圧縮荷重下にある進展き裂のE積分による エネルギ解放率の有限要素解析

矢富盟祥¹•鱸 洋一²

「正会員 Ph.D. 金沢大学教授 工学部土木建設工学科(〒920-8667 金沢市小立野二丁目 40-20) 2学生員 工修 金沢大学大学院博士課程 自然科学研究科(〒920-8667 金沢市小立野二丁目 40-20)

コンクリートや岩石などの脆性材料の破壊強度や、地震発生メカニズムの解明の研究など、圧縮荷重下にある 進展き裂の破壊力学的考察は非常に重要である。そこで、本研究ではその基礎的研究となる圧縮荷重下におけ る進展き裂のエネルギ解放率を補ひずみエネルギ型E積分公式を用いた有限要素解析により求め、E積分の圧縮 荷重下にある進展き裂解析の有効性を検証すると共に、エネルギ解放率破壊規準を用いて圧縮荷重下にあるき 裂の進展挙動の考察を行った。

Key Words : compressive loads, crack, friction, E-integral, energy release rate, kinking, Finite element method

1. まえがき

岩石やコンクリートなどの脆性材料の強度を推定 することは工学的に非常に重要な問題であり、それ に対するアプローチとしては破壊力学的手法を用 いることが有効であると考えられ,多くの研究が精 力的に成されている. 破壊力学とは Griffith の破 **壊理論^{1), 2)}に始まったき裂の力学であり**, Irwin に よって提唱された応力拡大係数K値による破壊靭 性値の概念³⁾へと発展し,今日ではすでに金属な どを主とする工業材料の材料特性の1つとして設 計等に用いられている.しかし、それらの金属材料 では進展き裂が引張り荷重により開口している場 合を対象としたものがほとんどである. それに対して 岩石,コンクリートなどの材料では圧縮荷重下での 強度が問題であり、その圧縮破壊過程のメカニズ ムは引張り破壊過程に比べて非常に複雑であるこ とが知られている. 圧縮荷重下では多くの場合, き 裂は閉じて接触し,荷重状態によっては摩擦力に 保持されながら滑り, モードⅠ型とモードⅡ型(せん 断型)の混合モード状態で折れ曲がって進展する. このような接触・摩擦や折れ曲がり進展き裂など境 界条件の取り扱いの困難さからか,過去に有用な

理論的・実験的報告^{4),5),6)}は幾つか見られるが, 折れ曲がり進展を考慮した理論的な研究報告は 数少ない. Nemat-Nasser and Horiiらは接触・ 摩擦条件や折れ曲がり進展き裂を種々の仮定の 下でモデル化を行って解析し,工学的に非常に有 用な結果を報告している⁷⁾.なお,そこでは,き裂進 展方向に関する破壊規準は最大周応力説が用い られており, 圧縮荷重は二軸の場合,主応力比が 小さい場合に限られている.

本研究では,最初に破壊力学において破壊規 準として重要なパラメータの1つであるエネルギ解 放率を求めるE積分公式⁸⁰を,過去に発表した相 反作用型のE積分公式と,新たにひずみエネルギ 型E積分公式,補ひずみエネルギ型E積分公式な る3つのタイプを分離導入した.そして,き裂先端ま でを含む,き裂面上に摩擦力などの表面力が作用 する場合のエネルギ解放率を単純に数値解析する 場合は,補ひずみエネルギ型E積分公式が最も精 度が良いことの議論を行った.

次いで,一軸圧縮荷重下にある進展き裂におい て,接触・摩擦条件を考慮した有限要素解析をお こない,補ひずみエネルギ型のE積分を用いて,き 裂が直進する場合のエネルギ解放率を求めた.ま

Fig.1 Quasi-statically extending crack under compressive loads.

た,その場合の理論解と比較し,その有用性を検 討した.さらに圧縮荷重下での実際のき裂進展挙 動にもよく見られる,き裂折れ曲がり進展解析を行 ない,最大エネルギ解放率破壊規準を用いて,そ の進展方向の議論を行った.なお,周知のJ積分 では折れ曲がり瞬間時のエネルギ解放率を求める ことは困難であり,積分経路内に介在物や干渉き 裂が存在すると経路独立とはならないが,E積分で はその様な場合でも経路独立である.またE積分で は、積分経路内に複数の干渉き裂を含んでも1つ 1つの進展き裂先端のエネルギ解放率を独立に求 めることができ,さらに折れ曲がり瞬間時のエネルギ 解放率を求めることができるなど,幅広い応用が可 能である.

最後に近年,特にコンクリートや岩盤の分野で注 目されている,せん断破壊^{9).10).11)}の考察を行う 目的で,主応力比を広範囲に変化させた二軸圧 縮荷重下でのエネルギ解放率を求め,エネルギ解 放率破壊規準を用いて,き裂進展特性の議論を 行った.

2. E積分の圧縮荷重下への応用

(1) 圧縮荷重下にある進展き裂のエネルギ解放率 を求めるE積分の表示

Fig.1 のように超弾性体 (ひずみエネルギを持つ 弾性体)に公称表面力 \hat{s} や変位 \hat{u} による"外荷重" が与えられ,その中に存在するき裂が閉じており, き裂面上に摩擦力が発生しているとき,外荷重(\hat{s} , \hat{u})の増加に伴い一般には折れ曲がり進展している き裂を考える.以後,き裂面が閉じているような外 荷重(ŝ, û)を便宜上,圧縮荷重と呼ぶ.

このとき,き裂が準静的に進展している場合のエ ネルギ解放率は

$$E(\ell,\alpha) = \int_{\Gamma \cap C^{\pm}} \mathbf{s}(\ell,\alpha) \cdot \frac{\partial \mathbf{u}(\ell,\alpha)}{\partial \ell} ds - \frac{\partial}{\partial \ell} \int_{\mathcal{A}} \mathbf{w}(\ell,\alpha) da$$
(1)

で定義される.ここで,各変数は基準系の位置 X の関数でもあるが、記述を簡単にするため省略した、 以下同様の記号,また誤解のおそれが無い場合, 全ての変数をも省略する.ℓは基準系での,き裂長 さであり ∂/∂ℓは右微分係数をとる.αは荷重履歴 パラメータ $\beta(0 \le \beta \le \alpha)$ が最終荷重状態であること を表わす.ここで荷重履歴パラメータβとは,き裂を 進展させるために物体の境界上に与えられた外荷 重($\hat{s}(\beta), \hat{u}(\beta)$)の載荷履歴を特定するパラメータ のことであり,例えば単軸集中荷重 P が荷重制御 で単調増加するように与えられた場合にはβ=Pと おくことができる. A は物体内にある進展き裂先端 を含む基準系での任意の閉領域である.C^tはA 内のき裂上下面の境界であり, Гはそれを除いた Aの境界である. sは Γ とC[±]上の公称表面力であ り、uは変位である. Sを第一種 Piola-Kirchhoff 応力, $H(=\nabla u)$ を変位勾配とすると, ひずみエネル ギ密度wは

$$w(\ell,\alpha) = \int_0^\alpha S(\ell,\beta) \cdot \frac{\partial H(\ell,\beta)}{\partial \beta} d\beta$$

