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Abstract - In this paper, we discuss the directions of active and
passive force closures in hybrid active/passive-closure grasps. We
show the directions are orthogonal to each other. We also discuss
the magnitudes of the internal forces in the manipulation of the
object. In hybrid active/passive-closure grasps, there exist two
kinds of magnitudes of internal forces. One is the magnitude
of internal forces, which changes if the object moves and the
geometry of the fingers changes. The other is the one which
don’t change even when the object moves. We derive these two
magnitudes.

Index Terms - Active/Passive Force Closure, Grasping, Internal
Forces

I. INTRODUCTION

When we grasp an object by a robotic hand, force closure is
one of the important properties of grasping [1]. Force closure
is the concept which we can interpret in the following two
ways; ” any arbitrary force and moment can be exerted on a
grasped object. ” or ” the motion of a grasped object can be
completely constrained without changing the pre-loaded joint
torques, whatever external force and moment are applied to
the object. ” Yoshikawa [2] called the former concept active
force closure, and the latter concept passive force closure. The
former concept corresponds to that the fingers (limbs) can
move the grasped object in arbitrary directions. Note that in
the definition of active force closure [2], we can regard active
force closure as included in passive force closure (active force
closure is necessary but not sufficient for passive force closure
[3]). But active force closure in itself corresponds to the motion
of the grasped object. Then, in this paper, we put attention
on this property of active force closure. On the other hand,
passive force closure doesn’t correspond to the motion of the
grasped object. Consider the case where there exist multiple
contact points between a finger and an object (for example,
enveloping grasp). In this case, some contact forces between
the finger and the object can be generated not actively by the
joint torques but passively by the mechanism of the geometric
constraints. Then, even if we can resist certain external force
and moment in a certain direction and the motion of the object
can be completely constrained, there is no guarantee that we
can generate the motion of the object in the same direction.

There are some cases where certain directions of the grasped
object correspond to active force closure and the other direc-
tions correspond to passive force closure. Yoshikawa [2] called
such closures hybrid active/passive closure. In our previous
paper [4], we show hybrid active/passive closure is optimal in
a certain planning of grasping to manipulate a grasped object.
But the relation between the directions of active force closure

and those of passive force closure is still not clear.
In this paper, we show the directions of active force closure

are orthogonal to those of passive force closure in hybrid
active/passive-closure grasps.

In hybrid active/passive-closure grasps, not only certain
external forces and moments can be counteracted without
changing the pre-loaded joint torques, but also the object
can move in certain directions. When the object moves, the
configurations of the fingers and the objects change. Then,
the constant pre-loaded joint torques may or may not need
to change for resisting external forces in the directions of
passive force closure. This is related to the change of the
internal forces. The internal forces are to satisfy the frictional
constraints and to grasp the object stably. In the manipulation
of the object, we have to control this internal force for
the stable grasp. However, since hybrid active/passive-closure
grasps have properties of passive force closure, there can exist
some internal forces, which don’t change even if the object
moves and the configurations of the fingers change. Then, we
also discuss this problem.

This paper is organized as follows. At first, the target system
is shown and the directions of active and passive force closures
are defined. Then, we show the directions of active force
closure are orthogonal to those of passive force closure. We
also discuss the internal forces in the manipulation of the
object when the grasp is of hybrid active/passive closure.

A. Related Works
The simplest case of active force closure is fingertip grasp.

As for the manipulation of an object grasped by fingertips, Li
et al. [5], Cole et al. [6], and Yokokohji et al. [7] presented
control algorithms for the case of point contact, rolling contact,
and soft-finger contact respectively. Cole et al. [8] extended the
algorithm to the case of sliding contact. But the algorithm was
limited in the 2 dimensional case. Zheng et al. [9] presented
a control algorithm for the case of sliding contact in the 3
dimensional case. As for the manipulation of multiple objects
grasped by fingertips or end links of fingers, Harada et al. [10]
presented a control algorithm for the case of rolling contact.
Harada et al. [11] also discuss active force closure for the case
of grasping multiple objects.

