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Abstract
In this paper, we consider an optimization of

grasping by using a required external force set. By

using the set, we can not only deal with whatever

a desired grasp is, such as force closure or equi-

librium grasp, but also evaluate the magnitudes of

the resistible external forces and moments. Then,

we define an optimization problem from the view-

point of decreasing the magnitudes of the contact

forces required to resist the required external force,

and show that we can solve the problem by using

a branch-and-bound method. Lastly we present

some numerical simulations to show the validity of

our approach.

1 Introduction

Consider lifting up an object on a table by a robotic
hand. If we don’t grasp the object with appropriate
contact positions between the object and the robotic
hand, we may not be able to counteract the exter-
nal force such as gravitational force and fail to lift up
it. We must grasp an object with appropriate contact
positions, in order to manipulate the object in a de-
sired direction. Therefore, much attention has been
attracted to search optimal grasp points on a grasped
object [1]～[8].

In the above researches, there are 2 kinds of re-
searches; 1) one is aimed at searching optimal grasp
points or regions for counteracting gravitational force
(namely, achieving equilibrium grasp) [1] [2], 2) the
other is aimed at searching optimal grasp points or
regions for achieving force closure [3]～[8]. Force clo-
sure indicates that if external force and moment in any
arbitrary direction applied to a grasped object, we can
counteract the external force and moment and restrain
the motion of the object.

There exist an upper bound of the magnitude of the
resistible external force and moment in force closure
grasps. Then, the magnitude can be used as a criterion
for the grasps. Li et al. [9] evaluated a volume of the
largest task ellipsoid. It can be embedded in the set
constructed by resultant forces and moments, which

we can apply to a grasped object. But the computa-
tion of the volume is very complex. Then, it is hard
to search optimal grasp points by using this criterion.
On the other hand, researches about searching opti-
mal grasp points, which minimize the magnitudes of
the necessary contact forces to resist an external force
and moment, has been done [4]～[7]. Also here, a prob-
lem arises: how to handle the difference between the
unit of force and the one of moment. Then, some de-
vices, to resolve the problem, have been done in these
researches. Markenscoff et al. [4] considered the case
where no external moment is applied to the object.
Mirtich et al. [5] evaluated the external force and mo-
ment separately. Mangialardi et al. [6] considered the
case where the external force or moment applied to
the object individually. Wang et al. [7] regarded the
magnitude of the resistible external force and moment
as the magnitude of the contact force of the clamp.

In our previous paper, we optimized power grasp by
using required external force set [10] [11]. This set con-
sists of external forces and moments, which we must
resist by contact forces applied by a robotic hand. The
magnitude of the external force and moment contained
in the set corresponds to the magnitude of the re-
sistible external force and moment. When the origin is
in the interior of the set, we can achieve force closure.
When the dimension of the set is 1, we can achieve
equilibrium grasp. Therefore we can deal with general
desirable grasp including force closure and equilibrium
grasp by using the set. Teichmann et al. [8] considered
to search grasp points which minimize the number of
the contact points needed to resist all external forces
and moments contained in the set, not considering fric-
tion. But in their approach, we can deal with only
force closure grasps.

In this paper, we search optimal grasp points which
minimize the magnitudes of the contact forces required
to resist all external forces and moments contained in
the required external force set. We consider the case
where an arbitrary shaped object is grasped by an ar-
bitrary number of fingers with friction.

This paper is organized as follows. At first, we set



the problem to solve. Then, we show an algorithm
to solve the problem. Lastly, numerical examples are
presented to show the effectiveness of our approach.

2 Problem Definition

In this section, we give a problem for optimal grasp.
At first, we describe the target system, statics between
a grasped object and a robotic hand, and the frictional
constraints. Then, we define required external force
set. Lastly, we give the problem for optimal grasp.
2.1 Target System

In this paper, we consider the case where an arbi-
trary shaped rigid object is grasped by m fingers of a
robotic hand. We make the following assumptions: 1)
Each finger makes a frictional point contact with the
object at the fingertip, 2) The unique normal direction
at each contact point can be obtained.
2.2 Constraints for Problem

At first, we describe the relation between the con-
tact forces and the external force and moment applied
to the object. We denote the set of candidate contact
points by C and denote the combination of m selected
contact points from C by

N={pCNi
(i = 1, 2, · · · , m)|pCNi

∈ C} (1)

where pCNi
∈ Rd(d= 2/3 in 2/3 dimensional space)

represents the position of the ith contact point (i =
1, 2, · · · , m). Let fN i∈ Rd be the contact force ap-
plied to the object at the ith contact point by the
ith finger and let w∈ RD(D= 3/6 in 2/3 dimensional
space) be the external force and moment applied to
the object(the origin of a frame fixed at the object).
Then, the object can be in equilibrium if the following
equation holds.