のように定義される.ここでは,き裂面上に摩擦力 が存在するため,超弾性体であってもひずみエネ ルギ密度は,一般に外荷重の載荷履歴によって異 なる値をとる(ℓ,α)の関数となる.式(1)は領域 A内 に進展き裂先端を含まなければ,つり合い式

Div S = 0

(*Div*は基準系の位置 *X*での発散を表わす)と,超
 弾性体であるから

$$S = \frac{\partial w(H)}{\partial H}$$

$$\frac{\partial \mathbf{w}}{\partial \ell} = \mathbf{S} \cdot \frac{\partial \mathbf{H}}{\partial \ell}$$

252

であることを考慮し,発散定理を使えばゼロとなるので,式(1)の経路独立性は自明である.(このとき, 積分経路には,き裂面 C[±]を含んでいることに注 意.)

式(1)の右辺第2項中のひずみエネルギの積分 項は

$$\int_{A} w da = \int_{A} \int_{0}^{\alpha} S \cdot \frac{\partial H}{\partial \beta} d\beta dA = \int_{\Gamma \cap C^{t}} \int_{0}^{\alpha} s \cdot \frac{\partial u}{\partial \beta} d\beta dA$$

のように変形できるので、これを式(1)に代入すると

$$E(\ell,\alpha) = \int_{\Gamma \sim C^{\pm}} (s \cdot \frac{\partial u}{\partial \ell}) ds - \frac{\partial}{\partial \ell} \{ \int_{\Gamma \sim C^{\pm}} \int_{0}^{\alpha} (s \cdot \frac{\partial u}{\partial \beta}) d\beta ds \}$$
(2)

となる. ここで式(2)を変形すると

$$E(\ell,\alpha) = \int_{\Gamma \cap C^4} \int_0^\alpha \left(\frac{\partial s}{\partial \beta} \cdot \frac{\partial u}{\partial \ell} - \frac{\partial s}{\partial \ell} \cdot \frac{\partial u}{\partial \beta} \right) d\beta \, ds \quad (3)$$

が得られる.上式右辺は Betti の Reciprocal Theorem (相反作用の定理)の表現と同様な形を している(ただし,式(3)のE積分公式は一般に非線 形でも有効である)ので,式(3)を相反作用型E積 分公式(E-integral of the reciprocal type)と 呼ぶ.

さらに,式(3)を変形すると次式を得る.

$$E(\ell,\alpha) = \frac{\partial}{\partial \ell} \{ \int_{\Gamma \cap C^{\star}} \int_{0}^{\alpha} (\frac{\partial s}{\partial \beta} \cdot u) d\beta \, ds \} - \int_{\Gamma \cap C^{\star}} (\frac{\partial s}{\partial \ell} \cdot u) ds$$
(4)

ここで上式右辺第一項括弧内に発散定理を使うと

$$\int_{\Gamma \cap C^{\pm}} \int_0^{\alpha} \frac{\partial s}{\partial \beta} \cdot \boldsymbol{u} \, d\beta \, ds = \int_{\mathcal{A}} \int_0^{\alpha} \frac{\partial S}{\partial \beta} \cdot \mathbf{H} \, d\beta \, dA$$

となり

$$\mathbf{w}_{c}(\ell,\alpha) = \int_{0}^{\alpha} \frac{\partial S}{\partial \beta} \cdot \boldsymbol{H} \, d\beta$$

であるから,式(4)は補ひずみエネルギ密度(complementary strain energy density)を用いたエ ネルギ解放率の定義式になっている.

そこで経路独立な(2次元の場合)線積分公式で ある

式(2)をひずみエネルギ型E積分公式

(E-integral of the strain energy type)

式(4)を 補ひずみエネルギ型E積分公式 (E-integral of the complementary strain energy type)

と呼ぶ.

ひずみエネルギ型E積分公式(2)(または定義式 (1))より,物体境界および,き裂面上で

$$\boldsymbol{s}\cdot\frac{\partial\boldsymbol{\boldsymbol{u}}}{\partial\boldsymbol{\boldsymbol{\ell}}}=\boldsymbol{0}$$

の場合のエネルギ解放率は,物体全体のひずみエ ネルギの減少率に等しいことが分かる.また,本研 究の場合のように,物体境界ではℓに無関係な外 荷重が与えられ,き裂面上ではℓに無関係な摩擦 力が発生し,結局全境界上で

$$\boldsymbol{u}\cdot\frac{\partial \boldsymbol{s}}{\partial \ell}=\boldsymbol{0}$$

が満たされている場合のエネルギ解放率は,式(4) より,物体全体の補ひずみエネルギの増加率に等 しいことが分かる.

線形超弾性体の場合で,変形が微小の場合に 限定された場合(以下,微小変形する線形弾性体 と言う)では外荷重が比例負荷で与えられると, ℓを 固定したとき,物体内部の表面力sも比例負荷と なり

$$\begin{cases} s(\ell,\beta) = \beta \,\overline{s}(\ell) \\ u(\ell,\beta) = \beta \,\overline{u}(\ell) \end{cases} \quad \text{on} \quad \Gamma$$

とおくことができる. また, 進展き裂面上の表面力 s も同様に

$$s(\ell,\beta) = \beta \tilde{s}(\ell)$$

$$u(\ell,\beta) = \beta \tilde{u}(\ell)$$
 on C^{\pm}

とおくことができる.これを式(2)に代入すると,荷重 履歴パラメータによる項は積分でき,ひずみエネル ギ型E積分公式は

$$E(\ell) = \int_{\Gamma \cap C^{t}} (\mathbf{s} \cdot \frac{\partial \mathbf{u}}{\partial \ell}) d\mathbf{s} - \frac{\partial}{\partial \ell} \{ \int_{\Gamma \cap C^{t}} (\frac{1}{2} \mathbf{s} \cdot \mathbf{u}) d\mathbf{s} \}$$
(5)

となる.式(3)に代入すると,相反作用型E積分公 式は

$$E(\ell) = \frac{1}{2} \int_{\Gamma \cap C^{\pm}} (\mathbf{s} \cdot \frac{\partial \mathbf{u}}{\partial \ell} - \frac{\partial \mathbf{s}}{\partial \ell} \cdot \mathbf{u}) ds$$
 (6)

となる. 式(4)に代入すると, 補ひずみエネルギ型E 積分公式は

$$E(\ell) = \frac{\partial}{\partial \ell} \{ \int_{\Gamma \cap C^{\pm}} (\frac{1}{2} \mathbf{s} \cdot \mathbf{u}) ds \} - \int_{\Gamma \cap C^{\pm}} (\frac{\partial \mathbf{s}}{\partial \ell} \cdot \mathbf{u}) ds \quad (7)$$

となる.以上が微小変形する線形弾性体に,比例 負荷で圧縮荷重が載荷された場合の,エネルギ解 放率を求めるE積分公式である.

