Cutting Characteristics of Indexable Insert Drill with Non-Axisymmetrical Geometry and Effects of MQL

メタデータ	言語: jpn	
	出版者:	
	公開日: 2017-10-03	
	キーワード (Ja):	
	キーワード (En):	
	作成者:	
	メールアドレス:	
	所属:	
URL	http://hdl.handle.net/2297/37028	

非軸対称形状を有した刃先交換式ドリルの切削特性と MQL の適用効果*

岡田 将人^{*1}, 上田 隆司^{*1}, 細川 晃^{*1}

Cutting Characteristics of Indexable Insert Drill with Non-Axisymmetrical Geometry and Effects of MQL

Masato OKADA^{*1}, Takashi UEDA and Akira HOSOKAWA

*1 Kanazawa University, Institute of Science and Engineering Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan

The cutting performance of indexable insert drill that has non-axisymmetrical geometry is investigated. A solid drill that has axisymmetrical and twisted geometry is also used to compare the cutting characteristics. The diameter of drills is 16mm and carbon steel is used as work material. The application effects of MQL that oil mist is supplied from oil holes in the tool are also examined. The temperature of peripheral corner edge of outer insert is measured using a two-color pyrometer with an optical fiber. The tool temperature of indexable insert drill is higher than that of solid drill and it reaches approximately 525°C at highest. On the other hand, the thrust force of indexable insert drill is lower than that of solid drill and it do not change so much with cutting speed. The surface roughness of indexable insert drill is approximately 1.15~5.4µm and this is higher than that of solid drill in each cutting speed. However, it is improved by supplying the oil mist.

Key Words : Drilling, Cutting Tool, Cutting Temperature, Thrust Force, Surface Roughness, Tool Wear, Two-Color Pyrometer

1. 緒 営

切削加工の中で穴あけ加工は大きな割合を占めており、その工具として多くの場合にドリルが用いられる.こ れまでドリルには、2枚刃で先端にチゼルエッジを有し、回転軸方向にねじれを呈した軸対称の工具形状が主に 用いられている(以後,これらを本報ではソリッドとする).これに対し近年、刃先の交換が可能な非軸対称形状 のドリルが開発されている(以後,これらを本報では刃先交換式とする).刃先交換式はソリッドに比べて;1) 再研摩やスペアドリルが不要、2)傾斜面への切削が可能、3)加工穴直径の微調整やボーリング加工が可能;など の優位点を有している.刃先交換式はソリッドと同様に2枚の刃を有しているが、それらは加工穴の中心側と外 周側の切削を別々に担う.また、刃先交換式の刃先チップはすくい面部に溝型のチップブレーカが設けられてお り、ソリッドとは切りくず排出形態も異なる.そのため、これまでに構成刃先の生成形態や加工穴の面粗さに関 する報告がある^{(1), (2)}.しかしながら、工具温度やスラスト力などの切削特性について検討した報告がなく、ソリ ッドと比較した場合の切削特性の違いについて一般的に知られていないのが現状である.

一方,ドリル加工の油剤供給方法は、工具刃先から高圧油剤を供給する内部給油式が、良好な切りくず排出作 用が得られるとされ、その有効性について報告されている⁽³⁾.またこれに加えて、高圧油剤の代わりに圧縮エア とミスト状の油剤を混合させた内部給油式 MQL 加工法がエネルギ効率ならびに環境負荷軽減の観点から有効と されており、関係する研究が既に報告されている^{(4),(5)}.

そこで本研究では、刃先交換式による炭素鋼のドリル加工において、切削条件が工具温度やスラストカ、穴内 周面の表面粗さ、摩耗形態に及ぼす影響をソリッドと比較することで検討し、刃先交換式の切削特性とこれを効

^{*}原稿受付 2011年2月28日

^{*1} 正員,金沢大学理工研究域(〒920-1192 石川県金沢市角間町)

E-mail: okada@se.kanazawa-u.ac.jp

率的に用いるための切削条件を検討した.また、内部給油式 MQL 加工法を適用した場合の効果についても検討 したので報告する.