Σm
i=1GN ifN i = −w (2)

where GT
N i = (I −[(pCNi

−po)×] ) ∈Rd×D in 3 dimen-
sional space. Here, I represents an identify matrix,
[a×] represents a skew symmetric matrix equivalent
to the cross product operation([ a × ]b = a × b), po

represents the origin of the frame fixed at the object.
Next, the frictional constraint at the ith(i =

1, 2, · · · , m) contact point is represented by

FfN i = {fN i|
√

t2fNi,1+t2fNi,2≤µNinfNi , nfNi ≥0}
(3)

in 3 dimensional space, where nfNi denotes the normal
force component of fN i, tfNi,1 and tfNi,2 denote the
tangential force components of fN i, and µNi denotes
the coefficient of maximum static friction at the ith
contact point. In 2 dimensional space, we have only
to set tfNi,2= 0.

2.3 Required External Force Set
We define required external force set [10] [11] as fol-

lows.
Required External Force Set We call a set,

composed of all resultant forces and moments, which
we can apply to the object, possible-generated force set
W ⊂ RD . Let W− be {−w|w ∈ W}. Required ex-
ternal force set WR ⊂ RD is a set which W− must
contain.
2.4 Problem for Optimal Grasp

Based on the above discussion, we define a problem
to obtain an optimal grasp. In general, there exist
an infinite number of combinations of contact points,
whose W− contains the given WR. We think it is
suitable to minimize the magnitudes of the contact
forces needed to resist the external force and moment.
Now, let φ be the largest norm of contact force among
all norms of all contact forces.

φ = max
i

|fN i|

We consider the following problem.
Problem for Optimal Grasp Find the combi-

nation of contact points N ∗ such that

ρ = min
N∈S

max
w∈WR

min
fNi satisfy (2),(3)

φ (4)

where S denotes the set of the candidate N . This
problem is to search N which minimizes φ required to
counteract w (∈ WR).

3 Algorithm

In this section, we describe an algorithm to solve the
problem (4). In order to solve the problem, we use a
branch-and-bound method [12] [13] by representing the
candidate contact points as discrete points. Note that
we can deal with any object whose geometry is arbi-
trary complex, by using the discrete candidate contact
points. The branch-and-bound method finds the opti-
mal solution by enumerating the solutions of feasible
subproblems into which we can partition the original
problem. In the process, we cut the subproblems that
we don’t have to solve, by using a relaxed problem
whose constraints relax the constraints of the subprob-
lem. It makes the computational time reduced.

In order to use the branch-and-bound method, we
make the 2 following assumptions: 1) the number of
the candidate contact points on the object is finite
n, 2) WR can be expressed by a convex polyhedron
composed of l vertexes.

From this assumption 1, the number of the
candidate combinations of contact points becomes
C(n, m)(C(n, m) means the number of the combina-
tions where we select m from n). In this assumption



2, ifWR is not a convex polyhedron, we will define new
WR which is a convex polyhedral set which contains
the original WR. Then, WR can be represented by

WR = {w = Σl
j=1λjwvj, Σl

j=1λj = 1,
λj ≥ 0(j = 1, 2, · · ·, l)} (5)

where wvj denotes the jth vertex of WR.
Now, we define some subproblems and a relaxed

problem of the problem (4) at first, and then we de-
scribe the procedure of the algorithm.
3.1 Subproblems and Relaxed Problem

At first, we consider the case where we select some
Nk from the C(n, m) candidate combinations of con-
tact points. Then, we obtain the following subprob-
lem.

Subproblem 1

max
w∈WR

min
fNki satisfy (2),(3)

φ (6)

If we solve this Subproblem1 for each Nk(k =
1,2,· · ·,C(n, m)), we can obtain the solution of the orig-
inal problem (4).

In order to solve Subproblem1, we consider the case
where we select not only some Nk but also some vertex
wvj ofWR. Then, we obtain the following subproblem
of Subproblem1.