ここで式(2)から式(3),また式(3)から式(4)を導く 際に、境界 $\Gamma \cap C^{\pm}$ による積分と、き裂長さ ℓ による 偏微分の入れ替えを行ったが、進展き裂面上に摩 擦力などの表面力が存在する場合は、き裂長さの 変化につれて、その境界 C^{\pm} の大きさが変化する. その場合、理論的には3者とも同一の値となること が容易に証明できるが、数値解析する際には補ひ ずみエネルギ型E積分公式(4)および(7)が最も精 度が良いことが推察できる(詳細は付録を参照). そこで本研究では式(7)を解析に用いた.

(2)境界条件

本研究では、Fig.2 に示すように無限遠から一様圧縮(主)応力 $\sigma_1(<0)$, $\sigma_3(<0)$ が作用している微小変形する線形等方弾性体中を,き裂右先端のみが準静的に進展している場合の2次元平面問題を考える.ここでは引張りを正とし、 $\sigma_1 \geq \sigma_3$ の方向は直交しており、 $|\sigma_1| > |\sigma_3| \geq toologe - toolo$

$$\begin{cases} \sigma_x = \sigma_1 \cos^2 \gamma + \sigma_3 \sin^2 \gamma \\ \sigma_y = \sigma_1 \sin^2 \gamma + \sigma_3 \cos^2 \gamma \\ \tau_{xy} = (\sigma_1 - \sigma_3) \sin \gamma \cos \gamma \end{cases}$$
(8)

このとき,前述したように,物体内に進展き裂が存 在し,さらにその面上に摩擦力が存在する場合に は,たとえ物体が弾性体であったとしても,その荷 重載荷履歴により最終変形状態が違ってくるので 注意が必要である.たとえば,進展き裂面に垂直な 応力 σ_y を載荷した後,せん断応力 τ_{sy} を載荷する と,進展き裂面上に滑り方向とは逆向きに摩擦力 が働き,その相対変位は $\sigma_y = 0$ の時より小さくなる

Fig.2 A frictional crack under biaxial compression.

が、逆にせん断応力 τ_{sy} を載荷した後、垂直な応力 σ_y を載荷した場合は、進展き裂面上には摩擦力 が働かず、その最終変形状態に何ら摩擦による影 響はなく、 $\sigma_y = 0$ の場合と同様の相対変位を生じ る. このような比例負荷でなく、荷重載荷履歴によ って変化する場合のE積分の物理的意味、および それによるエネルギ解放率の解析は別に発表する こととし、本報告では $\sigma_1 \ge \sigma_3$ がある一定の比を保ち つつ、比例的に増加する載荷状態の場合に限定 する.

進展き裂面上の状態は,式(8)で表される圧縮 応力の大きさやその載荷履歴などにより,さまざま な状態が考えられるが,ここではその状態を<u>1)固着</u> 接触状態,2)滑り接触状態,3)開き状態の3つに 大きくわけて考える.ただし,滑り接触状態のとき, 滑り方向とは逆向きに摩擦力が発生するが,摩擦 力は Coulomb の摩擦法則に従うものとし,そのと きの摩擦係数は μ (定数)とする.

1)固着接触状態とは,進展き裂面上での法線 方向表面力成分 s,が圧縮状態にあり,かつ接線 方向表面力成分 s,が限界摩擦力以下のとき,すな わち

$$s_{n}^{+} > 0, \ s_{n}^{-} < 0$$
 かっつ, $|s_{\iota}^{\pm}| < \mu |s_{n}^{\pm}|$

であるとき,進展き裂面上の各点では,表面力と変 位の連続性が成立している場合,すなわち

$$\begin{cases} s_{t}^{*} + s_{t}^{-} = 0 \\ s_{n}^{*} + s_{n}^{-} = 0 \\ u_{t}^{*} - u_{t}^{-} = 0 \\ u_{n}^{*} - u_{n}^{-} = 0 \end{cases}$$
(9)

のような関係が成立している状態であり,進展き裂 面が物体内部と同じような挙動をする接触状態の ことをいう.以後,進展き裂面上の各物理量は Fig.3 に示すように、き裂下面に対して接線方向に x_i ,法線方向に x_n という軸をとると、sは表面力成 分,uは変位成分であり、上付き±はそれぞれき裂 上下面での物理量であり、また下付きt,nはそれぞ れ進展き裂面上の接線・法線方向の物理量を示し ている.

2)滑り接触状態とは,外力の負荷により進展き 裂面上での接線方向表面力成分が限界摩擦力 以上になったとき,すなわち

$$s_n^+ > 0, \ s_n^- < 0 \quad \forall \neg \neg, \ |s_t^{\pm}| \ge \mu |s_n^{\pm}|$$

であるとき,

$$\begin{cases} s_t^{+} + s_t^{-} = 0 \\ s_n^{+} + s_n^{-} = 0 \\ |s_t^{\pm}| = \mu |s_n^{\pm}| \\ u_n^{+} - u_n^{-} = 0 \end{cases}$$
(10)

のように上下面において垂直方向変位成分は等し いが,接線方向変位成分は滑りの発生により未知 量となっているような接触状態である.このとき式 (9)₃のかわりに(10)₃のように,接線方向表面力成 分は滑りながら限界摩擦力に保持される条件が必 要となる.

3) 開き状態とは,負荷後の変形によって非接触 化する状態をいい,負荷前に接触していた点の法 線方向表面力成分が引張りになる条件,すなわち

$$s_n^+ \leq 0, \ s_n^- \geq 0$$

であるようなとき,自由境界となるのであるから

$$s_t^+ = s_t^- = s_u^+ = s_u^- = 0$$

のようになる状態である.

