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Abstract: A theoretical study about H∞ Filter is proposed to determine a sufficient condition for
estimation purposes. Two different cases of initial state covariance are analyzed to guarantee that a best
solution for SLAM problem is achieved with consideration about process and measurement noises. If the
conditions are not satisfied, then the estimation exhibit unbounded uncertainties and consequently result
in erroneous inference. Simulation result shows consistency as suggested by the theoretical analysis.
These results consistently supports and guarantees our previous findings.
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1. INTRODUCTION

Uncertainties exist in different kinds of forms. Their presence
inherently causing various kinds of applications to suffer. Ap-
parently, this is unavoidable and even though some devices
are proposed to favor the problem, the solution still demand
further improvements. One of the robotics applications that
suffers from uncertainties is Simultaneous Localization and
Mapping(SLAM) problem. It states a condition where a robot is
assign to observe an unknown environment and incrementally
building a fair knowledge about its surroundings. The robot
then attempts to localize itself on the constructed map recur-
sively. The SLAM illustration is provided in Fig.1.

A considerable approach that is seems able to tolerate un-
certainties in SLAM is probabilistic. Hence, up to date,
bayesian approaches is preferable in comparison to behavior-
based SLAM and mathematical-based SLAM(See S.Thrun et.al
(2005)). Extended Kalman Filter(EKF)-SLAM as proposed by
G.Dissayanake et.al (2001) has received a wide attention as
it is easy to apply and has lower computation cost than any
other probabilistic approaches. Unfortunately, SLAM demand
further considerations about the environment conditions. An
assumption of gaussian noise has restricting EKF role as the
main player and thus offering places for more robust approach
such as the Particle Filter(PF). However, PF has some draw-
backs; computational cost, complex. Therefore, in this sense,
we propose H∞ Filter approach for SLAM as it more robust
than EKF and has lower computational cost than PF. A brief
description of the filter is introduced by D.Simon (2001).

In this paper, we analyze further H∞ Filter based SLAM per-
formance to aid previous works by M.E.West et.al (2006);
H.Ahmad et.al (2009, 2010). M.E.West et.al (2006) have
proved that H∞ Filter is a solution for SLAM problem. Its
performance has been compared to PF and EKF for under-
water application. Even though PF shows better results, H∞
Filter still the best solution in terms of computational cost and
in non-gaussian noise environments as claimed by H.Ahmad
�

et.al (2009, 2010). Unlike EKF, as reported by H.Ahmad et.al
(2009); P.Bolzern et.al (1997), H∞ Filter solution can unbound-
edly increased and exhibit Finite Escape Time. Therefore, to
apply H∞ Filter efficiently in SLAM, designer must care-
fully design its parameters to achieved a desired performance.
P.Bolzern et.al (1999) discovered that H∞ Filter must also sat-
isfy P0 = R−1 to achieve better estimation. They proposed a
study regarding both filtering and prediction and found that
under a feasibility and sufficient condition, the filter achieved
a stable results. Besides, H.Ahmad et.al (2010) proposed the
covariance inflation and γ-switching strategy as an additional
tools to avoid Finite Escape Time. Experimental results val-
idates their analysis and proved that those two method can
prevents Finite Escape Time.

With regards to the preceding works, a further analysis of
H∞ Filter-SLAM are proposed. We guarantee that if some
conditions are satisfied, then H∞ Filter gives better estima-
tion while at the same time refraining the appearance of
Finite Escape Time(F.E.T ) in the estimation. The results also
proves and consistent with previous results. There are also some
trade-off between γ and the design parameters especially about
the initial state covariance, process and measurement noises
distributions. Nevertheless as there are many types of SLAM
approaches, two conditions of different initial state covariance
are examine to understand its effect to SLAM with considera-
tion about the process and measurement noises distributions.
The analysis are shown to provide a recognizable effect in
different situations of environment conditions.