Subproblem 2

min φ

subject to
√

fT
NkifNki ≤ φ (i = 1, 2, · · ·, m)
Σm

i=1GNkifNki = −wvj

fNki ∈ FfNki (i = 1, 2, · · · , m)

(7)

Now, we consider the case where we can obtain each
optimal solution of Subproblem2 for each wvj(j =
1, 2, · · · , l) at Nk. Let φNk,vj be the solution of the
Subproblem2 for wvj atNk. Let f∗

Nk,j=
(
(f ∗

Nk1,j)T · · ·
(f∗

Nkm,j)T
)T be the contact forces which give φNk,vj .

Then, the convex polyhedron of the contact forces,
whose vertex is f∗

Nk,j , can be represented by

FNk = {f = Σl
j=1λjf

∗
Nk,j ,Σ

l
j=1λj = 1,

λj ≥ 0(j = 1, 2, · · ·, l)} (8)

Since the constraints of Subproblem2 is convex, we
can resist any w contained in WR, by using some
contact forces contained in FNk . Then, the largest
φNk,vj among φNk,vj(j = 1, 2, · · · , l) is the optimal so-
lution of Subproblem1 (for Nk). Namely, we can solve
Subproblem1 by solving Subproblem2 for each wvj.

Based on the formulation by Buss et al. [14], the in-
equality constraints of Subproblem2 can be rewritten

by the following constrains with respect to the sym-
metric matrices FNki and PNki

F Nki =
(

φI fNki

fT
Nki φ

)
� O

PNki =


µNki

nfNki 0 tfNki,1

0 µNkinfNki tfNki,2

tfNki,1 tfNki,2 µNki
nfNki


�O

where F Nki� O means FNki is a positive semidefinite
matrix. Then, we can solve Subproblem2 by using
positive semidefinite program [15] [16].

Next, we define Relaxed Problem whose constraints
are linear and relax the constraints of Subproblem2.
Relaxed Problem is a problem to effectively find Nk

for which we don’t have to solve Subproblem1. We
can use Subproblem2 to find the combinations. But,
since simplex method requires less computational time
than positive semidefinite program, we use Relaxed
Problem. Note that the optimal solution of Relaxed
Problem gives a lower bound of the optimal solution
of the corresponding Subproblem2, namely of the cor-
responding Subproblem1, since the constraints of Re-
laxed Problem contain the constraints of the corre-
sponding Subproblem2. It makes us know Nk for
which we don’t have to solve Subproblem1(See next
subsection).

Among the constraints of Subproblem2, we approx-

imate
√

fT
NkifNki ≤ φ by a convex polyhedron cir-

cumscribed in the set(Fig.1(a)). We approximate the
friction corn(3) by a L-side convex polyhedral corn cir-
cumscribed in the friction corn (Fig.1(b)) [17]. Then,
we can define Relaxed Problem as follows.

Relaxed Problem

min φ
subject to eT

κ V NkiuNki ≤ φ

(i = 1, 2, · · · , m)(κ = 1, 2, · · · , d)
−eT

κ V NkiuNki ≤ φ

(i = 1, 2, · · · , m)(κ = 1, 2, · · · , d)
Σm

i=1GNkiV NkiuNki
= −wvj

(9)

where V Nki∈ Rd×L denotes the matrix whose column
is a unit edge vector of the frictional convex polyhedral
cone vNkij

(V Nki=(vNki1
· · · vNkim

)), uNki (≥ o)∈ RL

denotes the vector whose jth element represents the
magnitude of the contact force in vNkij

direction, and
eκ∈ Rd denotes the vector whose κth element is 1 and
whose other elements are 0(for example, e1=(1 0 0)T

in 3 dimensional space). Note that we can solve Re-
laxed Problem by simplex method.
3.2 Procedure of the Algorithm

In this subsection, we describe the algorithm to
search the optimal Nk. Now, let ρ̂ be the tempo-
rary optimal solution, ρNk

be the optimal solution of



(a)
√

fT
NkifNki ≤ φ (b) Friction Corn

Figure 1: Convex Polyhedron and Convex Polyhedral
Corn Circumscribing the Constraints of Subproblem2