Fig.3 Tractions and displacements along the crack surfaces.

(3)摩擦力が存在する場合の直進進展き裂のエネ ルギ解放率の理論解

無限板内にある進展き裂は,前節で与えられる ような圧縮荷重下($\sigma_1 < 0, \sigma_3 < 0$)では閉じて接触 し,き裂面上の各点で Coulomb の摩擦法則,す なわち式(10)に従いながら,滑り進展する.このとき の,き裂が直進方向に進展する場合のエネルギ解 放率の理論解を導く.き裂が閉じて接触し,滑り進 展しているき裂先端の特異応力はモード II のみで あるので,無限遠からのせん断応力による応力拡 大係数は,式(8)より

$$K_{II\infty} = \tau_{xy} \sqrt{\pi \frac{\ell}{2}}$$
$$= (\sigma_1 - \sigma_3) \sin \gamma \cos \gamma \sqrt{\pi \frac{\ell}{2}} \quad (<0)$$

と表せる.

一方,き裂面上の摩擦力 τ_c は垂直応力,すなわち,無限遠での σ_v により

$$\tau_C = -\mu \sigma_y$$

と表せるので,このき裂面上の摩擦力による応力拡 大係数は

$$K_{\Pi C} = \tau_C \sqrt{\pi \frac{\ell}{2}}$$
$$= -\mu \sigma_y \sqrt{\pi \frac{\ell}{2}}$$
$$= -\mu (\sigma_1 \sin^2 \gamma + \sigma_3 \cos^2 \gamma) \sqrt{\pi \frac{\ell}{2}} \quad (>0)$$

となる.よって最終的に,き裂先端での応力拡大係 数は次式のように表せる.

$$K_{II} = K_{II\infty} + K_{IIC}$$

= $[(\sigma_1 - \sigma_3)\sin\gamma\cos\gamma$ (11)
 $-\mu(\sigma_1\sin^2\gamma + \sigma_3\sin^2\gamma)]\sqrt{\pi\frac{\ell}{2}}$ (< 0)

ここで,この式の符号について物理的意味を考 えてみると,右辺の[]括弧内がゼロの時は外荷重 によるせん断力 r_{sy}と,進展き裂面上の摩擦力 r_c がつり合っているときであり,すなわち限界摩擦力 状態であることを表わしている.また,右辺[]括弧 内が正となるときは,摩擦力がせん断力を上回って いるときであり,進展き裂面は動き出さず静止して いる状態であることを表している.よって式(11)は次 のように書くことができる.

$$\begin{cases} K_{II} = [(\sigma_1 - \sigma_3)\sin\gamma\cos\gamma - \mu(\sigma_1\sin^2\gamma + \sigma_3\cos^2\gamma)]\sqrt{\pi\frac{\ell}{2}}\\ for \ [(\sigma_1 - \sigma_3)\sin\gamma\cos\gamma - \mu(\sigma_1\sin^2\gamma + \sigma_3\cos^2\gamma)] < 0\\ K_{II} = 0\\ for \ [(\sigma_1 - \sigma_3)\sin\gamma\cos\gamma - \mu(\sigma_1\sin^2\gamma + \sigma_3\cos^2\gamma)] \ge 0 \end{cases}$$
(12)

考えている物体は、微小変形する線形等方弾 性体であるので、応力拡大係数と、き裂が直進方 向に進展する場合のエネルギ解放率Gの間には 一意なる関係があり、ヤング率をE、ポアソン比をv とすると

であるので,式(12)をエネルギ解放率になおすと

Fig.4 Finite element mesh for a model with a single crack and the integral paths.

Fig.5 Finite element mesh near the crack tips and the integral paths.

$$\begin{cases} G = \frac{\pi \ell}{2\mathbf{E}'} [(\sigma_1 - \sigma_3) \sin \gamma \cos \gamma - \mu(\sigma_1 \sin^2 \gamma + \sigma_3 \cos^2 \gamma)]^2 \\ for \quad [(\sigma_1 - \sigma_3) \sin \gamma \cos \gamma - \mu(\sigma_1 \sin^2 \gamma + \sigma_3 \cos^2 \gamma)] < 0 \\ G = 0 \\ for \quad [(\sigma_1 - \sigma_3) \sin \gamma \cos \gamma - \mu(\sigma_1 \sin^2 \gamma + \sigma_3 \cos^2 \gamma)] \ge 0 \end{cases}$$

$$(13)$$

となる.

3. 有限要素モデルと解析方法

本研究では、E積分の値は、有限要素解析において基準状態の、き裂長さℓのモデル(以後、基本 モデルと呼ぶ)と、き裂長さがΔℓ伸びたモデル(以 後、き裂進展モデルと呼ぶ)の2つのモデルについ て解析を行い、き裂長さℓによる偏微分項は2点差 分近似することにより、また経路積分は、表面力と 変位をそれぞれ離散化した等価節点表面力 s,と 節点変位 u,を、積分経路上の全節点で和をとるこ とにより求める. すなわち、式(7)の数値解析には、 次式を用いた.

(a) Basic model

(b) Crack extension model

Fig.6 Finite element mesh near the crack tip and kinking angle θ .

$$E = \sum_{i=1}^{n} \left\{ \frac{s_i(\ell + \Delta \ell) \cdot u_i(\ell + \Delta \ell) - s_i(\ell) \cdot u_i(\ell)}{2\Delta \ell} - \frac{s_i(\ell + \Delta \ell) - s_i(\ell)}{\Delta \ell} \cdot u_i(\ell) \right\}$$
(14)

ここで n は積分経路上の節点の数であり, $\Delta \ell$ は基 本モデルと, き裂進展モデルのき裂長さの差である. また式(14)内の変数の(ℓ) および($\ell + \Delta \ell$)は, それ ぞれ基本モデル, き裂進展モデルの物理量である ことを表している. E積分による方法の特別な場合 にあたる全エネルギ法では, き裂長さと, その変化 量との比 $\Delta \ell / \ell$ は 0.001~0.006 が良いとの報告¹²⁾ があるが,本研究では, 幾つかのモデルで試行解 析した結果, $\Delta \ell / \ell$ が 0.004~0.06 の範囲で理論 解との誤差が 2%以内であった.そこで, 以後,本 研究では誤差が最も小さかった約 0.3%の場合で ある $\Delta \ell / \ell = 0.0078$ を採用し,解析に用いた.

Table 1 Comparison of errors in the energy release rate between two kinds of finite elements near the crack tips.