On the other hand, passive force closure corresponds to
power grasps. Power grasp is a grasp that can hold objects
stably without changing the pre-loaded joint torques of the
fingers. The researches about power grasps have been done
from the following viewpoint [12]–[18] : the condition for
power grasps, the formulation of the contact force distribution,



Fig. 1. Target System

the optimization of the pre-loaded joint torques, and so on.
It is hard to manipulate an object under hybrid active/passive

closure. Trinkle et al. [19] discussed a grasp planning for
manipulating an enveloped object with sliding contacts in 2 di-
mensional space. Bicchi et al. [20] analyzed the manipulability
of the general grasping systems including enveloping grasp.
Harada et al. [21] called the working style, where multiple
contacts are allowed between chains (fingers or legs) and an
object (or an environment), Envelope Family and presented a
sufficient condition for the manipulation of Envelope Family.
But, these researches didn’t put attention on resisting external
forces, which is another property of hybrid active/passive
closure. Passive force closure in hybrid active/passive-closure
grasps is discussed in [3], [22], [23]. But, these researches
didn’t discuss the manipulation of a grasped object. In this
paper, we discuss not only active force closure (motion of a
grasped object) but also passive force closure in the case where
the grasped object is in hybrid active/passive closure.

II. TARGET SYSTEM AND DEFINITION

A. Target System
The target system is shown in Fig.1. In this paper, we

consider the case where an arbitrary shaped rigid object is
grasped by N fingers of a robotic hand. Note that we show
the case where N = 2 in Fig.1. We make the following
assumptions: 1) Each finger makes a frictional point contact
with the object, and the contacts are neither rolling nor sliding.
2) The unique normal direction at each contact point can be
obtained. 3) There exists at most one contact point on each link
of the fingers. 4) When the object moves, both the numbers
of contact points and contact positions on the object/fingers
don’t change (we don’t consider the manipulation in which a
certain contact point removes from the object or in which a
certain point on a certain finger, which isn’t a contact point,
makes a new contact with the object).

B. Definition
Space of Active Force Closure (SAFC); Suppose that the

grasped object is in force closure. Then, we call the direction,
in which the grasped object can move by the corresponding
motion of the fingers, the direction of active force closure
(DAFC). We call the space, spanned by a set of the all DAFC’s,
the space of active force closure (SAFC).

Space of Passive Force Closure (SPFC); We call the di-
rection, in which external force or moment can be counteracted
without changing the joint torques, the direction of passive
force closure (DPFC). We call the space, spanned by a set of
the all DPFC’s, the space of active force closure (SPFC).

III. ORTHOGONALITY OF DIRECTIONS OF ACTIVE AND
PASSIVE FORCE CLOSURES

In this section, we describe the orthogonality of SAFC and
SPFC. At first, we describe the kinematics and statics of the
system. Then, we show the orthogonality.

A. Kinematics
Let qi∈ RMi (i = 1, 2, · · · , N ) be the joint angles of the

ith finger of the robotic hand. Let r∈ RD be the position of
the origin and the orientation of the object coordinate frame
fixed at the object. Let pCij

∈ Rd(j = 1, 2, · · · , Li) be the
position of the jth contact point between the object and the
ith finger. Here Mi denotes the number of the joints of the ith
finger, D= 3, d= 2 in 2 dimensional space and D= 6, d= 3 in
3 dimensional space, and Li denotes the number of the contact
points on the ith finger. The relation between the displacements
of pCij

and qi, and the one between the displacements of pCij

and r, respectively, are given as follows;

∆pCij
= J ij∆qi, ∆pCij

= GT
ij∆r (1)

where J ij∈ Rd×Mi denotes the Jacobian matrix and Gij

denotes

Gij =
(

I
[(pCij

− po)×]

)

in 3 dimensional space. Here, I represents an identify matrix,
po represents the position of the origin of the object coordinate
frame, [a×] represents a skew symmetric matrix equivalent to
the cross product operation ([ a × ]b = a × b).

