研削加工における砥粒切れ刃の切削作用*

佐藤昌彦** 上田隆司***

Working Activity of Cutting Grains in Grinding

Masahiko SATO and Takashi UEDA

In this paper, the activity of effective cutting grains in cutting of work and the activity of effective cutting grains in generation of finished surface are described. The former was investigated by the measurement of wheel surface temperature immediately after grinding using infrared radiation pyrometer with an optical fiber and the latter was investigated by the measurement of finished surface roughness using three-dimensional surface roughness tracer respectively. These activity of cutting grains in the whole circumference of wheel surface was clarified. The results obtained are as follows: 1) Cutting grains which have effective concern with cutting of work certainly act in every rotation of wheel. 2) The number of effective cutting grains in cutting of work increases as wheel depth of cut increases. 3) Cross-sectional shape of scratch toward grinding direction on the finished surface is generated by some identical cutting grains even when wheel depth of cut increases.

Key words : grinding, effective cutting grain, cutting of work, generation of finished surface, grain temperature, infrared radiation pyrometer, surface roughness, active grain density, scratch

1. 緒 言

研削加工は,砥石を構成する数多くの砥粒切れ刃による微小 な切削の集積であることから,研削抵抗や研削熱の発生,仕上 げ面の形成過程などといった研削諸現象を解明するためには, 個々の砥粒切れ刃による切削作用を明らかにすることが重要で ある.

砥石表面に存在する砥粒切れ刃には、その存在している位置 によって、砥石表面に存在するものの直前の砥粒切れ刃よりも いくぶん深い場所に存在するために切りくずの生成に作用しな い無効砥粒切れ刃と、切りくずの生成に作用する有効砥粒切れ 刃とがあり、さらに有効砥粒切れ刃には、切りくずの生成に作 用するものの後続の砥粒切れ刃によってその切削条痕が削り取 られるために仕上げ面に切削条痕を残さない粗さ無効砥粒切れ 刃と、切削条痕が後続の砥粒切れ刃に削り取られることなく仕 上げ面にそのまま残される粗さ有効砥粒切れ刃とがある.砥石 の研削性能は、粒度や結合度の他に、このような、静的、動的 な砥粒切れ刃の分布状態にも大きな影響を受ける.従って、砥 石表面上の砥粒切れ刃の作用別の分布状態や、研削中の作用、 研削条件による作用状態の変化などを明らかにすることは、研 削加工現象を解明するための一つの基本的な方法といえる.

このため、これまでにも、砥石表面上の砥粒切れ刃の分布と 作用状態を明らかにしようと様々な研究が行われてきた¹⁾²⁾. 例えば静的な砥粒切れ刃の分布は、転写法³⁾や、電子顕微鏡⁴⁾・ レーザ顕微鏡⁵⁾による観察法、触針による走査法⁶⁾⁷⁾などに よって、動的な砥粒切れ刃の分布は、ピエゾ素子による抵抗パ ルスの測定⁸⁾や、熱電対による熱パルスの測定⁹⁾、砥粒切れ刃 逃げ面からの光反射の測定¹⁰⁾¹¹⁾などによって測定され、それ ぞれの方法による独自の新たな知見が、実験的及び解析的に数 多く得られている.

* 原稿受付 平成 13 年 4 月 5 日

ところで,砥石表面に存在する各砥粒切れ刃が被削材に対し て幾何学的に決められた作用をすると仮定すると,有効砥粒切 れ刃の作用は砥石の回転ごとに決まったものになると考えられ る.しかしながら,有効砥粒切れ刃,さらには粗さ有効砥粒切 れ刃の作用を砥石の回転ごとに追跡して測定した例はほとんど なく,その作用に関しては明らかにされていない点も多い.

そこで本研究では、光ファイバと赤外線検出素子を組み合わ せた温度計を用いて研削直後の砥石表面温度を測定し、研削点 において高温に加熱された有効砥粒切れ刃からの熱放射を検出 することによって砥石の回転ごとの切れ刃の切削作用を明らか にするとともに、仕上面の表面粗さを砥石約3回転分に渡って 3次元的に測定し、砥石の回転ごとの粗さ有効砥粒切れ刃の切 削作用を明らかにした。

2. 実験方法

実験は平面研削盤を使用して行い, 砥石は WA461, 被削材 は高速度鋼 SKH4 とした.