	Triangular elements	Singular elements
Mode I	0.2%	0.2%
Mode II	4.0%	0.2%

使用した有限要素モデルは Fig.4, Fig.5, Fig.6 に示すような8節点アイソパラメトリック要素を 基本とした要素分割を行っており,基本モデルの 要素数は 332,節点数は 920 である.き裂進展モ デルは,基本モデルのき裂先端の要素において, 1つの要素辺を新たなき裂面として2つの要素辺に 再メッシュした,すなわち Fig.6 に示すような,2つ の節点を解除(生成)したモデルである.そのため 要素数は同数であるが,節点数は2つ増え 922 と なる.弾性係数Eは花崗岩を想定し 68.6GPa,ポ アソン比vは 0.3 とした.

二軸一様圧縮荷重下での最大主応力 σ_1 は-9.8MPa とし、それに垂直な主応力 σ_3 は、 σ_1 に対 しての比 σ_3/σ_1 (以後"主応力比"と呼ぶ)を 0.0 か ら 0.9 まで変化させて、比例的に与えた.進展き裂 はモデル中央に存在し、き裂長さ ℓ =4cm に対して 横寸法 80cm,縦寸法 80cm で無限板を近似して いる.このモデルと同一幅の、一様引張り荷重を受 けた中央き裂を有する線形等方弾性体・無限長帯 板のエネルギ解放率の級数解と、無限板の厳密解 との差は 0.25%程度であった.

本研究では,き裂右先端のみが進展することを 想定しており, Fig.6 に示すように, き裂折れ曲がり 角度 θ は直進方向から左回りを正とし、 -0.9π か ら 0.9 π まで 0.1 πごとに折れ曲がり角度を変えて 計算できるように要素分割を行った、ここで、き裂先 端には6節点三角形アイソパラメトリック要素と, r⁻¹ の特異性を表現できる特異要素の2つを比較のた め用い,理論解の存在する一様引張り荷重下のモ ードⅠ型の問題と、一様せん断荷重下のモードⅡ 型の問題の解析を行った.その結果が Table 1 で ある. E積分のアイソパラメトリック要素を用いた有 限要素解析への適応を報告した前報13)では、一 様引張り荷重下のモードⅠ型の問題のみで誤差を 検討したため,き裂先端に特異要素は必要でなく, 細かく要素分割することにより6節点の三角形要素 で十分な精度が得られたが,本報告のようにモード Ⅱ型の影響が大きい場合は、そのままでは Table 1 のように精度が落ちることが分かったので、せん 断変形時にも特異性を上手く表現できる特異要素

を採用し、精度の向上を計った.

積分経路は要素辺上に設定してあり,き裂右側 先端を囲む経路(図中点線)を小さい方から 1,2,3,5,き裂両側先端を囲む経路(図中一点鎖 線)を小さい方から4,6,7としてある.ここでの各積 分経路中には,き裂面C[±]の要素辺も含めなけれ ばならない.特に,き裂両側先端を囲む積分経路 には全き裂面が含まれている.このように,E積分で は,周知のJ積分と異なり,積分経路を要素辺上 に設定し,節点での表面力,変位を直接積分公式 の中に代入し計算することができ,精度を上げるこ とができる¹³⁾.

4. 解析結果

(1)一軸一様圧縮荷重下にある摩擦力が存在する 直進進展き裂のエネルギ解放率

Fig.7は一軸一様圧縮荷重 σ_1 (<0; 主応力比 $\sigma_3/\sigma_1 = 0.0$)を $\gamma = 0.25\pi$ (=45°)の方向から比例 的に載荷したとき,き裂が直進する場合 ($\theta = 0.0\pi$ とした場合)のエネルギ解放率を,補ひずみエネル ギ型E積分公式(7)の数値解公式(14)により求めた ものである. 横軸は経路番号であり,縦軸は無限 遠からの一様引張り荷重下にある進展き裂の理論 解により求まるエネルギ解放率

$$G = \frac{\sigma_1^2 \pi \ell}{2\mathsf{E}} \tag{15}$$

で無次元化してある.以後,無次元化したエネルギ 解放率とは、補ひずみエネルギ型E積分公式(7)の 数値解公式(14)の値を,式(15)で無次元化したも のである. Fig.7から分かるように,き裂右先端のみ を囲む経路1,2,3,5,および,き裂両先端を囲む経 路4,6,7のどの経路においても、一定の値となって おり経路独立性が示されている.摩擦係数 µは0.0, 0.3, 0.6の3つの場合をそれぞれ解析したが、どの 摩擦係数でも経路独立性が示されていることが分 かる.図中の点線は式(13)で表される、き裂面上に 摩擦力が存在する場合のエネルギ解放率の理論 解であり、本数値解析のエネルギ解放率は、それと 非常に良く一致していることが分かる.また,その誤 差は,摩擦係数の大きさに関わらず,どの経路に おいても約0.3%程度であった.それは、無限板を 有限板にした差と,ほとんど一致しており,非常に 良い精度で解析できていることが分かる.

Fig.8は一軸圧縮荷重下で圧縮荷重角度 y を

Fig.7 Energy release rate on several integral paths for frictional cracks and a frictionless crack

Fig.8 Variations of energy release rate for frictional cracks and a frictionless crack under several inclined loading angles γ .

 0.0π から 0.5π まで 0.05π ごと,また摩擦係数 μ を 0.0, 0.3, 0.6と変えたときのエネルギ解放率を求め たものである. 横軸は圧縮荷重角度 γ であり、縦軸 は無次元化したエネルギ解放率である. 図中曲線 は式(13)で表される理論解である. どの圧縮荷重 角度においても理論解との誤差は約0.3%以内で あった.この図からも圧縮荷重下での進展き裂のエ ネルギ解放率の解析に、本研究のE積分による方 法が,非常に有効であることが示されている.また、 圧縮荷重角度がある値以上になると, 摩擦力によ り進展き裂面は動かなくなり、エネルギ解放率がゼ ロとなることも分かる. そのエネルギ解放率がゼロと なる圧縮荷重角度は、式(13)によると、摩擦係数 $\mu \, \acute{m} \, 0.3 \, \mathcal{O} \, \mathcal{E} \, \mathfrak{e} \, \mathfrak{t} \, \gamma \cong 0.41 \, \pi \, , \, \mu \, \acute{m} \, 0.6 \, \mathcal{O} \, \mathcal{E} \, \mathfrak{e} \, \mathfrak{t}$ $\gamma \cong 0.33 \pi$ となることが分かるが、本数値解析でも Fig.8のように,それらの圧縮荷重角度以上で,エ ネルギ解放率がゼロとなっていることが分かる.

