介,山口俊郎:津波浸水流の低減に関する基礎的研究,海岸工学論文集,第 54 巻, pp.266-270, 2007.
- 松山昌史,内野大介,橋和正,田中良仁,榊山勉, 仲村治朗,稲葉大介:盛土を越流する津波に対する 防潮壁の効果に関する実験,土木学会論文集 B2(海 岸工学), vol.68, No.2, pp.236-240, 2012.
- 原田賢治,今村文彦:防潮林による津波減衰効果の 評価と減災のための利用の可能性,海岸工学論文集, 第50巻,pp.341-345,2003.
- 岡本修,小田勝也,杉浦淳,宮崎和行,田中聡:建物の津波・高潮に対する減災効果に関する水理実験による検討,土木学会論文集 B2(海岸工学), Vol.65, No.1, pp.1361-1365, 2009.
- 中川博次,中村重久,市橋義臣:段波の発生とその 発達に関する研究,京大防災研究所年報,第12号B, pp.543-553,1969.

REDUCTION OF TSUNAMI INUNDATION FLOW AND TSUNAMI FORCE BY A POROUS VERTICAL BARRIER MOUNTED ON A SEAWALL

Shinya UMEDA, Takehisa SAITOH, Hiroko FURUMICHI, Akito NAKAGUCHI and Hajime ISHIDA

The reduction of tsunami inundation flow and tsunami force by a porous vertical barrier installed on a seawall was investigated to give a better understanding of effects of coastal structures on tsunami hazard mitigation. Laboratory experiments of permeable and impermeable wave barriers exposed to breaking bore were carried out to examine variations in wave height amplifications, inundation flows and wave forces acting on barriers. It turns out that the porous barrier can reduce the inundation depth and discharge effectively. The reduction effects on the inundation depth and discharge are mainly governed by the porosity of barrier and the relative tsunami height to barrier height. The reduction of inundation velocity is less than that of inundation depth. When tsunami height in front of a porous barrier is between 0.5 and 1.0 with respect to barrier height, the wave force acting on the barrier can be significantly reduced in comparison with that of the impermeable barrier. This is because that the reduction of wave force is influenced by variations in tsunami height in front of the porous barrier.