切りくずの生成に関与した砥粒切れ刃は研削点において加熱 され高温となる.従って,研削直後の砥石表面温度を測定する ことによって高温となったこれらの砥粒切れ刃を検出すること ができ,砥石表面上に存在する個々の有効砥粒切れ刃の作用状 態を調べることができる.

実験装置を図1に、実験条件を表1に示す. 温度測定用の 光ファイバは,研削点からθ=35°離れた砥石外周部に,砥石 表面からt=100µm離して設置してある.研削点で加熱された 砥粒切れ刃が研削後に空転して光ファイバの受光領域を通過す る際に,高温となった砥粒切れ刃先端から放射される赤外線を 光ファイバで受光し,レンズを介して赤外線検出素子に集光, 電気信号に変換して増幅した後,デジタルメモリに記録,パー ソナルコンピュータで処理する.

この方法は上田ら¹²⁾と同様であるが、上田らの場合には光 ファイバとして石英ガラス光ファイバを使用していることから 検出波長域が短く、400℃以上の高温の砥粒切れ刃群を対象と

^{**} 正 会 員 富山県立大学工学部(富山県射水郡小杉町黒河 5180)

^{***} 正 会 員 金沢大学工学部(金沢市小立野 2-40-20)

Fig.1 Experimental setup for grinding and temperature measurements

した測定となっている.本研究ではこの点を改良し,カルコゲ ナイドガラス光ファイバを使用することによって測定下限温度 を 50℃まで下げ,より低い温度の砥粒切れ刃群を測定対象に 加えることで,有効砥粒切れ刃の作用をより正確に把握するこ とができるようにしている.

本研究で使用したカルコゲナイドガラス光ファイバは,コア 材の主成分をAsSeS,クラッド材の主成分をAsSとしたもので あり,図2に示すように赤外線の伝送可能波長域が約2µm~ 7µmと,石英ガラス光ファイバに比べて長く,より低い温度 の測定が可能である.使用した光ファイバのコア径は200µm, クラッド径は250µm,受光角2ξ_{max}は48°,ステップインデッ クス型である.

集光レンズはCaF₂レンズであり,約0.1µm~8µmまでの光 に対して約0.9の透過率を有している.

赤外線検出素子には InSb を使用した. InSb 素子は赤外線が 入射すると起電力を生じる光起電力型の半導体素子であり,応 答波長域は約 1µm ~ 5.5µm,応答速度は 1µs である.

温度計のアンプの周波数応答特性を図3に示す.矩形波入力に対して約100kHzまで損失のないフラットな特性を有しており,200kHzの入力に対しての損失は約-1.6dB,500kHzの入力に対しての損失は約-5.4dBとなっている.

測定データはデジタルメモリにサンプリング周波数200kHz で 30000 点, 砥石約 4.5 回転分の温度を記録した.

砥石のドレッシングは、単石ダイヤモンドドレッサにより表 1中の条件で行った.電子顕微鏡で観察したところ、ドレッサ の先端頂角は約140°で、先端部は約100μmの平坦部を有して いる.砥石1回転当たりのドレッサ送り量は85μm/revであり、 砥石表面にねじが立たないようにドレッサ先端の平坦部の長さ より小さくした.また、ドレッサ送り量を砥粒切れ刃の平均粒 径¹³⁾(=45G^{-1.28}, G=#46では約335μm)と比較すると、送 り量はその約1/4に相当している.

研削抵抗は歪ゲージ式の動力計と動ひずみ計を用いて,垂直 分力と水平分力を測定した.

図4は温度計の出力校正曲線である.砥石から試片を切り 出して一定温度に加熱し,試片から放射される赤外線を光ファ イバで受光することにより,温度計の出力電圧との関係を求め た.図中の実線は温度計の相対感度を理論的に計算した¹⁴⁾も のであり、実験値とよく一致している.