2. 実験方法

2・1 刃先交換式ドリル

図1に実験に用いた刃先交換式の先端部概略図を示す.刃先交換式は,異なる形状のチップが非軸対称の位置 でホルダに固定されている.内側ならびに外側チップはそれぞれ軸方向に対して1.0°ならびに2.5°の傾きを有し ている.そのため,一般的にソリッドが120°~140°程度の先端角であるのに対し,刃先交換式はそれよりも大き な先端角を有することになる.底部逃げ面には2ヶ所のオイルホールが設けられており,これよりオイルミスト を吐出した.図2に両チップの外観と外側チップの断面図を示す.すくい面部にはチップブレーカが設けられて いる.また,コーナー部が全て同一形状であるため、1つのチップで4コーナー分の使用が可能である.両チッ プは超硬工具母材に(Ti, Al)N+TiNの複層皮膜処理が PVD 法により施されている.なお,外側チップ刃先部には 回転軸と平行に0.12mmの幅で刃先処理がなされているとともに,逃げ面は7°の傾きを有している.

Fig.1 Schematic illustrations of indexable insert drill

Fig.2 Outline of inner and outer insert

2・2 光ファイパ型2色温度計

ドリル加工は工作物内部で加工が進行し、工具自体が高速で回転することから、加工中における刃先温度を測定するためには、非接触式で微小な測定領域と高い応答速度を有する温度計が求められる.そこで温度測定には、 光ファイバ型2色温度計を用いた⁽⁶⁾. 図3に本温度計の構造を示す.本温度計は切削中に工具表面よりふく射される赤外線を光ファイバにより受光し、分光感度特性の異なる2種類の赤外線検出素子(InAs, InSb)に伝送・照射することで両素子から電気的な出力を得る.本温度計はこれらの出力比から温度を求めることで、測定対象物のふく射率に依存しない温度測定が可能であり、これまでに本温度計を用いて種々の加工法における工具温度測定に成功している^{(7),(8)}. 100kHz までの入力に対し安定した出力が得られるとともに、光ファイバの受光面直径と同 程度の微小な測定領域(≈φ500µm)を有していることを既に確認しており、ドリル加工における工具刃先の温度測 定に適用できる.

Fig.3 Schematic illustration of two-color pyrometer with an optical fiber

2·3 実験方法

図4に実験装置の概略を、表1に主な実験条件を示す.実験は、立型マシニングセンタ(NV4000DCG、 ㈱森精 機製作所製)のテーブル上に搭載した切削動力計に工作物を固定して、これにドリル加工を施した際の工具温度と スラストカを同時に測定した.ドリル加工において、工具温度は切削速度が最も高速となる外周刃コーナー部が 最も高温となることが既に報告されている⁽⁹⁾.そのため、本実験においては工具温度として外側チップの外周刃 コーナー部の逃げ面温度を測定した.なお、工具温度測定のために工作物にファイバを挿入するための溝を 3mm の深さで設け、この溝底部にファイバを設置した.そのため、本実験における温度測定は外周刃コーナー部が 3mm の穴梁さに達した時点の外周刃コーナー部逃げ面温度となる.スラストカの測定には製作したひずみゲージ式動 力計を用い、動ひずみ計を介して電圧出力を得た.本動力計は校正実験により、作用力と電圧出力が高い精度で 直線関係にあることを確認している.温度計ならびに動力計からの電圧出力はストレージスコープに記録した. また、切削特性の比較のためにソリッドを用いた実験も実施した.著者らは工具コーティング膜材質が切削途中 の工具温度に影響を及ぼすことを既に明らかにしている⁽¹⁰⁾.そこで本実験では、工具形状の違いによる影響を検 討するため、比較対象としたソリッドのコーティング膜材質ならびにコーティング方法は、刃先交換式に用いた 刃先チップと同一の材質、コーティング方法で被覆したものを用いた.また、ソリッドにおける温度測定点も外 周刃コーナー部の逃げ面が 3mm の穴深さに達した時点とした.

