アプレイシブジェットによる金型仕上げ - 精密金型隅部の場合 -

金沢大学大学院 宫野公伸,平尾政利,浅川直紀 金沢大学 牛島大輔

Mold Finishing Process Using Abrasive Water Jet -In Case of Corner Parts of Precision Mold-

Kanazawa Univ. Graduate School Kiminobu MIYANO,Masatoshi HIRAO,Naoki ASAKAWA Kanazawa Univ. Daisuke Ushizima

This study deals with polishing using abrasive water jet for corner parts of a mold. In general, abrasive water jet is applied to cutting off process of metals and stone. In the past experiment, polishing on plane surface of mold reached the surface roughness of 0.058μ m(Ra). This report shows relationship between injection pressure of abrasive water jet and the incident angle from workpiece.

<u>1. はじめに</u>

近年の多品種少量生産の進展に伴い,金型の需要の増加と 共に金型加工ではリードタイムの短縮と低コストが強く求め られている.しかし,金型形状の複雑化,高精度化のために 最終工程の研磨加工において自動化が遅れている.

特に,金型の表面状態が製品に転写される射出成形用精密 金型の研磨加工において,大部分は熟練技能者の手作業に 頼った長時間を要する加工が行われているのが現状であり, その労働条件は厳しいものである.また,加工の際には金型 の形状に合わせて多種の研磨工具が必要とされることも自動 化への課題となっている.

そこで本研究では、遊離砥粒による加工法であるアブレイ シブジェットに着目した.図1にアブレイシブジェットノズ ルを示す.アブレイシブジェットとは高速・高圧の水噴流 (ウォータージェット)に砥粒を混合することで加工能力を向 上させたものである.これまでの研究においてアブレイシブ ジェットを用いて金型材平面部の鏡面仕上げ(Ra=0.058µm) を達成している¹¹².しかし,これらの研究では試験片表面に 対し,ノズルを平行にするため実際の金型研磨において実用 化が困難である.そこで本報では,金型隅部を想定した丸溝 形状の試験片においてノズルと試験片との角度が5度よりも 大きい角度で研磨が可能であるか検討を行ったので報告す る.

2. 実験装置

図2に実験装置を示す.ウォータージェット装置は(株)ス ギノマシンのAJP-35025Sを使用する.砥粒は緑色炭化ケイ 素(GC)またはガーネットの2種類を使用した.アブレイシ プジェットノズルへの砥粒供給にはノズル内で発生する負圧 を利用した.本実験では金型隅部の研磨を想定して,図3に 示す試験片を使用した.試験片には熱処理を施した金型材 SKD11(HRC60程度)を用い,ワイヤ放電加工により半径 2mmの丸溝形状を加工した.ノズルは送り装置により試験 片丸溝軸方向に移動する.

本研究において図2に示すように,アブレイシブジェット と丸溝試験片との成す角度を「入射角度」と呼ぶ.本研究で はこの入射角度とアブレイシブジェットの噴射圧力に着目し 実験を行った.

<u>3. 実験方法</u>

これまでの金型平面部研磨の研究¹²¹において,加工を行 う際に入射角度を約5度にすることで鏡面仕上げを実現し た.アプレイシブジェット加工において,加工効率を上げる ためには噴射圧力を増加させる必要があるが,加工物に対し 垂直にジェットを噴射させた場合,壊食が起こるので入射角 度を小さくし,加工を行う必要がある.しかしこの加工法で は図4(a)に示すようにノズルと金型が干渉し研磨が困難であ り,図4(b)に示すように干渉を回避するためには入射角度を 大きくする必要がある.そこで入射角度をパラメータとし, 5度よりも大きい入射角度での研磨が可能であるか丸溝試験 片を用いて実験を行う.

表1に実験条件を示す.アブレイシブジェットが被加工面 を通過する回数を加工回数,この時のノズルの移動速度を送 り速度とする.過去の研究³⁾からこの条件を用いた.同一箇 所を7回同じ粒度の砥粒で加工し,さらに小さい粒径の砥粒

Table1 Experimental conditions	
Workpiece	SKD11
Initial surface roughness (Ra)	2.2 µm
Diameter of groove	4 mm
Standoff distance	10 mm
Feed rate	1 mm/s
Number of path	7
Incident angle	90° 60° 15°
Abrasive grain	GC or Garnet
Grain size	#400 ~ #3000
Diameter of water nozzle	φ 0.2 mm
Diameter of abrasive nozzle	փ 1 mm

で加工を行う 実験前の丸溝形状試験片の表面粗さはワイヤ 放電加工により,およそ2.2µm(Ra)である.

実験後は、丸溝形容試験片の底部を軸方向に粗さ計で測定 し評価した.

<u>4. 実験結果</u>

それぞれの入射角度で壊食が発生しない範囲において 最 も表面粗さが向上した場合の噴射圧力(以下最適圧力)の結果 を示す.

まず、被加工面に対し垂直にアブレイシブジェットを噴射 した場合,どの程度研磨できるかを確認する実験を行った. 最適圧力は 30MPa であり,実験後の表面粗さは 0.42µm(Ra) であった.

Fig.5 Relationship between process times and surface roughness (Incident angle 90°)

入射角度を60度とした場合の実験結果を図6に示す.最 適圧力は40MPaであり,実験後の表面粗さは0.36µm(Ra)で あった .垂直に噴射した場合と比較し ,表面粗さが向上した こと,また最適圧力が増加したことが分かる。

Fig.6 Relationship between process times and surface roughness (Incident angle 60°)

入射角度を15度とした場合の実験結果を図7に示す.最 適圧力は70MPaであり,加工回数35回目での表面粗さは 0.18µm(Ra) であった.入射角度を60度とした場合の実験結 果と比較し,表面粗さが向上したこと,また最適圧力が増加

Fig.7 Relationship between process times and surface roughness (Incident angle 15°)

したことが分かる.図8に実験前の丸溝形状試験片の表面 図9に噴射圧力70MPa,加工回数35回での試験片の表面を 示す.それぞれ,(a)では全体の,(b)では拡大した場合の様 子である.図8,9からアブレイシブジェットで研磨すること により表面粗さが向上し,光沢が現れたことが分かる

(b)Enlarged view

Fig.8 Workpiece surface before polishing

(a)Whole view

(b)Enlarged view Fig.9 Workpiece surface after 35 process times

<u>5. おわりに</u>

本研究において、アブレイシブジェットを用いた丸溝形状 試験片の研磨実験を行った結果,以下に記す結論を得られ た.

- (1)丸溝形状試験片の表面粗さを0.18µm(Ra)まで向上するこ とができ 金型隅部研磨へのアブレイシブジェットの適用 の可能性を見出した.
- (2) 噴射圧力が増加すると表面粗さが向上するが, それぞれ の入射角度において壊食が生じる圧力の上限が存在するこ とを確認した.
- (3)入射角度15度の実験では試験片表面粗さが0.18µm(Ra)ま で向上したが,同様に60度の実験では0.36µm(Ra)まで悪 化したことより,実用限度となる入射角度は15度から60 度の間に存在することが分かった.

参考文献

- 1) 平尾政利: ウォータ・ ジェットによる高硬度材の仕上げ加 工,日本機械学会2000年度年次大会資料集,5,(2000)521-522
- 2) 宗廣修興,池本義則,他:ウォータージェットみがき加工 機の開発,広島県立東部工業技術センター研究報告,15 (2002)
- 3) 尾崎雅和,井沢正樹,浅川直紀,平尾政利:アブレイシブ ジェットによる研磨加工に関する研究 - 微小凹面への適用 用-,噴流工学,22,1,(2005)9-15