本研究においては, 砥粒切れ刃温度の測定位置は研削点から 35°離れていることから, 研削速度から換算すると, 研削後約 3.2ms 経過した温度を測定していることになる.

Table 1 Grinding conditions

Grinding wheel	WA 4617 V
Dimensions	200 x 19 x 50.8
Dressing conditions	
wheel speed	18.85 m/s
depth of cut of dresser	0.01 mm
feed of dresser	0.085 mm/rev
number of dressing passes	6
number of spark out	4
Wheel speed	18.85 m/s
Work speed	0.14 m/s
Wheel depth of cut	5-25 μm
Workpiece	High speed tool steel (SKH4)
Dimensions	22 (length) \times 10 (width)
Grinding liquid	none (dry)

温度計の測定面すなわち感温面の直径は,光ファイバの受光 角とコア径,測定距離から幾何学的に求まり¹⁴⁾,約290μmと なる.従って,砥石表面温度を,砥石全周に渡って290μmの 幅で測定していることになる.

研削速度が通常用いられる速度(30m/s)に比べて幾分低いが, これは使用したデジタルメモリのサンプリング周波数と容量に 制約されたためであり,温度計の性能としては30m/sでも十分 対応できる.

3. 有効砥粒切れ刃の切削作用

砥石表面温度の測定波形例を図5に示す.切込みが15μmの 場合である.図(a)は光学式回転計によって砥石回転数を計測 した際の回転計からの出力信号であり、ピークとピークとの間 が砥石1回転分に相当している.図(b)は砥石表面温度である.

両者は同時に測定している.図(b)より,砥石表面温度の測定 波形にはパルス状の出力が多数現れており,これらは,研削点 で切りくずの生成に関与して加熱された個々の有効砥粒切れ刃 が温度計の感温面を通過した際に温度計が受光した,各有効砥 粒切れ刃からの熱放射であると考えられる.

横軸は時間軸であり,図示の0.12sでは砥石は約3.6回転し ている.縦軸は,左側の軸が温度計の出力電圧で,右側の軸が その出力電圧に対する温度である.本温度計の場合,温度計の 感温面よりもそこを通過した砥粒切れ刃の方が大きい場合に は,砥粒切れ刃の温度は右側の軸の値でそのまま表される.た だし,砥粒切れ刃が感温面よりも小さな場合や,感温面の端を 通過したような場合には,感温面内に占める砥粒切れ刃の面積 の割合によって実際よりも低く算出され,また,砥粒切れ刃が 急激な温度分布を有している場合にも測定値は低めになる¹⁵⁾. このような場合には,砥粒切れ刃の面積や温度分布から補正す るか,2色温度計を用いて影響を小さくすることが必要である が,本研究においては温度の絶対値に対して要求される精度が それほど高くないことから,面積の補正などは行っていない. ただし,放射温度計の特性として,測定温度は感温面を通過し ている砥粒切れ刃の最高温度に近い値であると考えられる.

図(b)のパルス状の波形で表される砥粒切れ刃の作用が砥石 の回転ごとにどのように変化しているのかを調べるために時間 軸を拡大して表示したのが図6である。回転計からの出力信 号を基準にして,砥石の1回転めと2回転めとを同期させて比 較している。横軸は時間にして0.025sであり,砥石約3/4回転 に相当している。図より,感温面を通過する個々の砥粒切れ刃 からの熱放射が明瞭に測定できていることが分かる。

ピークの高さにいくぶんの違いはあるものの,上段の1周め のパルス位置と下段の2周めのパルス位置とが非常によく対応 している.これは,1周めで作用した砥粒切れ刃は2周めにも 同様に作用していることを示しており,被削材と作用すべき位 置に存在している砥粒切れ刃の切削作用は,砥石の回転ごとに 極めて規則的であるといえる.

次に,砥石切込みを5µm~25µmと変化させた場合の砥石表 面温度の測定波形を図7に示す.各切込みにおける出力波形 は,回転計からの信号をもとに,砥石表面上の同一箇所の測定 結果となるように対応させて整理している.横軸は先と同様に 0.025sで,砥石約3/4回転に相当している.