We organize this paper as follows. Section II describes the
problem formulation about SLAM problem. Then followed by
Section III which examines the convergency of H∞ Filter for
SLAM under some conditions. Next, we demonstrates some
simulation results which consists of two cases to evaluate our
proposal in Section IV . Finally, Section V concludes our paper.
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Fig. 1. Simultaneous Localization and Mapping: Robot taking
relative measurements with some uncertainties

2. PROBLEM FORMULATION

H∞ Filter problem describes that, for a given γ > 0, an H∞ Filter
attempts to find a solution for an estimated state x̂k, that satisfies

sup
x0 ,v,w

∑N
k=0 ||xk − x̂k||{

||x0 − x̄0||2P−1
0

+∑N
k=0 ||vk ||2R−1

k
+∑N

k=0 ||wk ||2Q−1
k

} 1
2

< γ

where x0,xk is the robot(∈ R
3) and landmarks(∈ R

2m,m =
1,2, ...,N) states. w, v, are the process and measurement noises
with covariance of Qk, Rk respectively and P0 > 0 is the initial
state covariance. Furthermore, Qk ≥ 0, Rk > 0. The above
equation alternatively means that the filter attempt to provide
a solution when the estimation error to the noise ratio is less
than a certain level of γ .

θk+1 = θk + fθ (ωk,vk,δω ,δv) (1)

xk+1 = xk +(vk + δv)T cos[θk] (2)

yk+1 = yk +(vk + δv)T sin[θk] (3)

Lk+1 = Lk (4)

where θk is the mobile robot pose angle, and ωk, vk are mobile
robot turning rate and its velocity. δω ,δv are the associated
noises for each ωk, vk respectively. While, xk,yk are the x,y
cartesian coordinate of the mobile robot and Lk ∈ R

2m,m =
1,2, ...N is each respective landmark xi,yi(i = 1,2, ...l) loca-
tions. T is the sampling rate. The process model for the land-
marks is unchanged as the landmarks are assumed to be station-
ary and are given. In H∞ Filter algorithm, the prediction state is
given by

X̂−
k+1 = fk(X̂k,ωk,vk,0,0) (5)

where X̂k ∈ R
(3+2m)×(3+2m) is the estimated augmented mobile

robot and landmarks state with its associated covariance Pk+1.

P−
k+1 = ∇ frPk[I− γ−2Pk + ∇HT

i R−1
k ∇HiPk]−1∇ f T

r

+∇gωvΣk∇gT
ωv (6)

∇ fr,∇gωv are the Jacobian evaluated from the mobile robot

Fig. 2. Process(left) and Measurement Model(right) of SLAM

motion in (1)-(4) showing the Jacobian for robot and Jacobian
for its associated noise respectively. Σk is the control noise
covariance. For stationary landmarks and when T = 1,

∇ fr =

⎡
⎢⎣

1 0 0 0
−vsinθ 1 0 0
vcosθ 0 1 0

0 0 0 I

⎤
⎥⎦ ,∇gωv =

[
∇ fωv

0

]
(7)

where I is an identity matrix with an appropriate dimension.
The mobile robot then makes measurements using its extero-
ceptive sensors and is shown by

zi =
[

ri
ϕi

]
=

[√
(xi − xk+1)2 +(yi − yk+1)2 + vi

arctan yi−yk+1
xi−xk+1

−θk+1 + vθi

]
(8)

= HiXk+1 + vriθi (9)

where ri and θi is the relative distance and measurements be-
tween robot and landmark i respectively. x i,yi show the respec-
tive landmarks number. This equation defines that the mobile
robot measures relative distance and angle from a specific mth

landmark with some associated noises of vi, vθi .

Meanwhile, the mobile robot measurements about a landmark
m is shown by using Jacobian as

∇Hi =

[
0 − dxk

r − dyk
r

dxk
r

dyk
r

−1 dyk
r2 − dxk

r2 − dyk
r2

dxk
r2

]
= [−e−AiAi] (10)

where r =
√

(xi − xk)2 +(yi− yk)2, dxk = xi−xk and dyk = yi−
yk.

e =
[
0
1

]
, Ai =

[
dxk
r

dyk
r

− dyk
r2

dxk
r2

]

The updated state covariance is given by below equations,

ψ = Ik +(∇HT
i R−1

k ∇Hi − γ−2Ik)Pk

P+
k+1 = ∇ frPkψ−1

k ∇ f T
r + ∇gωvΣk∇gT

ωv (11)

where Kk = Pk∇HT
k (∇HiPk∇Hi

T +R)−1 with the corrected state
update described by

X̂+
k+1 = frX̂k +Kk+1(HiXk −HiX̂k) (12)

Notice that in (12) onward, Hm is replaced by Hi to indicate the
Jacobian is evaluated at time k.