Let M = ΣN
i=1Mi and L = ΣN

i=1Li. By using the following
vectors and matrices,

∆q =
(

∆qT
1 ∆qT

2 · · · ∆qT
N

)T ∈ RM ,

J = diag







J11

...
J1L1







J21

...
J2L2


 · · ·




JN1

...
JNLN





 ∈ RLd×M ,

G =
(

G11 G12 · · · GNLN

) ∈ RD×Ld,

A =
(

J −GT
) ∈ RLd×(M+D)

where diag denotes a block diagonal matrix, we get the
following expression from (1);

A
(

∆qT ∆rT
)T = o. (2)

B. Statics
Let f∈ RLd be the contact force vector which combines

the contact forces at all contact points, τ∈ RM be the joint
torques equivalent to f , and w∈ RD be the resultant force
and moment applied to the object at the object coordinate



frame. From (2) and the principle of virtual work, we get the
following relation;

(
τT −wT

)T = AT f =
(

J −GT
)T

f . (3)

C. Orthogonality
Now, we consider the case where the object is grasped and is

in stationary state with non-zero contact force (internal force)
at every contact point, which satisfies the frictional constraint.
In addition, we assume that G has full row rank. This means
the grasp is of force closure. Namely, we consider SAFC and
SPFC in force-closure grasps. Let τ pre ( �= 0) be the pre-loaded
joint torques corresponding to the internal forces. Then, from
(3), we get

(
τT

pre oT
)T

= AT f . (4)

1) SAFC: In order to move the grasped object, the cor-
responding motion of the fingers is needed. The motions of
the object and the fingers are constrained by the kinematic
constraints (2). Then, the allowable motions of the object and
the fingers are expressed by

(
∆q
∆r

)
= ET

P ∆k1 =
(

ET
P1

ET
P2

)
∆k1 (5)

where EP ∈ Ra×(M+D) is an orthogonal matrix whose rows
form bases of the null space of A, ∆k1 ∈ Ra is an arbitrary
vector expressing the magnitude of the each column of ET

P ,
a is the dimension of the null space of A, and EP1 and EP2

are, respectivelly, M × a and D × a block matricies.
Since G has full row rank, there don’t exist the cases where

in a certain column of ET
P , the corresponding component

vector of ET
P1 is o and the corresponding component vector

of ET
P2 isn’t o. If in a certain column of ET

P , both the
corresponding component vectors of ET

P1 and ET
P2 aren’t 0,

the motion of the object, in the direction corresponding to the
vector of ET

P2, can be achieved by the motion of the finger
in the direction corresponding to the vector of ET

P1. If in a
certain column of ET

P , the corresponding component vector of
ET

P1 isn’t 0 and the corresponding component vector of ET
P2

is 0, the motion of the finger, in the direction corresponding
to the vector of ET

P1, makes no influence on the motion of the
object. Then, ET

P2 expresses SAFC.
2) SPFC: For the sake of simplicity, we consider the case

where all fingers are not in a singular configuration and there
is no kinematical redundancy with respect to the task in every
finger. This means J has full column rank. Now, we consider
the contact forces which can generate without changing the
pre-loaded joint torques. From (4), the contact forces can be
expressed by

f = (JT )+τ pre + (I − (JT )+JT )k̃2, (6)

where (JT )+ denotes the pseudo-inverse matrix of JT and
k̃2 denotes an arbitrary vector. Then, by substituting (6) into

(3), we get
(

τ
−w

)
=

(
I

−G(JT )+

)
τ pre +

(
O

−G(I − (JT )+JT )

)
k̃2

=
(

I
O

)
τ pre +

(
O
−Ξ

)
k2 (from (4)), (7)

where Ξ ∈ RD×p is a full column rank matrix whose columns
form bases of the G(I − (JT )+JT ), p is the rank of the
G(I − (JT )+JT ), and k2 ∈ Rp is an arbitrary vector
expressing the magnitude of the each column of Ξ. Note that
τ pre corresponds to the internal forces and then G(JT )+τ pre

= o.
DPFC is the direction where an external force can be

counteracted without influence on the joint torques. Then, Ξ
in the second term of (7) expresses SPFC.

From the definition of EP , AET
P = O. Then, from (3), (6),

and (7), we can get

EP AT f = o,

EP AT (I − (JT )+JT )k̃2 = o,

EP

(
O
−Ξ

)
k2 = o.

k2 is an arbitrary vector in the last equation. Then, we can get

EP

(
O
−Ξ

)
= O,

EP2Ξ = O. (8)

(8) represents the orthogonality of SAFC (DAFC) and SPFC
(DPFC) because ET

P2 represents SAFC and Ξ represents
SPFC.

