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Entropic cosmology is a recently proposed cosmological model that aims to explain the accel-
erated expansion of the Universe. In this study, we examine a nonadiabatic expansion of the
universe in entropic cosmology, from a thermodynamics viewpoint. We derive the continuity
(conservation) equation from the first law of thermodynamics, assuming the nonadiabatic
expansion caused by the entropy and temperature on the horizon of the universe. Using the
continuity equation, we reformulate entropic cosmology. The simple model proposed here
agrees well with supernova data which take into account the Planck 2013 results.
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1. Introduction

To explain the accelerated expansion of the Universe, we usually assume an additional
energy component called ‘dark energy’. For example, famous ΛCDM models assume cold
dark matter (CDM) and a cosmological constant Λ relating to dark energy. Alternatively,
Easson et al. [1] have recently proposed that an entropic-force term should be added to
the Friedmann–Lemâıtre acceleration equation, without introducing new fields [2]. In the
entropic-force scenario, called ‘entropic cosmology,’ the additional entropic-force term is de-
rived from the usually neglected surface terms on the horizon of the universe in the gravi-
tational action, assuming that the horizon has an entropy and a temperature [1]. However,
in entropic cosmology, the entropy can increase during the evolution of the universe as if
it were a non-adiabatic-like (hereafter nonadiabatic) process [3]. Accordingly, we examine a
nonadiabatic expansion of the universe in entropic cosmology, from a thermodynamics view-
point. In this study, we derive the continuity equation from the first law of thermodynamics,
taking into account the nonadiabatic process caused by the entropy and temperature on
the horizon. Using the obtained continuity equation, we reformulate the modified Friedmann
and acceleration equations, and propose a simple model. In the present paper, typical results
studied in Ref. [3] are reconsidered and discussed using the recent Planck 2013 data [4].

2. Modified Friedmann and acceleration equations for entropic cosmology

In this section, we give a brief review of entropic cosmology [1–3]. We consider a homo-
geneous, isotropic, and spatially flat universe, and examine the scale factor a(t) at time t
in the Friedmann–Lemâıtre–Robertson–Walker metric. For entropic cosmology, Koivisto et
al. [2] have summarized the modified Friedmann and acceleration equations given by(

ȧ(t)
a(t)

)2

= H(t)2 =
8πG

3
ρ(t) + α1H(t)2 + α2Ḣ(t), (1)
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ä(t)
a(t)

= Ḣ(t) + H(t)2 = −4πG

3
(1 + 3w)ρ(t) + β1H(t)2 + β2Ḣ(t), (2)

where the Hubble parameter H(t) is defined by H(t) ≡ (da/dt)/a(t) = ȧ(t)/a(t). Note that we
neglect high-order terms for quantum corrections relating to the inflation of the early universe
[3]. G and ρ(t) are the gravitational constant and the mass density of cosmological fluids,
respectively. w represents the equation of state parameter for a generic component of matter,
which is given as w = p(t)/(ρ(t)c2), where c and p(t) are the speed of light and the pressure
of cosmological fluids, respectively. For the matter- and radiation-dominated universes, w is 0
and 1/3, respectively. The four coefficients α1, α2, β1, and β2 are dimensionless constants [2].
The H2 and Ḣ terms with the dimensionless constants correspond to the additional driving
terms, in which we assume an entropy and a temperature on the horizon of the universe due
to the information holographically stored there [1]. Coupling [(1 + 3w)× Eq. (1)] with [2×
Eq. (2)] and rearranging, we obtain

Ḣ =
dH

dt
= −C1H

2 where C1 =
3(1 + w) − α1(1 + 3w) − 2β1

2 − α2(1 + 3w) − 2β2
. (3)

As examined in Ref. [3], we can solve Eq. (3), assuming a single-fluid-dominated universe.
For example, the luminosity distance dL is obtained as(

H0

c

)
dL =

{
1+z

C1−1

[
1 − (1 + z)−C1+1

]
(C1 6= 1),

(1 + z) ln(1 + z) (C1 = 1),
(4)

where z is the redshift defined by z ≡ (a0/a) − 1. H0 and a0 are the present values of the
Hubble parameter and the scale factor, respectively. The results for C1 = 2, 1.5, 1, and
0 are consistent with those for the radiation-, matter-, empty, and Λ-dominated universes,
respectively [3].

3. Reformulation of entropic cosmology

In this section, we derive the continuity equation from the first law of thermodynam-
ics, assuming a nonadiabatic expansion of the universe [3]. Using the obtained continuity
equation, we reformulate entropic cosmology.

The first law of thermodynamics in an expanding (or contracting) universe [3] is written
as

dQ = dE + pdV =
[
ρ̇ + 3

ȧ

a

(
ρ +

p

c2

)]
c2

(
4π

3
rs(t)3

)
dt, (5)

where dQ is the heat flow across a region, and dE and dV are changes in the internal energy
E and volume V of the region, respectively. rs(t) is a proper radius. If we assume adiabatic
(and isentropic) processes, then dQ is 0, that is, dQ = TdS = 0, where S and T represent
the entropy and temperature, respectively. However, in this paper, we assume a nonadiabatic
process given by dQ = TdS 6= 0. To calculate TdS, we employ the Hubble radius as the
preferred screen [1] for entropic cosmology. Accordingly, the proper radius rs included in Eq.
(5) is replaced by the Hubble radius rH . The Hubble radius is given as

rH =
c

H
and therefore ṙH = −HḢ

c2
r3
H . (6)

For entropic cosmology, we assume that the Hubble horizon has an associated entropy S and
an approximate temperature T [1–3]. The entropy and temperature are written as

S =
kBc3

~G

AH

4
and T =

~H

2πkB
× γ =

~
2πkB

c

rH
γ, (7)
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where kB, ~, and AH are the Boltzmann constant, the reduced Planck constant, and the
surface area of a sphere with the Hubble radius rH , respectively [1]. The reduced Planck
constant is defined by ~ ≡ h/(2π), where h is the Planck constant. It should be noted that
γ is a non-negative free parameter and is of the order of O(1); typically γ ∼ 3

2π or 1
2 [3].