3. CONDITIONS FOR CONVERGENCE IN H∞
FILTER-SLAM

The Fisher Information Matrix(FIM) is used to determine the
updated state error covariance. If a robot starts moving from its
initial position to point A and doing an observation at that point,
FIM yield the following equation.

Ω =
[
P0v 0
0 P0m

]−1

+
[−HT

A
AT

]T

R−1
A [−HA A]− γ−2In (13)

=
[
P−1

0v +HT
A R−1

A HA − γ−2In −HT
A R−1

A A
−AT R−1

A HA P−1
0m +AT R−1

A A− γ−2In

]
(14)

where P0v,P0m are the initial state covariance for robot and
landmarks respectively. In is an identity matrix that hold an
appropriate dimension. The landmarks are assumes to be sta-
tionary, so there are no noises affecting the prediction process
for landmarks state. Equation (14) is said as the feasible condi-
tion(see P.Bolzern et.al (1999)) and is nontrivial to comprehend



the behavior of the filter during estimation. After one time
prediction, we have

Pk = P0v +Qk (15)

Equation (15) explains that in every update, the state error
covariance is also influenced by the process noise and play
an important role to give a sufficient information in H∞ Filter.
The dissimilarity to Kalman Filter is belong to the existence
of γ which attempts to reduce the system uncertainties in
each observation. Equation (14) lead us to investigate below
two cases of SLAM for different initial state covariance under
consideration to process and measurement noises distributions.

(1) Robot initial state error covariance is smaller than the
landmarks initial state covariance such that P0v << P0m

(2) Robot initial state error covariance is big and same to
landmarks initial state covariance such that P0v = P0m

The first case define that the robot has more confidence about
its location. This case relying on an assumption that robot
has an efficient proprioceptive sensors. Next, the second case
define that both robot and landmarks initial state covariance
are unknown. This case is more likely the problem in real
SLAM application as usually no prior information are available
for reference. Provided by these two conditions, we suggest a
theoretical study and analysis to comprehend their influences
in SLAM problem. We investigate the effects of process and
measurement noises to the estimation with a different cases of
initial state covariance.

As been stated in references, the performance of H∞ Filter
is sensitive and depends on the design parameters such as
the process and measurement noises and also the initial state
covariance. We continue our study to describe explicitly that
the selection of design parameters should satisfies some condi-
tions to guarantee H∞ Filter surpassing EKF performance(see
H.Ahmad et.al (2010)). Furthermore, there are some particular
trade-off which are necessary between the design parameters to
achieve a best solution in H∞ Filter based SLAM.

Before presenting the main results, we analyze the feasibility
condition for H∞ Filter-SLAM.

Theorem 1. Consider (1)-(4) and (6). The filter solution is exist
if it agree with the feasibility condition of γ 2 > R and γ−2 > P0

such that the solution are satisfying P−1
0 > HT R−1H−γ−2I and

1 > HT H > γ−2 −P0.

Proof. As P0 > 0, and γ > 0, we deduce that from (14), P−1
0 >

HT
A R−1

A HA − γ−2I. To reveal this criteria clearly, consider 1-
D SLAM(a robot with a single coordinate system observing
landmarks. Eventually, we have P−1

0 > HT
A R−1

A HA − γ−2. By
using this equation, by H.Ahmad et.al (2010) it is easy to verify
that if γ2 > R, then for 1-D SLAM the following must be
satisfied.

HT
A R−1

A HA > γ−2 −P0

HT
A HA > (γ−2 −P0)R

and HT
A HA < 1. Furthermore, by the above expression, it is easy

to understand that in order to achieve above result, γ −2 > P0
must be guaranteed in each observation.

Notice that unlike P.Bolzern et.al (1999), additional conditions
are required. Now we are ready to examine the sufficient
condition for convergence for each cases.

3.1 Case 1: P0v << P0m

The preceding section explains that FIM is used to interpret
H∞ Filter behavior in each update with comparison to the EKF.
Hence, (14) is utilize to reveal its significance in pertaining the
influence of design parameters to H∞ Filter.