In the above discussion, the generalized velocity vector(
∆qT ∆rT

)T corresponds to the generalized force vector(
τT −wT

)T . Then, equations (3) and (5) can correspond
to the artificial constraints used in the context of hybrid
force/position control [24]. Since the second term of (7) is
included in the artificial constraint, we can regard the above
deviation as based on the orthogonality of the artificial con-
straint, though the purpose and the result of the derivation are
different from those of the hybrid force/position control (the
purpose is to divide into the directions of position-control and
the directions in which any external force can be counteracted
without changing the joint torques (not the directions of force-
control).).

D. Examples
Consider the cases shown in Fig.2. In Fig.2 (a), A is given

by

A =




1 0 −1 0 0
0 0 0 −1 1
0 1 −1 0 0
0 0 0 −1 −1


 . (9)



(a) (b)

(c)

Fig. 2. Examples of Hybrid Active/Passive Closure

Then, Ep and Ξ are, respectively, expressed by

Ep =
( −0.5774 0.5774 −0.5774 0 0

)
,

Ξ =
(

0 1 0
0 0 1

)T

. (10)

From (10), we can see that SAFC (DAFC) corresponds to the
horizontal direction of this paper (x direction of the object
coordinate frame) and that SPFC corresponds to y and the
rotational directions of the object coordinate frame.

Next, consider the case shown in Fig.2 (b). The object is
manipulated, contacting with the environment. Let the length
of each link of the fingers be 1. Then, A is given by

A =




0 0 −1 0 0
0 0 0 −1 0

−√
3/2 0 −1 0 0

−1.5 −1 0 −1 −2


 . (11)

where the position of the origin of the object coordinate frame
is located at the contact point between the left finger and the
object. In this case, Ep and Ξ are, respectively, expressed by

Ep =
(

0 −0.8944 0 0 0.4472
)
,

Ξ =
(

1 0 0
0 1 0

)T

. (12)

From (12), we can see that SAFC (DAFC) corresponds to the
rotational direction of the object coordinate frame and that
SPFC corresponds to the translational directions of the object
coordinate frame.

Finally, consider the case shown in Fig.2 (c). The object is
manipulated, contacting with the left finger at two points. In
this case, A is given by

A=




−0.3536 0 0 0 −1 0 0.3536
−0.3536 0 0 0 0 −1 0.3536
−1.7678 −0.7071 0 0 −1 0 1.7678
−0.3536 0.7071 0 0 0 −1 0.3536

0 0 −1.5 −0.75 −1 0 1.5
0 0 0 −1.299 0 −1 −0.6464




.

(13)

where the position of the origin of the object coordinate frame
is located at the first joint (the proximal end of the first link)
of the left finger. In this case, Ep and Ξ are, respectively,
expressed by

Ep =
(

0.5125 0 0.64 −0.255 0 0 0.5125
)
,

Ξ =
(

1 0 0
0 1 0

)T

. (14)

From (14), we can see that SAFC (DAFC) corresponds to the
rotational direction of the object coordinate frame and that
SPFC corresponds to the translational directions of the object
coordinate frame. From the result that the second elements of
ET

P in (14) is zero, we can also see that the object cannot
move with the change of the angle of the second joint of the
left finger (note that the left finger is the first finger).

IV. INTERNAL FORCES IN THE MANIPULATION

In this section, we discuss the internal forces in the manip-
ulation when the grasp is of hybrid active/passive closure.