図より,切込みが増加するに従って有効砥粒切れ刃数が増え

Fig.7 Variation of the temperature of active grains on wheel circumference with different wheel depth of cut d

ていることが分かる.これは,切込みが小さなときには作用し なかった砥石内部の砥粒切れ刃が,切込みが増加するにつれて 切りくずの生成に関与するようになるためと考えられる.ま た,各有効砥粒切れ刃の温度は,切込みが増加するにつれて高 くなっている.

これらのことより,切込みが増加するにつれて作用する砥粒 切れ刃数は増えるものの,砥石表層の砥粒切れ刃による個々の 切取り厚さは,切込みの増加とともに大きくなっているものと 考えられる.

図中のa~hの記号は、代表的な砥粒切れ刃に便宜的に付し たものであるが、例えば、砥粒切れ刃c,hは切込みが5µm~ 25µmまで、いずれにおいてもパルス波形が現れていることか ら,各切込みにおいて切りくずの生成に有効に作用しているこ とが分かる.また、砥粒切れ刃b,e,f,gなどは、砥石表面 から少し深い位置にあるためか、切込みが小さいときには作用 していないが、切込みが大きくなると作用し始めている.

このように、切込みが大きくなるにつれて作用する砥粒切れ 刃は増加し、それらは切込みが大きくなってもそのほ とんどが作用し続けていることから、砥石表面上の砥 粒切れ刃は存在している位置と深さによって作用し始 める砥石切込みが決まり、それより大きな切込みでは 切込みによらず常に作用するものといえる.

図において、砥粒切れ刃aに関しては、5µm~20µm までは切りくずの生成によく作用しているが、25µmで はパルスが現れていない.また、砥粒切れ刃dは切込み が15µmのときに現れているが、それ以降では現れてい ない.これらの砥粒切れ刃は、切りくず生成の過程で 欠けが生じて先端位置が後退したかまたは脱落し、作 用しなくなったものと考えられる.

4. 粗さ有効砥粒切れ刃の切削作用

研削仕上面は, 粗さ有効砥粒切れ刃による切削条痕 によって形成されている. そこで, 粗さ有効砥粒切れ 刃の分布密度と作用を調べるために, 研削仕上面の表 面粗さを測定した.

表面粗さは3次元表面粗さ計により,研削方向に14mm,研 削方向と直角方向に200µmの範囲を測定した.直角方向には, 2µm 間隔で合計 100 本測定している.

図8に切込みが5µmの場合の表面粗さの測定例を示す.直 角方向に比べて研削方向の測定長さが70倍長いことから,図 の表面粗さは仕上面を研削方向にかなり圧縮して示したものと なっている.砥石回転数と被削材送り速度との関係から,砥石 が1回転する間に被削材が進む距離は約4.7mmであり,図示 の14mmの間に砥石は約3回転している.

図より,研削仕上面には個々の粗さ有効砥粒切れ刃によって 残された切削条痕が多数観察でき,これらの条痕の集積により 仕上げ面が形成されている.従って,これらの切削条痕のう ち,同一の粗さ有効砥粒切れ刃による条痕を砥石回転ごとに追 跡することにより,仕上げ面の形成過程における粗さ有効切れ 刃の切削作用を調べることができる.

図9は図8のOPQR部を等高線表示したものであり、色の

濃い部分ほど深いことを示している.この濃い領域それぞれ が,個々の砥粒切れ刃によって形成された切削条痕であると考 えられる.図では条痕が縦長に観察されるが,測定範囲の縦横 比から,実際には研削方向に細長い形状である.

この図より, 濃淡で表されたこれらの条痕が, 砥石1 回転に相当する長さごとに等間隔で規則的に出現して いることが分かる.また,これら等間隔に並んだ条痕 の方向が研削方向である.本研究では表面粗さを測定 する際に研削盤からいったん取り外しているために研 削方向と粗さ測定方向との間に少しの傾き(約0.06°) が生じているが,ある程度の幅を持って3次元的に表 面粗さを測定することにより,研削方向と全く平行な 方向の表面粗さを求めることができる.研削方向と平 行な方向である A-A 断面の粗さデータ(研削方向の粗 さデータは,10µm 間隔で14000 点からなっている)を 抜き出して表示したものを図10 に示す.