Fig.9 Variations of energy release rate for a frictional kinking crack under uniaxial compression; $\gamma = 0.25\pi$; $\mu = 0.0, 0.3, 0.6$.

Fig.10 Wing crack under uniaxial compression

(2)一軸一様圧縮荷重下にある摩擦力が存在する き裂の折れ曲がり瞬間時のエネルギ解放率

前節で,一軸一様圧縮荷重下の場合に,摩擦 力が存在する直進き裂の問題を解析し,理論解と 比較することにより,本研究の方法が有効であるこ とが確かめられた.そこで次に,この方法を用いて, 岩石やコンクリート供試体の圧裂試験など,実際の 圧縮破壊現象でもよく観察される,き裂の折れ曲が り瞬間時のエネルギ解放率を解析し,その進展特 性を議論する.

Fig.9 は一軸一様圧縮荷重下で, 圧縮荷重角 度 γ が 0.25 π (=45°)の場合の, き裂の折れ曲 がり瞬間時のエネルギ解放率を求めたものである. 横軸は, き裂折れ曲がり角度 θ で, 縦軸は無次元 化したエネルギ解放率である. き裂折れ曲がり角度 θ は 0.0 π から 0.9 π までの 0.1 π ごと, また摩擦 係数 μ は 0.0, 0.3, 0.6 の場合をそれぞれ解析し た. この図から, 最大エネルギ解放率破壊規準を 使用し, 破壊靱性値が等方的であると仮定するな らば, 摩擦係数の大きさによらず, き裂は初期き裂

Fig.11 Relations between the loading angle and the kink angle, which maximizes the energy release rate, under uniaxial compression; $\mu = 0.0, 0.3, 0.6$

Fig.12 Variations of energy release rate for a frictional kinking crack under uniaxial compression; $\gamma = 0.05\pi$; $\mu = 0.0, 0.3, 0.6$.

面から約 0.4π (=約 72°) 圧縮荷重 σ_1 方向へ折 れ曲がって進みやすいことがいえる.これは Fig.10 に示すような圧縮荷重下でのウィングクラックタイプ の,き裂の折れ曲がり進展開始方向を表わしてい ると考えられる.以後,便宜上,このエネルギ解放 率を最大にする,き裂折れ曲がり角度を破壊角度 (Fracture angle)と呼び, θ_c と表すことにする.

Fig.11 の横軸は圧縮荷重角度 γ であり、縦軸は その圧縮荷重角度 γ の下での破壊角度 θ_c である. μ =0.0 および μ =0.3 の場合,圧縮荷重角度 γ が約 0.1 π (=約 18°)より大きいと、圧縮荷重角度 に関わらず、進展き裂は直進方向から約 0.4 π (=約 72°)主応力方向へ折れ曲がった方向に進み やすいということが分かる.この結果は解析法、破 壊規準の違いはあるが Nemat-Nasser and Horiiら⁷⁾が行った研究と同様の結論となっている. また μ =0.6 の場合, 圧縮荷重角度 γ が 0.15 π を こえると破壊角度 θ_c が減少している. これは文献7) の結果と同様な傾向が示されている. しかし, γ が 約 0.1 π よりも小さい場合は, 例えば γ =0.05 π (=9°)とした Fig.12 の様に, θ =0.0 π (直進方 向)が最大となっており, き裂が折れ曲がらずに, 初 期き裂面と同方向に進んでいくことを表わしている. その値自体は, μ =0.0 の場合に最大エネルギ解 放率が最も大きくなる γ =0.25 π のときと比較すると, 約 10 分の 1 程度と非常に小さくなり, エネルギ解 放率が一定値で破壊するとするならば, より大きな 圧縮荷重の下でないとこのような破壊に至らないこ とが分かる.

(3)二軸一様圧縮荷重下にある摩擦力が存在する き裂の折れ曲がり瞬間時のエネルギ解放率

Fig.13は二軸一様圧縮荷重を γ =0.2 π (=36°) の方向から, 主応力比 σ₃/σ₁ を0.0から0.9まで, 0.1ごと変えて比例的に載荷した場合の、き裂面上 に摩擦の無い、き裂の折れ曲がり瞬間時のエネル ギ解放率を求めた図である.本研究では、Fig.8か ら推察できるように、一軸圧縮荷重下で摩擦 (μ=0.3)がある場合は, 圧縮荷重角度が約0.2 π の場合にエネルギ解放率が最大であること、また主 に二軸としたときの主応力比の影響を検討する目 的であるため,二軸の場合の圧縮荷重角度 γ は **0.2**πに固定して考察を行った.この図から主応力 比が増えていくと等方応力状態に近づくため、どの 折れ曲がり角度でもエネルギ解放率が小さくなって 行き,き裂が不安定進展を開始するには|σ,|およ び $|\sigma_1|$ の両方ともが、より大きくなる必要があること が分かる.進展方向は主応力比が0.1から0.3ぐら いまでは、一軸の場合(主応力比が0.0)のように、 初期き裂面に対して最大主応力σ、方向へ約0.4 π傾いた方向に進展しやすいことが分かるが,主 応力比が0.4から0.9までは直進方向(θ=0.0π) のほうが大きくなっており、エネルギ解放率一定で、 き裂が進展することを仮定するならば、Fig.14のよ うに,折れ曲がらず直進する方向に,せん断破壊し ていくことが予想される.

Fig.15, Fig.16は同様な二軸一様圧縮荷重下 で、き裂面に摩擦が存在する場合の、き裂の折れ 曲がり瞬間時のエネルギ解放率である. Fig.15は μ =0.3の場合で主応力比は0.1ごとに解析を行っ たものであり、主応力比が0.6より大きいと、エネル ギ解放率がゼロであったため省略した. Fig.16は μ =0.6の場合で、主応力比が0.3より大きいと、エ

Fig.14 Shear mode crack under biaxial compression.

ネルギ解放率がゼロであったため省略し,主応力 比を0.05ごとに変えて解析をおこなった.