Drill	Indexable	(Ti,Al)N+TiN coated carbide with two oil holes
		Rake angle $\lambda=0^{\circ}$ (Except for the chip breaker)
		Diameter $D=16$ mm, Effective length $L_{d}=48$ mm
	Solid	(Ti,Al)N+TiN coated carbide with two oil holes
		Helix angle ζ =30°, Point angle 2 α =140°
		Diameter $D=16$ mm, Effective length $L_d=39$ mm
Workpiece		Carbon steel without heat treatment
		ЛS S45C(HV180), S50C(HV196)
Cutting speed		v=25, 50, 100, 150m/min
Feed rate		f=0.05, 0.10mm/rev
Prepared hole		Diameter $D_p=0, 5.0$ mm
Lubrication		Dry, MQL (Vegetable oil, Water-insoluble)
Flow rate		44ml/h

Table 1 Experimental conditions

3. 実験結果および考察

3·1 出力波形

工作物側面に加速度計を接着してドリル加工を施すことで、外周刃がファイバ設置溝を通過する際の微小な振 動を検出し、温度計のファイバ先端と外周刃コーナー部間の相対位置と、温度計からの出力波形との関係を明ら かにした. 図5に刃先交換式を用いて切削速度 v =50m/min,送り量f =0.10mm/rev で切削した場合の出力波形を 示す.上から加速度計,2 色温度計の InAs 素子,InSb 素子からの出力である.図中(a),(b)点において加速度計 よりパルス状の出力が得られており、両パルス間にΔτ≈3.6msの時間差が認められる. v =50m/min の切削速度に おいて、外周刃が 3mm 幅のファイバ設置溝を通過するのに要する時間は理論的に約 3.6ms であり、この両パルス 間において外周刃がファイバ設置溝を通過したと同定することができる.図6(a),(b)に図5(a),(b)点におけるフ ァイバ先端と外周刃との相対位置を表したモデル図を、(c)に加工前の工作物にファイバを設置した模式図を示す. 図5において(a)点以前に2色温度計からの出力が認められるが、外周刃は図6(a)に示すようにファイバ設置溝に 差し掛かった時点であり、この出力は外周刃すくい面前部に存在する切りくずや、内側チップからの赤外線を受 光した出力であると考えられる.図 6(b)ではコーナー部逃げ面がファイバ前面を既に通過しているため温度計の 出力が下がっており、切削再開による加速度計からの出力が得られる.また、図 6(c)に示すように、工作物上面 から 3mm の位置に光ファイバを設置しているため,外周刃コーナー部が 3mm の穴深さに達した時点で,測定部 である逃げ面がファイバ前面を通過して出力パルスが得られる.これより,コーナー部が穴深さ 3mm の時点に おいて(a)-(b)点間で得られる波長の短いパルス出力を外周刃コーナー部逃げ面から得られた出力として、5 パル ス分の平均を工具温度として算出した.なお、ソリッドにおいても同様な出力が得られることを確認している.

Fig.5 Typical waveform of accelerometer and pyrometer

Fig.6 Relative position between optical fiber and cutting edge of outer insert

3・2 外周刃コーナー部逃げ面温度

図7に切削速度νと外周刃コーナー部の逃げ面温度θαの関係を示す.図より、いずれの条件においてもνの増 加とともにθαが増加していることがわかる.また,刃先交換式の乾式加工が最も高い温度を示しており, ν=100m/min において 525°C に達している. これに対し、ソリッドの場合は乾式時においても比較的低いθαを示し ている. 両ドリルの乾式時の差は v=25m/min において最大であり 110°C に達している. また, オイルミストを 供給しても刃先交換式がソリッドの場合よりθωが高い. 刃先交換式にはすくい面にチップブレーカが設けられて おり、一般的にこのチップブレーカはすくい面-切りくず間の接触面積を減少させ、刃先温度を低減する機能を 有している⁽¹¹⁾.両ドリルのθ_αを比較して、チップブレーカが設けられているにも関わらず刃先交換式のθ_αが高い のは、両ドリルにおける1刃あたりの切込量の違いに起因していると考えられる、刃先交換式は内側と外側チッ プが異なる領域の切削を担っているのに対し、ソリッドは中心から外周までを切削領域とする切れ刃を2枚有し ている、そのため両ドリルを同じ送り量で用いた場合、刃先交換式の1刃あたりの切込量が、ソリッドの場合の 2 倍になり、これがθ_αの違いに反映されたと考える. 一方, νによるθ_αの増加は ν=25~100m/min において刃先交換 式の場合で100°C程度であるのに対し、ソリッドの場合は160°C程度である.そのため、vの増加に伴い両者の θaの差が減少している.また,それぞれのνにおいて,MQL を用いた場合の温度低減量は刃先交換式が大きく, 乾式のθαからの低減率 (= 乾式と MQL 加工時の温度差を乾式のθαで除した値)はソリッドが 5~12%であるのに 対し刃先交換式の場合は 14~20%であった. そのため, MQL 加工時において両ドリルのθaが ν=100m/min におい てほぼ同程度となり、刃先交換式は高速領域で MQL を用いることが工具刃先温度の観点から有効であることが わかる.