If P0v << P0m, then we assume that P−1
0m → 0. Thereby,

Ω =
[
P−1

0v +HT
A R−1

A H − γ−2In −HT R−1
A A

−AT R−1
A HA AT R−1

A A− γ−2In

]
(16)

Notice that, the diagonal elements are essential for designer
to obtain some sufficient conditions in H∞ Filter. Moreover,
bear in mind that Ω must always preserves at least a Positive
semidefinite matrix(PsD) in each observation. These two facts
are vital to secure a reliable estimation in H∞ Filter.
Proposition 1. Given γ > 0. For a case of a robot that has more
confidence about its initial state than the landmarks state, γ is
affected by the initial state covariance, process and measure-
ment noises and its selection must satisfying below properties.

γ >

√
1

P−1
0θ +R−1

A

(17)

γ >

√
RA(dx2 +dy2)2

(P0x +Qx)−1RA(dx2 +dy2)2 +dx4 +dx2dy2 +dy2 (18)

γ >

√
RA(dx2 +dy2)2

(P0y +Qy)−1RA(dx2 +dy2)2 +dy4 +dy2dx2 +dx2 (19)

where Qx,Qy are the associated process noises for each robot
x,y coordinates.

Proof. First the diagonal elements are observes. This lead
us to analyze two elements of P−1

0v + HT
A R−1

A H − γ−2In and
AT R−1

A A−γ−2In. The former element can substantially explains
the later element. This is shown by the following calculations.

P−1
0v + HT

A R−1
A H − γ−2In

=
[
P−1

0θ 0
0 P−1

0xy

]
+

[−eT

−AT

]T

R−1
A [−e A]− γ−2In

=
[
P−1

0θ + eT R−1
A e− γ−2 −eT R−1

A A
−AT R−1

A e P−1
0xy +AT R−1

A A− γ−2In

]
(20)

where P0θ and P0xy are the initial robot state covariance about
its angle and x,y position. Let P0x, P0y defines each x,y robot
initial state covariances. Note that both diagonal elements must
preserves PsD in each observation. Robot heading is the pri-
mary factor in SLAMS.Huang et.al (2007). Hence, it is analyze
differently with other terms. As each diagonal matrix elements
must at least a PsD, then for the robot heading angle covariance
P0θ , require the following to be satisfied.

P−1
0θ +R−1

A − γ−2 > 0

γ2 >
1

P−1
0θ +R−1

A

(21)

The second diagonal element is check.

AT R−1
A A =

[
dx
r − dy

r2
dy
r − dx

r2

]
R−1

A

[
dx
r

dy
r

− dy
r2 − dx

r2

]

=

[
( dx2

r2 + dy2

r4 )R−1
A ( dxdy

r2 + dydx
r4 )R−1

A

( dydx
r2 + dxdy

r4 )R−1
A ( dy2

r2 + dx2

r4 )R−1
A

]



As we consider a case of robot which has some degree of
confidence about its initial location, we substitute above equa-
tion into the second diagonal term of (20). Subsequently, this
approach lead us to the following expression.

P−1
0x +

[
dx2

r2 +
dy2

r4

]
R−1

A − γ−2 ≥ 0 (22)

P−1
0y +

[
dy2

r2 +
dx2

r4

]
R−1

A − γ−2 ≥ 0 (23)

Then we propose that γ must satisfy the following two condi-
tions for estimation.

γ2 >
RA(dx2 +dy2)2

P−1
0x RA(dx2 +dy2)2 +dx4 +dx2dy2 +dy2

(24)

γ2 >
RA(dx2 +dy2)2

P−1
0y RA(dx2 +dy2)2 +dy4 +dy2dx2 +dx2

(25)

These results significantly describes that it is difficult to obtain
an appropriate γ due to nonlinearities of robot movement and
noises. Nevertheless, as each prediction also embraces the
process noise, we concur that bigger process noise required
bigger γ .

Next we examine the PsD characteristics in each FIM update.
By this view, we find that it gives us a proper selection of γ .
Theorem 2. Given γ > 0 and Theorem 1 is satisfied. If a the
robot initial state covariance is very small than the initial
landmarks state, then γ is choose to satisfy the following
equations.

(1) γ >
√

R
(2) γ >

√
P0v

If else, the updated state error covariance exhibit F.E.T.