Fig.17 は, 二 軸 一 様 圧 縮 荷 重 を γ=0.2 π (=36°)の方向から比例的に載荷した場合の,主 応力比と破壊角度の関係を表した図である. 横軸 は主応力比,縦軸は破壊角度である.■はµ=0.0, ●は µ=0.3, ▲は µ=0.6の摩擦係数を持つ進展 き裂の破壊角度であるが、 μ=0.0の場合は前述の ように, 主応力比が0.3より大きいと直進方向に進 展しやすいことが示されている. μ=0.3, μ=0.6の 場合は主応力比が約0.25以上であると,直進方向 にエネルギ解放率の最大方向が現れている.また 摩擦係数が大きいほど、Fig.17中の破壊角度は、 主応力比が大きくなるにつれて滑らかに減少してい μ=0.0の場合に破壊角度が急に降下している 付近を詳細に検討すると、Fig.13の様に、き裂折 れ曲がり角度が0.0πと0.4πの間は下に凸の関数 となっているため,主応力比が0.3付近で,破壊角 度が $\theta_c \Rightarrow 0.4\pi$ から $\theta_c = 0.0\pi$ へ飛び移っていること が分かる.

Fig.15 Variations of energy release rate for a frictional kinking crack under a biaxial compression; $\gamma = 0.2\pi$; $\mu = 0.3$.

Fig.16 Variations of energy release rate for a frictional kinking crack under a biaxial compression; $\gamma = 0.2\pi$; $\mu = 0.6$.

5. まとめ

- 過去に発表された相反作用型のE積分公式と、 ひずみエネルギ型,補ひずみエネルギ型なる、 3つのタイプを分離導入し、本報告のように、き 裂先端を含む、き裂面に表面力が作用する場 合は、補ひずみエネルギ型のE積分公式が最 も精度の良いエネルギ解放率を与えることの略 証、および、数値解析的検証を行った。
- II. き裂面に摩擦が存在する圧縮荷重下での進展 き裂のエネルギ解放率が、E積分を用いて解析 すれば、き裂面を含む経路独立な積分で、き 裂が直進進展する場合の理論解と非常に良く 一致することが確かめられた。
- III.一軸一様圧縮荷重を受けた進展き裂に対し,

Fig.17 Relations between the principal stress rate and the kinking angle which maximizes the energy release rate; $\gamma = 0.2\pi$; $\mu = 0.0$, 0.3, 0.6.

最大エネルギ解放率破壊規準を使用し,破壊 靭性値が等方的であると仮定すると, μ =0.0 および μ =0.3 の場合,圧縮荷重角度 γ が 0.1 π (=約 18°)より大きい場合は,き裂面から約 0.4 π (=約 72°)圧縮荷重 σ_1 方向へ傾いた 方向に進みやすいという,既往の研究と同様の 結論が得られた.しかし γ が約 0.1 π より小さい 場合は,直進方向のエネルギ解放率が最大と なり,折れ曲がらず進展する結果が得られた.

IV.荷重角度 y が 0.2π(=36°)の場合,二軸一様圧縮荷重を受けた進展き裂は,主応力比が小さい間は初期き裂面は摩擦力に保持されながら滑り,き裂折れ曲がり方向は,Ⅲと同様,約0.4π(=約72°)傾いた方向に進展しやすいことが予想される.一方,主応力比が大きくなると,初期き裂面と同方向にせん断破壊(モードΠ)的な進展をすることが予想され,特にコンクリート,岩盤などの材料で,近年盛んに研究されている,せん断破壊の解明に一つの糸口を与えるものと思われる.

以上のことから, E積分は引張り荷重下だけではな く,進展き裂面が接触し,摩擦力を受ける圧縮荷 重下でも,エネルギ解放率の計算に有用な手段で あることが確認された.本研究のE積分による方法 は,さらに複雑な種々の状況(圧縮荷重載荷履歴 の違いによる場合や圧縮荷重下での干渉き裂な ど)の場合や非線形物質への応用も可能である. 今後,それらの基本的なき裂破壊の研究が,コンク リートや岩盤などの破壊メカニズムの解明や,更に は,地震の発生メカニズムや前兆現象の解明(す なわち地震予知)などにも役立つことを期待する. 本報告のように進展き裂面上で、き裂先端まで表 面力が、き裂長さ ℓ に無関係に与えられている場合、 進展き裂面上では $\partial s/\partial \ell = 0$ であるから、一般には 補ひずみエネルギ型E積分公式(4)(あるいは、線 形弾性体で外荷重が比例負荷で与えられている 場合は式(7))を式(14)のように2点差分近似したも のが、式(2)、式(3)、あるいは、式(5)、式(6)を2点 差分近似したものに比べ精度が良い。

簡単のため、微小変形する線形弾性体で、外荷 重が比例負荷で与えられている場合において、進 展き裂面上で外荷重によるせん断力と摩擦力のみ が存在している進展き裂の場合を考えると、せん断 力の合力 τ は、き裂面上で ℓ に無関係に一定値と なる.そのとき、Fig.2 のように座標をとり、 $\delta = (\ell - \ell_0)/\ell$ としたとき、 $\delta \ll 1$ になるように ℓ_0 を考え る. $u(x,\ell)$ をき裂面に沿う方向の変位とすると、補 ひずみエネルギ型E積分公式(7)の C^{t} 上 ($\partial s/\partial \ell = 0$)での、き裂先端近傍上の積分は、

$$\frac{\partial}{\partial \ell} \int_{\ell_0}^{\ell} \tau \, u(x,\ell) dx \qquad (A-1)$$

で与えられる.ここで,以下考える誤差は,き裂先 端近傍上での積分と微分の入れ替えによって生じ るものが主となるので, $\varepsilon = \Delta \ell / \ell$ とおいた時, $\varepsilon \ll \delta \ll 1$ を仮定する.

このとき、一般に $u(x, \ell)$ は、H(x)をヘビサイドのス テップ関数とすると、 $x = \ell$ の近傍で

$$u(x,\ell) \sim A(\ell)(\ell-x)^p H(\ell-x), \quad p > 0 \quad (A-2)$$

なる漸近展開の無限和の形で表される.線形弾性 体のときは、 p=1/2 が最低次のオーダーであり、 *∂u/∂t* が -1/2乗の特異項を持つ. (A-2)の項を(A-1)に代入すると

$$\frac{\partial}{\partial \ell} \int_{\ell_0}^{\ell} \tau u(x,\ell) dx = \tau (A(\ell)\ell^p \delta^p + \frac{A'(\ell)}{1+p}\ell^{p+1} \delta^{p+1}) (A-3)$$

となる.以後,上式の右辺の値を左辺の記号で表 す.