Fig.7 Relationship between cutting speed and temperature at corner edge

3・3 スラストカ

図8に切削速度vとスラストカFの関係を示す.図より、いずれのvにおいてもソリッドのFが刃先交換式よ り大きく、ソリッドの場合、レ=100m/min の乾式時には約1kN に達していることがわかる. ソリッドの F.が大き いのは、加工穴中心から外周までを切削領域とする2枚の切れ刃を有しているために、刃先交換式より切れ刃-工作物間の接触面積が大きいことに起因していると考えられる。特にソリッドの先端角は刃先交換式よりも鋭角 であり、切れ刃と工作物間の接触面積は、同直径のドリルにおいても、より大きく異なることになる.そのため に、両者が同じ送り量で送られる場合、切れ刃の工作物への食い付きに要する F.が異なり、ソリッドが比較的大 きな F.を要する.これに加えてソリッドの場合,刃先の摩耗により再研摩作業が必要となるため,刃先には強度 向上のために 0.1mm 幅のチャンファ処理が 9の負のすくい角で施されている.これに対し刃先交換式は,図2で 示した通り、すくい角 0°で 0.12mm 幅の刃先処理がなされており、ソリッドよりも刃先が鋭利である. この違い も、工作物への工具食いつき時に要する F.の違いに反映されたと考える.また、ソリッドの F.が v の増加ととも に増加しているのに対し、刃先交換式の場合は vの影響がみられない. F.は主に切れ刃逃げ面と工作物間に作用 しており、刃先で生じる摩擦熱に大きな影響を有すると考えられる.そのため、この影響が、前節で示したソリ ッドの ν の増加に伴うθαの増加傾向が刃先交換式より大きいことの一因と考えられる. このことから,刃先交換 式はスラストカの観点からも高速領域での加工が有効である.なお、オイルミスト供給による影響はソリッドの 場合が大きく、その低減率は最大で約10%の低減が認められた.これに対し、刃先交換式の場合はいずれも4% 程度とわずかであった.

Fig.8 Relationship between cutting speed and thrust force

3・4 送り量による影響

図9に切削速度 v=100m/min の乾式加工において、1回転あたりの送り量 fを 0.05、0.10mm/rev と変化させた場合の外周刃コーナー部逃げ面温度 θ_{α} とスラスト力 F_tを両ドリルにおいて示す.また図中左に刃先交換式を用いた場合の v=50m/min, f=0.10mm/rev における θ_{α} と F_tを併せて示す.図より v=100m/min での送り量による影響に着目すると、f=0.10mm/rev の場合は刃先交換式が高い θ_{α} を示したのに対し、f=0.05mm/rev では 110°C 程度の大幅な工具温度の低下が認められる.これに対し、ソリッドはfが減少しても θ_{α} に大きな影響が認められず、f=0.05mm/rev において刃先交換式の θ_{α} が約 20°C 低い.これは、送り量を小さくすることで 1 刃あたりの切込量による影響が減少したことに起因すると考えられる.fを 0.10mm/rev から 0.05mm/rev に減少させた場合、ソリッドの 1 刃あたりの切込減少量は 0.025mm であるのに対し、刃先交換式は 0.050mm の減少であり、特に刃先交換式の送り量による影響が大きくなったと考えられる.なお、F_tにおいては、両ドリルともに 40~50%程度の減少が認められた.また、v=100m/min において刃先交換式のf=0.05mm/rev とソリッドのf=0.10mm/rev の場合は、1 刃あたりの切込量が 0.05mm/tooth で同一となる。両者の θ_{α} を比較すると刃先交換式の場合が 55°C 程度低い.この θ_{α} の違いは刃先交換式の θ_{α}

が低い値を示した一因と考えられる. 一方, 刃先交換式において v = 50 m/min, f = 0.10 mm/rev の場合と v = 100 m/min, f = 0.05 mm/rev の場合に着目すると v = 100 m/min の場合が θ_{α} , F_t ともに低く, それぞれ 70°C, 250N 以上の差が認められる. 両条件は単位時間あたりの切削体積が同一であり, このことからも刃先交換式は高速・低送りによる加工が適しているといえる.