For the sake of simplicity, suppose that the normal unit
vector at every contact point is constant with respect to the
object coordinate frame. Since the contact positions are all
constant with respect to the object coordinate frame for the
assumption given in section 2, the directions of the internal
forces are also constant with respect to the object coordinate
frame even if the object moves. Hence, whether the frictional
constraints can be satisfied depends on only the magnitudes of
the internal forces. In order to satisfy the frictional constraints
in the manipulation of the object, we take the following simple
way: at first find the appropriate constant magnitudes of the
internal forces for the grasping and the manipulation of the
object, and then assign the obtained constant appropriate mag-
nitudes to the magnitudes of the internal forces and keep the
magnitudes of the internal forces constant. Since there exists
SPFC in hybrid active/passive closure-grasps, it is possible
that there exist the magnitudes of the internal forces, which
don’t change despite the motion of the object. We don’t have
to change the joint torques corresponding to the magnitudes,
while we have to change the joint torques corresponding to
the magnitudes of the internal forces, which change due to
the motion of the object. Namely, we have only to control the
magnitudes of the internal forces, which change due to the
motion of the object. In the following, we derive the relation
between the joint torques and the magnitudes of the internal
forces, which do or don’t change due to the motion of the
object.

If A doesn’t have any null space, the object cannot move due
to the geometric constraints. Then, in hybrid active/passive-
closure grasps, A has null space. Here, we assume that A has
full row rank. Then, f , which satisfies (4), can be uniquely
obtained. Let such f be f int. f int is expressed by

f int = (AT )+
(

τ pre

o

)
. (15)

Since f int is the internal forces, f int satisfies Gf int =
o. Then, the following another expression of f int can be



obtained.

f int = (I − G+G)k̃3
∆= Φk3 (16)

where k̃3 ∈ RLd denotes an arbitrary vector, Φ ∈
R(Ld)×(Ld−D) denotes an orthogonal matrix whose columns
form bases of the null space of G, and k3 ∈ RLd−D denotes
an arbitrary vector. Φ expresses the directions of the internal
forces and k3 expresses their magnitudes.

From (15) and (16), we get

k3 = ΦT (AT )+
(

τ pre

o

)
. (17)

If the object and the fingers infinitesimally move, (17) becomes

∆k3 = (∆(ΦT (AT )+))
(

τ pre

o

)

+ΦT (AT )+
(

∆τ pre

o

)
. (18)

Letting x =
(
qT rT

)T (∈ RM+D) and B = ΦT (AT )+ (∈
R(LD−D)×(M+D)), (18) becomes

∆k3 =
(

∂B

∂x
∆x

) (
τ pre

o

)
+ B

(
∆τ pre

o

)
. (19)

where ∂B
∂x is a third-order tensor and ∂B

∂x ∆x is a second-order
tensor (matrix). By using the similar formulation of Chen and
Kao [25], the first term of (19) becomes
(

∂B

∂x
∆x

) (
τ pre

o

)
= [

M+D∑
i=1

(
∂B

∂xi
∆xi

)
]
(

τ pre

o

)

=
M+D∑
i=1

(
∂B

∂xi

(
τ pre

o

))
∆xi

= [
(

∂B
∂x1

(
τ pre

o

)) (
∂B
∂x2

(
τ pre

o

))

· · ·
(

∂B
∂xM+D

(
τ pre

o

))
]∆x

∆= Ψ∆x. (20)

Then, (19) becomes

∆k3 = Ψ∆x + B

(
∆τ pre

o

)
. (21)

We consider hybrid active/passive closure here. Then, arbitrary
∆x cannot be obtained. The allowable ∆x is expressed by (5).
Then, (21) becomes

∆k3 = ΨET
P ∆k1 + B

(
∆τ pre

o

)
. (22)

In order to keep the magnitudes of the internal forces
constant in the manipulation, we have only to add ∆τ pre,
given by (22) with ∆k3 = o, to the joint torques. Then,
ΨET

P ∆k1 is the magnitudes of the internal forces which we
have to react. We call such magnitudes of the internal forces
reaction-needed magnitudes of the internal forces. On the other

hand, we don’t have to react the magnitudes of the internal
forces, contained in the null space of EP ΨT , namely

{k3|k3 = (I − ΨET
P (ΨET

P )+)k5, k5 ∈ RLd−D} (23)

where k5 denotes an arbitrary vector. We call such magnitudes
of the internal forces reaction-not-needed magnitudes of the
internal forces.