Proof. From the properties of PsD, the determinant of the
matrix must be nonnegative. This fact is use to obtain some
criteria for γ selection. The determinant of (14) describes that

(P−1
0v +HT

A R−1
A HA − γ−2I)(AT R−1

A A− γ−2I)

−HT
A R−1

A AT R−1
A H > 0 (26)

The above nonlinear equation is difficult to explain the effect
of γ in each update. We propose the analysis in linear 1-D
SLAM to visualize γ influences. In 1-D SLAM, the determinant
eventually become as stated below.

(P−1
0v +R−1

A − γ−2)(R−1
A − γ−2)−R−2

A > 0

P−1
0v R−1

A − γ−2P−1
0v −2γ−2R−1

A + γ−4 > 0

γ−4 − (2P−1
0v +R−1

A )γ−2 +P−1
0v R−1 > 0 (27)

where HA = [−1 1] and A = 1. Furthermore, it is easily
understood that as P0v,RA > 0, then the following are achieved.

γ−4 − (2P−1
0v +R−1

A )γ−2 +P−1
0v R−1

< γ−4 − (P−1
0v +R−1

A )γ−2 +P−1
0v R−1

= (γ−2 −P−1
0v )(γ−2 −R−1

A ) > 0 (28)

We now understand that there exist two different cases with two
respective conditions.

(1) γ >
√

R and γ >
√

P0v

(2) γ <
√

R and γ <
√

P0v

However, condition (2) is unlikely to happen. This is due to
by analyzing (14), this condition can yield a negative definite
matrix. Therefore, condition (1) is apparently the solution for
this case. More over, from above we explicitly identified the
relationship between γ , initial state covariance and measure-
ment noise. To add more, the process noise is also influencing
γ selection as it is included in each state covariance prediction
step.

It is known that according to the literatures, the robot angle
act as an important factor to be considered in SLAM prob-
lemS.Huang et.al (2007). As been proposed by Theorem 1 and
Proposition 1 in this paper, the designer must ensure P0 > R−1

and (21) are fulfilled. γ is selected such that by incremen-
tally increasing its value corresponding to the value given by
Proposition 1 and Theorem 1 to obtain the best solution. Now,
we proceed to examine the next case for SLAM.

3.2 Case 2: P0v = P0m

This condition is the appropriate situation for an actual SLAM
problem. It is obvious that, if a robot is arbitrarily put in an
unknown environment, then it does not have information about
its initial location even though is being equipped with high
accuracy sensors. Such a situation presumes an uniform distri-
bution for both robot and landmarks belief. We now proposed
the following theorem to analyze the estimation behavior for
H∞ Filter based SLAM.

Theorem 3. Given γ > 0 and Theorem 1 is satisfied. There is a γ
that gives a best solution to SLAM which satisfy the following
if and only if both robot and landmarks initial state covariance
are very big such that robot does not have any prior information
about its initial position.

γ >

√
R

1−√
R

(29)

Proof. Consider that both robot and landmarks initial state
covariances are too big. By referring to the previous case,
the determinant of the updated state covariance for a robot
observing landmarks at point A yield below equation.

(P−1
0v +HT

A R−1
A HA − γ−2I)(P−1

0m AT R−1
A A− γ−2I)

−HT
A R−1

A AAT R−1
A HA > 0 (30)

To simplify this analysis, we consider again 1-D SLAM prob-
lem. For convenience, let P0v = P0m. By this assumption, (29)
drive us to the following equation.

(P−1
0 +R−1

A − γ−2)2 −R−2
A > 0 (31)

After calculations and some arrangements, we obtain that

γ−4 −2γ−2(P−1
0 +R−1

A )+P−2
0 +2P−1

0 R−1
A > 0 (32)

Consider about above equation and the fact that P0 >>
0(P−1

0 → 0). Hence, by through factorization, we arrived in γ
that yield

γ >

√
R

1−√
R

(33)

Remark that, process noise still slightly effect the estimation if
it is too big. If such conditions occurred, then γ must be tune
carefully to achieve a desired outcomes. Refer back to the filter
algorithm, H∞ Filter estimation should be same to EKF if γ is
set to be very big. Related to this fact, we propose a condition of



γ where H∞ Filter has better performance than EKF. If F.E.T is
observable, then γ must be increase to obtain good result. This
is the common step in H∞ Filtering which finally approximating
the same estimation behavior to EKF. The next section identify
and evaluate clearly about our result.