Fig.9 Influence of feed rate on temperature at corner edge and thrust force

3・5 穴内周面粗さ

図 10 に送り量 f=0.10mm/rev における切削速度 v と表面粗さ R_a の関係を示す、表面粗さは加工穴内周面におけるドリル送り方向の算術平均粗さであり,触針式表面粗さ測定機による 3 点測定の平均値を示している.図より、いずれの条件においても v の増加とともに R_a が減少していることがわかる.また、ソリッドはオイルミスト供給の有無に関わらず約 $R_a = 1.1-0.4 \mu m$ の比較的良好な粗さを示している.これに対し、刃先交換式は乾式で $R_a = 5.4-3.6 \mu m$ と高い値を示しているが、オイルミストを供給することで v=100m/min において $R_a = 1.15 \mu m$ まで 改善し、低速領域におけるソリッドと同程度の表面性状となっている.このことから、刃先交換式は高速領域において MQL を適用することで表面粗さの向上を図ることが可能といえる.なお、ソリッドの v=50、100m/min においてオイルミストを供給した場合の表面粗さが、乾式加工の場合より最大で 0.28 \mu 程度高くなっている.これは、測定誤差に加えてオイルミストの供給で切削点近傍の温度や切りくず排出形態が変化したことなど、種々の要因が影響を及ぼしあった結果であると考えている.

図 11(a)-(e)に主な切削条件における加工穴内周面の断面形状を図 10 の R_aとともに示す. 刃先交換式の場合, 低速領域における乾式では不規則な凹凸が認められる. これは構成刃先に代表される凝着現象が生じていると考 えられる. しかし MQL の適用ならびに高速領域になるにつれ, この凹凸が消失し, (c)において1 刃あたりの切 込量に相当する 0.10mm ごとに送りマークが確認できる. これは, オイルミストの供給ならびに高速化により凝 着現象が抑制され, 工具刃先 R 部と送りにより理論的に表される断面形状が露呈したためと考える. これに対し ソリッドの場合は, 乾式においても良好な表面性状を示し, なおかつ高速領域においては低速時より明らかに R_a が減少し, その断面形状に送りマークは認められない. ソリッドの R_aが刃先交換式より良好であるのは, 前述し たソリッドの1 刃あたりの切込量が刃先交換式の 1/2 であり, 工具送りにより生じる粗さが小さいことが一因と 考えられる. また, 本実験で用いたソリッドのバックテーパは 0.15°であり, 刃先円周方向にはマージン部を有し ている. そのためソリッドは凝着現象が生じても, このマージン部におけるバニシング作用により, 良好な表面 が得られると考えられる. これに対し刃先交換式は図 1, 図 2 に示すとおり, 外側チップが 2.5°の傾きでホルダ に取り付けられている.また、そのチップはソリッドのマージン部に相当する部分がなく 7°の傾きで逃げ面が設けられている.このことから、刃先交換式ではバニシング作用がソリッドほど得られず、凝着現象の影響が顕著 に仕上げ面に出現したと考える.

Fig.11 Variations of sectional profiles

3・6 工具摩耗形態

図 12 に刃先交換式によりオイルミスト供給下で板厚 t =20mm の工作物 (S50C) に貫通穴を 100 ヶあけた場合 の,外側チップ刃先部の拡大写真を同部の未使用時とともに示す. (a), (b)は外周刃コーナー部逃げ面, (c), (d) は同部すくい面, (e)は切れ刃の半径方向中央部すくい面をそれぞれ同一の倍率で示している. (f)は(e)中にみられ るチップブレーカ摩耗部を SEM により拡大撮影した反射電子像であり, (g)は(f)中で示した摩耗部をさらに拡大