In (22), letting ∆k3 = o and multiplying AT Φ from the
left, we can get(

∆τ pre

o

)
= −AT ΦΨET

P ∆k1. (24)

Then, if the joint torques change from τ pre to τ pre + ∆τ pre

(given by (24)) according to the change of the geometry, we
can manipulate the object with the constant internal forces
which satisfy the frictional constraints.

A. Examples
We consider the same cases as the previous examples. In

the following examples, let the each magnitude of the internal
forces be 1 (Let the every element of k3 be 1). We compute
τ pre form the magnitude of the internal forces.

At first, consider the case shown in Fig.2 (a). In this case, the
direction of the internal force Φ and Ψ in (20), respectively,
are

Φ =
(

0 1√
2

0 − 1√
2

)T

, (25)

Ψ =
(

0 0 0 0 0
)
. (26)

It is clear that the magnitude of the internal force is reaction-
not-needed magnitudes of the internal forces. Namely, even if
the object moves in the direction of active closure (DAFC),
we don’t have to change the pre-loaded joint torques in order
to keep the magnitudes of the internal forces constant and to
satisfy the frictional constraints.

Next, consider the case shown in Fig.2 (b). In this case, the
direction of the internal force Φ and Ψ in (20), respectively,
are

Φ =
(

0 1√
2

0 − 1√
2

)T

, (27)

Ψ =
(

1.3856 0.8083 0 0 −1.3856
)
. (28)

Then, from (12), ΨET
P is

ΨET
P = −1.3426. (29)

It is clear that the magnitude of the internal force is reaction-
needed magnitudes of the internal forces. Namely, when the
object moves in the direction of active closure (DAFC), we
have to change the pre-loaded joint torques in order to keep
the magnitudes of the internal forces constant and to satisfy
the frictional constraints.

Finally, consider the case shown in Fig.2 (c). In order to be
easy to differentiate Φ with respect to x, we use the following
another expression of Φ given by [26];

Φ =


 o e13 e12

e23 o e21

e32 e31 o


 (30)



where eij is the vector directing from the contact point Ci to
the contact point Cj . Then, Φ can be expressed by

Φ =


 0 0 1 −0.2678 −1 0.2678

1 1.1464 0 0 −1 −1.1464
0 1.4142 0 −1.4142 0 0




T

.

In this case, we use Φ+ in place of ΦT in (17) ∼ (24). Then,
Ψ in (20) is expressed by

Ψ=


 1.2249 0.2129 −0.9741 −1.4809 0 0 −0.2509
−0.4992 −0.0867 0.7782 0.6256 0 0 −0.2790
−0.6811 0.2801 0.8118 1.2092 0 0 −0.1307


 .

Then, from (14), ΨET
P is

ΨET
P =

(
0.2535 −0.0603 −0.2049

)T
. (31)

This is reaction-needed magnitudes of the internal forces. In
this case, there also exist reaction-not-needed magnitudes of
the internal forces. These magnitudes are expressed by

{k3|k3 =


 0.1820 0.6181

0.9812 −0.0637
−0.0637 0.7835


k

′
5, k

′
5 ∈ R2} (32)

where k
′
5 denotes an arbitrary vector. From this result, we

can see that in this case there exist both reaction-needed
magnitudes of the internal forces and reaction-not-needed
magnitudes of the internal forces.

V. CONCLUSION

In hybrid active/passive-closure grasps, there are two kinds
of essential directions. One is the directions of active force
closure. The other is the directions of passive force closure. In
this paper, we showed the directions of active force closure
are orthogonal to those of passive force closure in hybrid
active/passive-closure grasps. When the object moves, the
geometries of the fingers and of the objects change. Then,
we have to control the internal forces for satisfying the
frictional constraints. However, hybrid active/passive-closure
grasps have property of passive force closure. Then, it is
possible that there exist the magnitudes of the internal forces,
which we don’t have to control even when the object moves.
We derived the magnitudes of the internal forces. If in the
initial state, the object is stably grasped with appropriate τ pre,
we can manipulate the object by using the commands of joint
velocities q̇ = ET

p1 (k1d − k1) (k1d is a desired value of k1)
given by (5) and the commands of joint torques τ pre +∆τ pre

given by (24). But the development of more sophisticated
control algorithm including feedback or dynamics is our future
work.
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