Subproblem1 for Nk, and ρ̂Nk
be its temporary op-

timal solution. We represent a list of feasible Nk as
LIST.
step 1 We put all candidate Nk into LIST. Let ρ̂ be
an appropriate lower bound value. Let each ρNk

and
each ρ̂Nk

for each Nk be appropriate upper and lower
bound values respectively.
step 2 We solve Subproblem1 for some Nk contained
in LIST.
step 3 If we can get the solution of the Subproblem1
in step2, let ρ̂ (=ρNk

= ρ̂Nk
) be the solution and ŵvj

be wvj which gives the solution. Otherwise, we elimi-
nate the Nk from LIST and go back to step2.
step 4 We solve Relaxed Problem for ŵvj, at each
Nk contained in LIST. If we cannot get the solution at
some Nk, we eliminate this Nk from LIST. If we can
get the solution ρ̂Nk,v̂j at some Nk, we compute ρ̂Nk

= max{ρ̂Nk
, ρ̂Nk,v̂j

}. If ρ̂ <ρ̂Nk
, we eliminate this Nk

from LIST.
step 5 Let N̂k be Nk at which ρ̂Nk,v̂j

is the least among
those at all Nk contained in LIST.
step 6 We solve Subproblem1 for N̂k. If we can get
the solution, let ρNk

(= ρ̂Nk
) be the solution and ŵvj

be wvj which gives the solution. If ρ̂ >ρN̂k
, ρ̂ =ρN̂k

.
If we cannot get the solution or ρ̂ <ρN̂k

, we eliminate
this Nk from LIST and go back to step5.
step 7 If we can get the relation |ρ̂ − ρNk

| < ε (ε
denotes an arbitrary small positive value) for all Nk

contained in LIST, we finish the loop. Otherwise, we
go back to step4.

4 Numerical Examples

In order to show the effectiveness of our approach,
we show some numerical examples in this section. We
show the target objects and the candidate contact
points in Fig.2. The objects in Case I and II are in
2 dimensional space. The object in Case III is a tri-
angular prism whose base is a right isosceles triangle(
4 × 4 × 4

√
2). In this figure, the points on each ob-

ject indicate the candidate contact points. Note that
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Figure 2: Target Objects and Candidate Contact
Points

(a) Case I (b) Case II

Figure 3: Required External Force Sets in 2 dimen-
sional space

we show only the candidate contact points on the top
face and on one side in Case III for easy to see. We
give the candidate contact points on the bottom face
and on the other side in the same way as those on the
top face and on the side respectively. The number of
the candidate contact points is 56 in Case I, 86 in Case
II, and 217 in Case III (36 for top and bottom face,
45, 45, and 55 for 3 sides). Let ΣOi(i =I,II,III) be the
object coordinate frame fixed at each geometric cen-
ter of the object in Case i. We use a frictional 16-side
convex polyhedral corn in Relaxed Problem. We set
WR as follows:

WR=




{(fT , mT )T ||f | ≤ sg,
−0.8γsg ≤ m1 ≤ 0.8γsg} (in Case I and II)
{(fT , mT )T | − sg ≤ fi ≤ sg,
−0.8γsg ≤ mi ≤ 0.8γsg
(i = 1, 2, 3)} (in Case III)

where f and m denote the external force and moment
respectively, fi and mi denote the ith component of f
and m respectively, s denotes the area or volume of
each object, and g=0.01 denotes the specific gravity of
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Figure 4: Optimal Grasp Points in Case I
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Figure 5: Optimal Grasp Points in Case II

Figure 6: Optimal Grasp Points in Case III

each object. γ in Case i (i =I,II) denotes the distance
between ΣOi and the vertex which is closer to ΣOi

than any other vertexes. γ in Case III denotes the
distance between ΣOIII and the face which is closer
to ΣOIII than any other faces. Here we suppose the
case where gravitational force (external force) can be
applied to each object in arbitrary direction and where
the external moment can be applied to each object
resulting from that the position of the center of gravity
can be located in the circle (Case I and II) or the sphere
(Case III), whose center is the origin of ΣOi and whose
radius is 0.8γ. WR in Case I and II are convex sets
but not convex polyhedrons. Then, we approximate
the sets by 10-side convex polyhedrons circumscribed
in the sets (Fig.3).