した画像である. 切削速度は v=150m/min, 送り量は f=0.10mm/rev とし,下穴は設けていない. (a), (b)より逃げ 面にはコーティング膜の変色が認められるが、膜の剥離や工具形状の変化は認められないことがわかる.これに 対し(c)~(e)に示すすくい面は、コーティング膜の剥離ならびにチップブレーカ部の摩耗が確認できる.ここでSEM による反射電子像のコントラストは、撮影対象物の元素の原子番号に対し依存性を有しており、対象物表面の組 成の違いが色の明暗として表される. (f)に示すチップブレーカ摩耗部から, 逆三角形状の摩耗部のみ淡色部が認 められ、それ以外の部分は濃灰色であることがわかる.また(g)から、摩耗部には主に白色部、淡灰色部、濃灰色 部の3段階のコントラストが確認できる.(f)中の摩耗部以外の部分が均一な濃灰色であることから,(g)中の白色 部が工具母材である超硬合金, 淡灰色部が工作物である S50C, 濃灰色部がコーティング膜材である(Ti, Al)N+TiN であるといえる.またこのことから、鉄に対して親和性の低いコーティング膜が摩耗し、工具母材が露出したこ とによって集中的に露出部に工作物が凝着したと考えられる.一方、ソリッドは切れ刃およびマージン部周辺に 生じる逃げ面摩耗が問題となることが多く、摩耗特性の評価は逃げ面を対象としたものが一般的である(12)-(14).こ れは、ソリッドを用いた穴あけ加工において、逃げ面摩耗状態をインプロセスで予測しようとする研究が多く報 告されていることからも裏付けられる(15),(16).これらのことから、刃先交換式は工具摩耗形態がソリッドと大きく 異なり、すくい面チップブレーカ部の摩耗に留意する必要がある.なお、刃先交換式において逃げ面に目立った 摩耗が認められないのは、刃先交換式の逃げ角ならびにバックテーパがソリッドより大きいために、逃げ面とエ 作物間の接触面積が小さいことに起因していると考えられる.なお、刃先交換式の場合、ソリッドのように摩耗 後の研摩作業を考慮する必要がないため、切削機能が維持されており、なおかつ要求される仕上げ面粗さを満足 する限り加工に供することが可能である優位点を有する.また、刃先交換式により同条件において乾式でも穴あ け加工を複数回行なったが、いずれも加工穴数 6~18 ヶの間でチップに大きな欠けが生じ切削不可能な状態とな った.このことから、刃先交換式は MQL の適用により工具寿命に対しても顕著な影響がみられた.

Fig.12 Flank and rake face of virgin and worn tip

非軸対称形状を有した刃先交換式ドリルを用いた炭素鋼の穴あけ加工において、切削速度や送り量、オイルミスト供給が外周刃コーナー部逃げ面温度、スラストカ、仕上げ面粗さ、工具摩耗形態に及ぼす影響について、ねじれ形状を呈したソリッドドリルと比較して検討した.以下にその結果をまとめる.

- (1) 外周刃コーナー部逃げ面温度は、低速領域の乾式加工において刃先交換式がソリッドより高くなるが、 その差はオイルミストの供給ならびに切削速度の高速化により、顕著に減少する.
- (2) スラストカは、いずれの条件においても刃先交換式が低く、ソリッドに認められた切削速度の増加に伴 うスラストカの増加傾向も認められない.
- (3) 工具 1 回転あたりの送り量の外周刃コーナー部逃げ面温度への影響は刃先交換式が大きい.刃先交換式 の場合,高速度・低送りの加工により工具温度ならびにスラストカの増加を抑制できる.
- (4) 加工穴内周面の表面粗さはソリッドの場合が特に良好な特性を示すが、刃先交換式を用いても切削速度 を高速とし、オイルミストを供給することで比較的良好な粗さを得ることが可能となる.
- (5) 刃先交換式の工具摩耗は、主にソリッドにみられる逃げ面部でなく、特にすくい面チップブレーカ部に 生じる.
- (6) 刃先交換式を用いる場合,加工穴内周面に求められる表面粗さに留意することで、従前のソリッドより 優位性を有した加工が可能となる.