Using Eq. (7) and dAH/dt = d(4πr2
H)/dt = 8πrH ṙH , we calculate TdS as

TdS = T × kBc3

4~G

dAH

dt
dt =

~
2πkB

c

rH
γ × kBc3

4~G
(8πrH ṙH)dt = γ

c4

G
ṙHdt. (8)

Replacing rs by rH , substituting Eqs. (5), (6), and (8) into dQ = dE + pdV = TdS, and
rearranging, we obtain the modified continuity equation as

ρ̇ + 3
ȧ

a

(
ρ +

p

c2

)
= −γ

(
3

4πG
HḢ

)
. (9)

The non-zero right-hand side of Eq. (9) is related to a nonadiabatic expansion of the universe.
Using an effective description similar to bulk viscous cosmology [5], the non-zero term can be
cancelled in appearance, i.e., ρ̇ + 3(ȧ/a)(ρ + p′/c2) = 0, where p′ is an effective pressure [3].
However, in this approach, it is necessary to examine an effective description for entropic
cosmology; this will be discussed in our next paper [6]. Of course, if H is constant, Eq. (9)
is the continuity equation for an adiabatic (isentropic) process. Note that parameters for the
entropy, e.g., Tsallis’ entropic parameter [7], may be required for calculating TdS.

As shown in Eqs. (1) and (2), entropic force terms include four dimensionless constants
α1, α2, β1, and β2. We determine most of the dimensionless constants using two continuity
equations [3]. The first continuity equation is Eq. (9), while the second continuity equation
can be derived from the modified Friedmann and acceleration equations. As examined in
Ref [3], from Eqs. (1) and (2), the second continuity equation is expressed as

ρ̇ + 3
ȧ

a
(1 + w)ρ =

3
4πG

[
(−α1 − α2 + β2)HḢ + (−α1 + β1)H3 − α2

2
Ḧ

]
. (10)

We can expect that the two modified continuity equations, Eqs. (9) and (10), are consistent
with each other. Therefore, when Ḧ, H3, and HḢ are not 0, the constants reduce to α2 = 0,
β1 = α1, and β2 = α1−γ, respectively. Moreover, we assume α1 = γ for the simple model [3].
Consequently, the simple model is summarized as(

ȧ

a

)2

=
8πG

3
ρ + α1H

2 =
8πG

3
ρ + γH2, (11)

ä

a
= −4πG

3
(1 + 3w)ρ + α1H

2 + (α1 − γ)Ḣ = −4πG

3
(1 + 3w)ρ + γH2. (12)

Note that γ should be determined from a different viewpoint, as discussed later.

4. Comparison with both ΛCDM models and supernova data points

In this section, by considering the luminosity distance dL, we compare the simple model
with both ΛCDM models and supernova data points. To this end, we consider the matter-
dominated universe given by w = 0. Moreover, γ is set to be 3/(2π). Therefore, C1 is 3

2(1 −
3
2π ) = 0.7838· · ·. The coefficient 3/(2π) was deduced from the surface term order [1] without
using a fitting method. (Alternatively, C1 can be determined through fitting with a fine-
tuned standard ΛCDM model or supernova data points. For example, C1 is approximately
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Fig. 1. (Color online). Dependence of luminosity distance dL on redshift z. Supernova data points
are taken from Ref. [8], where H0 is set to be 67.3 km/s/Mpc based on the Planck 2013 results [4].

calculated as C1 ≈ 0.78 using a fitting method [6].) For the ΛCDM models, we assume a
spatially flat universe, neglecting the density parameter for the radiation [3]. The universe
in which (Ωm, ΩΛ) = (0.315, 0.685) is a fine-tuned standard ΛCDM model, which takes
into account the recent Planck 2013 best fit values [4]. Ωm and ΩΛ represent the density
parameters for matter and Λ, respectively. As shown in Fig. 1, the simple model agrees
well with supernova data points and the fine-tuned standard ΛCDM model. Hence, it has
been shown that the simple model can describe the present accelerating universe successfully
without adding the cosmological constant or dark energy.

5. Conclusions

From a thermodynamics viewpoint, we have examined the nonadiabatic expansion of
the universe in entropic cosmology, and reconsidered typical results from Ref. [3]. We have
derived the modified continuity equation from the first law of thermodynamics. Using the
obtained continuity equation, we have reformulated the modified Friedmann and acceleration
equations. By using the luminosity distance as a means of comparison, it is clearly shown
that the simple model agrees well with both the fine-tuned standard ΛCDM model and the
supernova data, which take into account the Planck 2013 results.
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