図より,研削方向には砥粒切れ刃によって残された 条痕が砥石の回転ごとに周期的に形成されており,仕 上げ面は各砥粒切れ刃の作用によって非常に規則正し く形成されていることが分かる.図において,一つの 谷部が一つの砥粒切れ刃によって形成されているとす ると,図の断面では,砥石1回転あたりの主な粗さ有効 砥粒切れ刃はi~mの約5個であることが分かる.また, 砥石各回転ごとに形成される表面粗さの形状を比較す ると,これらの砥粒切れ刃によって,ミクロン以下の オーダーでほとんど全く同じ面が形成されていること が分かる.

次に,砥石切込みを 5µm ~ 25µm と変え,それぞれ の条件における研削仕上面粗さに関し,同一箇所を同 様に測定し,等高線図から同じ断面部を抜き出して比 較したものを図11に示す.

図より、切込みが 5μ m ~ 25μ m と大きく変わっても、 仕上げ面を形成する砥粒切れ刃には変化がなく、主と して i ~ mの砥粒切れ刃で形成されていることが分か る.また、表面粗さにも大きな変化はない.これは、形 成された研削仕上面の最大粗さが R_y の場合、幾何学的 には、砥石表面から R_y より内側に存在する砥粒切れ刃 は有効砥粒切れ刃ではあっても粗さ有効砥粒切れ刃で はないためと考えられる.また、切込みが 25μ mと大き な場合でも、形成される仕上げ面は、 5μ mの場合と同 様に、砥石の回転ごとにミクロン以下のオーダーで極 めて規則的であることが分かる.

一番下の5µm (2)の表面粗さは、切込みが25µmの 実験のあとで再度5µmで行ったものであるが、最初の 5µmの場合に比べると砥粒切れ刃 i による条痕が、 0.5µm程度、浅く、鈍くなっているように観察できる. これは、突出した砥粒切れ刃には他の砥粒切れ刃に比 べて大きな研削抵抗が加わると考えられることから、 砥粒切れ刃の先端に摩耗または欠けを生じたためでは ないかと考えられる.また、砥粒切れ刃mに関しても 切込みが10µmと15µmで条痕の形状が変わっており、 欠けや脱落等の変化があったものと考えられる.

5. 粗さ有効砥粒切れ刃密度

図9に示す3次元表面粗さから、仕上げ面に条痕を残

す粗さ有効砥粒切れ刃の分布密度を求めた.図12は図9の粗 さデータのうち,左側から砥石約1回転分のデータを抜き出し て等高線を表示したものである.表示範囲は研削方向に 5.6mm,直角方向に200µmである.同図(a)はグラデーション

Fig.11 Variation of surface roughness toward grinding direction with depth of cut d

表示したもの,同図(b)は一例として-0.9μmと-0.5μmの高さの 等高線を表示したものである.

図(a)に表示した等高線の色の濃い箇所が,粗さ有効切れ刃 によって形成された条痕であり,図(b)のように表示した等高 線と比較しながら仕上げ面に残された条痕の個数を求めた.実 際の計数に際しては,図(b)のような等高線を粗さの谷部から 山部まで0.1μmごとに順次表示して比較しながら求めている.

粗さ有効砥粒切れ刃数を砥石の単位表面積当たりの密度に 換算し,砥石切込みとの関係を求めたものを図13に示す.図 より,仕上げ面を形成する粗さ有効砥粒切れ刃数は切込みによ らずほぼ一定で,砥石表面上で約0.5個/mm²であることが分

 $\begin{bmatrix} 2 & 2 \\ 0 & 2 \\ 0 & 5 & 10 & 15 & 20 & 25 & 30 \\ \end{bmatrix}$ Wheel depth of cut μm

Fig.13 Variation of density of active grains which have concern with the generation of finished surface (Grinding wheel : WA 46 17 V, Workpiece : High speed tool steel)

かる.切込みによらないのは先と同様で,仕上げ面最大粗さ R_yより内側に存在する砥粒切れ刃は粗さ有効砥粒切れ刃とは ならないことから, R_yより大きな切込みでは変化がないもの と考えられる.