謝辞 辞

本研究の遂行にあたり、切削工具の御提供を頂いた Seco Tools AB 社に深謝する. なお、本研究の一部は工作機 械技術振興財団第 30 次試験研究助成により行われた. ここに深く感謝の意を表する.

文 献

- (1) V.C. Venkatesh, W. Xue, "A study of the Built-up Edge in Drilling with Indexable Coated Carbide Inserts", Journal of Materials Processing Technology, Vol. 58, Issue 4, (1996), pp. 379-384.
- (2) V.C. Venkatesh, W. Xue, D.T. Quinto, "Surface Studies during Indexable Drilling with Coated Carbides of Different Geometry", Annals of the CIRP, Vol. 41, Issue 1, (1992), pp. 613-616.
- (3) 新井実,大野鉄司,小川誠,佐藤素, "高圧内部給油による高硬度鋼のドリル加工",精密工学会誌, Vol. 62, No. 9 (1996), pp. 1310-1314.
- (4) 槇山正,関谷克彦,山田啓司,山根八洲男,"ドリル加工における MQLの効果(第1報)-加工穴の特徴-",精 密工学会誌, Vol. 73, No. 2 (2007), pp. 232-236.
- (5) Y. Murakami, T. Yamamoto, "Ecological Deep Hole Drilling by Novel Coated and Designed Drill", Key Engineering Materials, Vol. 329 (2007), pp. 657-662.
- (6) 細川 晃, 岡田 将人, 上田 隆司, "エンドミル加工における工具温度モニタリング用小型 2 色温度計の開発",日本設備管理学会誌, Vol. 18, No. 1 (2006), pp. 42-48.
- (7) T. Ueda, M. Sato, A. Hosokawa, M. Ozawa, "Development of infrared radiation pyrometer with optical fibers Two-color pyrometer with non-contact fiber coupler", *Annals of the CIRP*, Vol. 57, Issue 1 (2008), pp. 69-72.
- (8) Masato Okada, Akira Hosokawa, Ryutaro Tanaka, Takashi Ueda, "Cutting performance of PVD-coated carbide and CBN tools in hardmilling", *International Journal of Machine Tools and Manufacture*, Vol. 51, Issue 2 (2011), pp. 127-132.
- (9) T. Ueda, R. Nozaki, A. Hosokawa, "Temperature Measurement of Cutting Edge in Drilling -Effect of Oil Mist-", Annals of the CIRP, Vol. 56, Issue 1, (2007), pp. 93-96.
- (10) 岡田将人,細川晃,田中隆太郎,上田隆司, "コーテッド工具のハードミリングにおける切削特性-コーテッド工具のコーティング膜材質と母材の影響-",精密工学会誌, Vol. 75, No. 8 (2009), pp. 979-983.
- (11) 狩野勝吉, "データでみる切削加工の最先端技術", 工業調査会 (1992), 262.

- (12) B.S. Yilbas, S.M. Nizam, "Wear behavior of TiN coated AISI H11 and AISI M7 twist drills prior to plasma nitriding", *Journal of Materials Processing Technology*, Vol. 105, Issue 3 (2000), pp. 352-358.
- (13) S.G. Harris, E.D. Doyle, A.C. Vlasveld, J. Audy, D. Quick, "A study of the wear mechanisms of Ti1-xAlxN and Ti1-x-yAlxCryN coated high-speed steel twist drills under dry machining conditions", *Wear*, Vol. 254, Issues 7-8 (2003), pp. 723-734.
- (14) K. Tönshoff, A. Mohlfesd, T. Leyendecker, H.G Fub, G Erkens, R. Wenke, T. Cselle, M. Schwenck, "Wear mechanisms of (Ti1-x, Alx)N coatings in dry drilling", *Surface and Coatings Technology*, Vol. 94-95 (1997), pp. 603-609.
- (15) H.Y. Kim, J.H. Ahn, S.H. Kim, S. Takata, "Real-time drill wear estimation based on spindle motor power", Journal of Materials Processing Technology, Vol. 124, Issue 3 (2002), pp. 267-273.
- (16) H.S. Liu, B.Y. Lee, Y.S. Tarng, "In-Process prediction of corner wear in drilling operations", Journal of Materials Processing Technology, Vol. 101, Issues 1-3 (2000), pp.152-158.