In Case I and II, we compute in the cases where
the number of the fingers is 2 and 3 and where the

Table 1: ρ in the Problem (4)
(a) Case I

µ 0.1 0.3 0.5
2 fingers 3.71 1.38 0.919
3 fingers 3.13 0.978 0.724

(b) Case II
µ 0.1 0.3 0.5

2 fingers 35.1 6.44 3.92
3 fingers 6.21 2.77 2.01

frictional coefficient is 0.1, 0.3, and 0.5. In Case
III, we set the number of the fingers is 3 and the
frictional coefficient is 0.3. Note that if we ob-
tain some optimal combinations of contact points
excepting symmetric arrangements, we search the
optimal combination which minimizes the criterion

max
w∈WR

min
fNi satisfy (2),(3)

√
Σm

i=1f
T
N ifN i among these

obtained combinations.
Results about the optimal combination of contact

points are shown in Fig.4, Fig.5, and Fig.6. Results
about ρ in the problem (4) in Case I and II are shown
in Table.1. ρ in Case III was 0.669. In Case III,
the obtained optimal grasp points were (2/9,−4/3,0)T ,
(2/3,2/3,0)T , and (−4/3, 2/9, 0)T (the origin (X) is the
origin of ΣOIII ). In Fig.4 and Fig.5, (a) and (b) show
the results in the cases where the object is grasped by
2 and 3 fingers respectively, and the arrows show the
obtained optimal grasp points. Note that we show only
one optimal combination of contact points where the
arrangements of the obtained 2 optimal combinations
are symmetric. Note also that we show only one opti-
mal combination of contact points in Fig.4 and Fig.5,
excepting the case shown in Fig.5(b), since the optimal
grasp points didn’t depend on the magnitude of the
frictional coefficient. In Fig.6, the arrows, whose tip is
black sphere, show the obtained optimal grasp points,
X shows the origin of the reference frame. The gray
triangle shows the projection drawing of the triangle,
made by the 3 optimal grasp points, on the bottom
face of the object.

From Fig.6, we can see that the each optimal grasp
point is located at a position close to each foot of each
perpendicular from ΣOIII to each side. For someone’s
information, we compute ρ in the case where we grasp
the object at these feet. ρ was 0.718 (which is bigger
than 0.669). From Table.1, we can see that the nec-
essary magnitudes of the contact forces to resist the
required external force depends both on the magni-
tude of the frictional coefficient and on the number of



the fingers in Case I and II.
The above algorithm was implemented in C/C++

and the above calculations were done on a PC with
1.2GHZ ATHLON. In 2 dimensional space (the fic-
tional coefficient is 0.3), the running times for Case I
and II, respectively, were about 5 and 7 seconds in the
case where we grasp by 2 fingers, and about 8 and 3
minutes in the case where we grasp by 3 fingers. In
3 dimensional space, the running time was about 25
minutes. For someone’s information, we computed in
the case where we use Subproblem2 in place of Relaxed
Problem to effectively find Nk for which we don’t have
to solve Subproblem1 (the fictional coefficient is 0.3).
In this case, the running times in the cases where we
grasp by 2 and 3 fingers, respectively, were about 24
seconds and 1.2 hours in Case I, and about 41 seconds
and 8.7 hours in Case II. The running time was about
4.35 hours in Case III. We think this shows the effec-
tiveness of using Relaxed Problem. The numbers of
Nk at which we solved Subproblem2 for all vertexes of
WR in the cases where we grasp by 2 and 3 fingers,
respectively, were 6 and 278 in Case I (the fictional
coefficient is 0.3), and 9 and 53 in Case II (the fic-
tional coefficient is 0.3). In Case III, the number was
21. Note that the other Nk were eliminated. We think
this shows the effectiveness of the branch-and-bound
method.

In our approach, the number of the candidate com-
binations of contact points is C(n, m) and then the
number become large when the number of the fingers
or the candidate contact points is large. If the run-
ning time is too large to apply the above algorithm, we
can get approximate optimal grasp points in a smaller
running time by the following way; at first we reduce
the candidate contact points and search optimal grasp
points, and then we search optimal grasp points from
original candidate contact points which is close to the
obtained optimal grasp points.

5 Conclusion

In this paper, we have searched optimal grasp points
on a grasped object by using the concept of required
external force set. By using the required external force
set, we can deal with general desired grasps including
force closure and equilibrium grasp, and can evaluate
the magnitudes of the resistible external forces and
moments. We have defined an optimal grasp that min-
imizes the magnitude of the contact force required to
resist any external force and moment contained in the
given required external force set. We have searched
the optimal grasp points by using a branch-and-bound
method. We have also presented some numerical ex-
amples in order to show the validity of our approach.
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