6. 結 言

本研究では、砥石表面に存在する砥粒の中で、切りくずの 生成に関与する有効砥粒切れ刃の切削作用と、仕上げ面に条 痕を残す粗さ有効砥粒切れ刃の切削作用について明らかにし た、得られた結論を以下に示す.

- (1) 1周めの研削で作用した砥粒切れ刃は2周めにも同様に作用しており、有効砥粒切れ刃の切削作用は砥石の回転ごとに規則的である。
- (2) 砥石切込みが増加するにつれて有効切れ刃数は増加し、 切込みが小さなときに作用している有効砥粒切れ刃は、切 込みが大きくなった場合でも同様に作用している。
- (3) 仕上げ面はいくつかの特定の粗さ有効砥粒切れ刃の作用 によって形成されており、ミクロン以下のオーダーで砥石 の回転ごとに周期的に同じ形状となっている。
- (4) 切込みが 5µm ~ 25µm と大きく変わっても仕上げ面を形成する砥粒切れ刃は同一のものであり、それによって形成される仕上げ面もほぼ同一形状である.
- (5) 粗さ有効砥粒切れ刃数は切込みによらずほぼ一定で、 WA46 砥石表面上の粗さ有効砥粒切れ刃密度は約0.5個/ mm²である。

参考 文献

- J.Verkerk and J.Peters : Final Report Concerning CIRP Cooperative Work on the Characterization of Grinding Wheel Topography, Annals of the CIRP. 26. 2(1977)385.
- 2) 佐田登志夫,井上英夫他:高能率研削(1)基礎編,大河出版(1974).
- 3) 中山一雄, M.C.Shaw:研削仕上面のあらさ, 日本機械学会論文集 (第3部) 37, 293(1971)178.
- Y.Matsuno, H.Yamada, M.Harada and A.Kobayashi : The Micrography of Grinding Wheel Surface with SEM, Annals of the CIRP, 24, 1(1975) 237.
- I.Inasaki : Grinding Process Simulation Based on the Wheel Topography Measurement, Annals of the CIRP, 45, 1(1996)347.
- W.Koenig and W.Lortz : Three Dimensional Measurement of the Grinding Wheel Surface-Evaluation and Effect of Cutting Behaviour, Annals of the CIRP, 25, 1(1976)197.
- 7) 中島利勝, 塚本真也,小谷修: 砥石面トポグラフィから考察した 研削面プロフィルの創成機構に関する研究,精密工学会誌,59,3 (1993)491.
- 8) 松井正己,田牧純一:砥石表面トポグラフィの測定に関する研究 (第3報)--Razor blade 法 --,精密機械,49,12(1983)1652.
- J.Verkerk : The Real Contact Length in Cylindrical Plunge Grinding, Annals of the CIRP, 24, 1(1975)259.
- H.Tsuwa : An Investigation of Grinding Wheel Cutting Edges, ASME Journal of Engineering for Industry, 86, Nov(1964)371.
- T.Suto, H.Inoue, T.Wada, H.Noguchi, K.Tamakohri and T.Sata : A Newly Developed In-Process Sensor for Detecting Active Grain Wear in Grinding Operation, Annals of the CIRP, 25, 1(1976)229.
- 12) 上田隆司,岡田公之,鳥居明人:光ファイバを用いた赤外線輻射 温度計による研削機構の研究(砥粒切れ刃の温度と切削作用),日 本機械学会論文集(C編),55,516(1989)2251.
- 13) 竹中規雄, 笹谷重康: 研削作用に関する研究(第2報, 研削といしのと粒分布密度およびと粒間隔), 日本機械学会論文集, 26, 163 (1960)403.
- 14)上田隆司,金田泰幸,佐藤昌彦,杉田忠彰:光ファイバ型赤外線 輻射温度計による加工温度の測定(温度計の特性),日本機械学会 論文集(C編),58,545(1992)302.
- 15) 佐藤昌彦,上田隆司,西田昌弘:単結晶ダイヤモンド二次元切削 における工具すくい面温度の測定,精密工学会誌,64,6(1998) 892.