ここで式(A-1)を,

$$\frac{1}{\Delta\ell} \{ \int_{\ell_0}^{\ell+\Delta\ell} \tau \, u(x,\ell+\Delta\ell) \, dx - \int_{\ell_0}^{\ell} \tau \, u(x,\ell) \, dx \} \quad (A-4)$$

$$\mathsf{A}(\ell + \varDelta \ell) \cong \mathsf{A}(\ell) + \mathsf{A}'(\ell) \varDelta \ell$$

を使うと,

$$\cong \frac{\partial}{\partial \ell} \int_{\ell_0}^{\ell} \tau u(x,\ell) dx + \tau A'(\ell) \ell^{p+1} \delta^p \varepsilon$$

$$= \frac{\partial}{\partial \ell} \int_{\ell_0}^{\ell} \tau u(x,\ell) dx + O(\varepsilon)$$
(A-5)

を得る.

一方,相反作用型E積分公式(6)では,(A-1)に 相当する部分は

$$\int_{\ell_0}^{\ell} \tau \frac{\partial u(x,\ell)}{\partial \ell} dx$$

となるので,この式を

$$\int_{\ell_0}^{\ell} \tau \left\{ \frac{u(x,\ell + \Delta \ell) - u(x,\ell)}{\Delta \ell} \right\} dx \qquad (A-6)$$

で2点差分評価した場合は、(A-2)を(A-6)に代入 すると

$$\cong \frac{\partial}{\partial \ell} \int_{\ell_0}^{\ell} \tau u(x,\ell) dx$$

$$+ \tau (A'(\ell) \ell^{p+1} \delta^p \varepsilon - \frac{A(\ell) \ell^p}{1+p} \varepsilon^p - \frac{A'(\ell) \ell^{p+1}}{1+p} \varepsilon^{p+1})$$

$$= \frac{\partial}{\partial \ell} \int_{\ell_0}^{\ell} \tau u(x,\ell) dx + \begin{cases} O(\varepsilon^p) & \text{if } 0
(A-7)$$

となる. 同様にひずみエネルギ型E積分公式(5)で は, C[±]上の積分は

$$2\int_{\ell_0}^{\ell}\tau\frac{\partial u(x,\ell)}{\partial \ell}dx-\frac{\partial}{\partial \ell}\int_{\ell_0}^{\ell}\tau u(x,\ell)dx$$

であるから,この式を

$$2\int_{\ell_0}^{\ell}\tau\{\frac{u(x,\ell+\Delta\ell)-u(x,\ell)}{\Delta\ell}\}dx$$

$$-\frac{1}{\Delta\ell}\{\int_{\ell_0}^{\ell+\Delta\ell}\tau u(x,\ell+\Delta\ell)dx - \int_{\ell_0}^{\ell}\tau u(x,\ell)dx\}$$
(A-8)

で,2点差分評価した場合は(A-2)を(A-8)に代入 して

$$\cong \frac{\partial}{\partial \ell} \int_{\ell_0}^{\ell} \tau u(x,\ell) dx
+ \tau (A'(\ell) \ell^{p+1} \delta^p \varepsilon - \frac{2A(\ell) \ell^p}{1+p} \varepsilon^p - \frac{2A'(\ell) \ell^{p+1}}{1+p} \varepsilon^{p+1})
= \frac{\partial}{\partial \ell} \int_{\ell_0}^{\ell} \tau u(x,\ell) dx + \begin{cases} O(\varepsilon^p) & \text{if } 0 (A-9)$$

となる.

以上より, p<1の項が存在すると, C[±]上の積分 値は補ひずみエネルギ型E積分公式(7)の2点差 分表示(A-4)が最も精度が良いことが推察できる.

実際,3章のモデルの場合にエネルギ解放率を 上記3通りの方法で解析(ただし,xに関する積分 は、いずれの方法も式(14)のように、節点での値の 単純和をとっている.)した結果を比較すると、補ひ ずみエネルギ型では常に1%以下の誤差であるの に対し、相反作用型、ひずみエネルギ型の場合は 10~20%の誤差が生じた.

参考文献

- Griffith, A.A.: The phenomena of rupture and flow in solids, *Phyl. Trans. Soc.*, London, A221, pp.163-198, 1921.
- Griffith, A.A.: Theory of rupture, Proc. 1st. Int. Cong. Appl. Mech., Delft, pp.55-63,1924.
- Irwin, G.R. : Analysis of stresses and strains near the end of a crack travelling a plane, J. Appl. Mech., 24, pp.361-364,1957.
- 小林昭一: 圧縮によるぜい性き裂の発生と伝ば、材料、 20-209, pp.164-173, 1971.
- 5) Ashby, M.F. and Hallam, S.D.: The fracture of brittle

solids containing small cracks under compressive stress state, *Acta metall*, Vol.34, No.3, pp.497-510, 1986.

- Atkinson, C., Smelser, R.E. and Sanchez, J.: Combined mode fracture via the cracked Brazilian disk test, *Int.J.Fracture*, Vol. 18, No.4, pp.279-291, 1982.
- Nemat-Nasser, S. and Horii, H.: Compression induced nonplanar crack extension with application to splitting, exfoliation, and rockburst, *J.Geo-phys.Res.*, Vol.87, No.b8, pp.6805-6821, 1982.
- Yatomi, C. :The energy release rate and the work done by the surface traction in quasi-static elastic crack growth, *Int.J.Solids Structures*, Vol.19, No.2, pp.183-187, 1983.
- Melin, S.: When does a crack grow under mode II conditions?, Int.J.Fracture, Vol.30, pp.103-114, 1986.
- 二羽淳一郎, ZAREEN, N., 田辺忠顕:破壊力学に基づく コンクリートはりのせん断強度寸法効果解析, 土木学会 論文集, No.508, pp.45-53, 1995.
- 11) 中村成春,橘高義典,上村克郎:コンクリートの混合モード破壊に関する破壊力学的検討,日本建築学会構造系 論文集,No.480, I-9, 1996.
- Rongshin Li and Alexander Chudnovsky : Energy release rates of crack kinking within an anisotropic inclusion, *Int.J.Fracture*, Vol.65, pp.3-10, 1994.
- 13) 鱸 洋一,矢富盟祥:アイソパラメトリック要素を用いた E積分によるエネルギ解放率の有限要素解析,構造工学 論文集,Vol.43A,pp.437-444,1997.

(1998.3.30 受付)

FINITE ELEMENT ANALYSIS OF THE ENERGY RELEASE RATE BY USING THE E-INTEGRAL UNDER THE COMPRESSIVE LOADS

Chikayoshi YATOMI and Youichi SUZUKI

In this paper, we analyze the energy release rate for a frictional crack subjected to remote proportional compressive loads using the finite element method. The energy release rate is calculated by using the pathindependent E-integral of the complementary strain energy type, which is path independent even at the onset of crack kinking. We find that the E-integral gives the energy release rate under the compressive loads with a high accuracy.