4. SIMULATION RESULTS

The results obtained above are examined through a simulation.
We consider a small environment which have the parameter
describes in Table 1. We also assume that the robot extero-
ceptive sensors can observes its surrounding and the process
noise are small. The robot is assigned to move in some direction
while doing observations. Landmarks are also assume to be
point landmarks and are stationary. We compare the estimation
results between H∞ Filter and EKF in SLAM regarding map
construction, state error covariance update and RMSE for each
cases that have been analyzed in the preceding section. Note
that the process noise are kept consistently very small for both
cases.

Table 1. Simulation Parameters

Sampling Time, T 0.1[s]

Process noise,Q 1×10−7

Observation noise,
Rθi ,Rdistancei

Rθi = 0.002,Rdistancei = 0.002

Robot Initial
Covariance Pvv

1×10−2

Landmarks Initial
Covariance Pmm

1×104

Figs.3-5 illustrates the simulation results for case 1 whenever
the mobile robot has confidence about its initial position in
comparison to the landmarks P0v << P0m. Based on these fig-
ures, it is observable that the estimation of H∞ Filter outperform
EKF. The H∞ Filter convergence is also smaller than EKF. The
robot path estimation has sufficiently provides a meaningful
results where H∞ Filter is better than EKF. Evaluation about
the RMSE for the robot position also guaranteed that H∞ Filter
has smaller error than EKF. These result are perceived if and
only if the condition of γ >

√
R as proposed in our theoretical

analysis in the previous section.

On the other hand, Figs. 6-8 shows the results of case 2 of
initial covariances of 1 × 104 for both robot and landmarks
states. We consistently have the same performance as described
by Fig.3-5. Robot can estimate its current path and location
with some level of certainty. The uncertainties of estimation
proved that H∞ Filter still surpassing EKF performance. The
RMSE evaluation about the robot path also contributes the same
characteristics which also agree that H∞ Filter can provide a
better solution in SLAM problem if and only if γ >

√
R is

satisfied in each observations.

However, if the condition of γ >
√

R is not fulfilled, then
the estimation become erroneous as explained in Fig.9. The
position of landmarks and robot are diversely located in the
environment. EKF performs better in this situation.

Even though it seems that we must ensure γ >
√

R, remark that
initial state covariance and process noise have the possibilities
to influence the estimation. Bigger initial state covariance and
process noise contributes to bigger selection of γ especially for
case A. Nevertheless, we can conclude that all of the results
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Fig. 5. Case 1: Robot estimation error performance between H∞
Filter-EKF

sufficiently supports our analysis. Observing case B where the
robot angle show that it require γ to at least satisfy γ >

√
R. It is

known that the robot angle play an important role for estimation
purposes and the difference between both filter performance is
observable via Fig.5.

Even more, H∞ Filter has guaranteed that the its estimation sur-
passed EKF even when in a gaussian noise environment with an
appropriate selection of γ and parameters design. Besides, our
results supports H.Ahmad et.al (2009) analysis as the state error
covariance update converge almost to zero in the estimation.
To add more, we also found that the EKF estimation becomes
more inconsistent as the initial state covariance become bigger.
Even if in this condition, HF still preserves better estimation. To
conclude, H∞ Filter-SLAM is one of the competitive solution
for SLAM especially for bigger initial state covariance and non-
gaussian noise environment.
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Fig. 6. Case 2: SLAM performance between H∞ Filter-EKF
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Fig. 7. Case 2: Updated state error covariance between H∞
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Fig. 9. H∞ Filter divergence about estimation in comparison to
EKF approach

5. CONCLUSION

We have already shown by theoretical analysis and experimen-
tal evaluations that H∞ Filter is one of the candidates for SLAM
especially for an environment with unknown noise character-
istics. Given by two cases, we suggest that in general, the
measurement noise must be less than γ 2 for a system which
posses smaller process noise. Further attention is required if
both initial state covariance and process noise are big which
consequently demand bigger γ selection for the whole system
to operate efficiently. However, to sufficiently achieve an ex-
pected performance in H∞ Filter, designer must ensure that
they satisfies the above given conditions in their system design
regarding the conditions of initial state covariance, process and
measurement noises distributions.
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