An Assessment on Mitigating Effect of ASR in Fly Ash-Bearing Mortars with Andesite Stones by ASTM C 1260

メタデータ	言語: jpn
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/39072

ASTM C 1260 によるフライアッシュ含有モルタルの 安山岩に対する ASR 抑制効果の評価

広野真一* 鳥居和之**

An Assessment on Mitigating Effect of ASR in Fly ash-Bearing Mortars with Andesite Stones by ASTM C 1260

by

Shinichi HIRONO* and Kazuyuki TORII**

Volcanic rocks such as andesite have popularly been used for aggregates in the Hokuriku District. Therefore, the andesitic aggregates have contributed to a steady occurrence of alkali-silika reaction(ASR) in concrete. Taking into account the effective utilization of local materials, so-called "Chisan-chisho", both the reduction in the environmental impact and the rationalization of natural resources, positive countermeasures for mitigating ASR by using blended cements with fly ash(FA) or blast-furnace slag(BFS) are most expected. This paper examines the mitigating effects of mineral admixtures on ASR of mortars by the accelerated mortar-bar test(ASTM C 1260). As the result of test, the replacement with FA or BFS at normal percentages recommended by JIS A 5308 decreased significantly the expansion of mortar bars using reactive andesitic aggregates in the Noto peninsula. Especially, a high-quality fine FA produced in the Hokuriku District is hopeful in its practical use of concrete mixtures. Furthermore the ASR mitigating effects by mineral admixtures are assessed with a good performance by the test method "ASTM C 1260".

Key words: Alkali-silica reaction, Mitigating effect, Fly ash, ASTM C 1260, Petrographic examination

1 まえがき

火山帯に位置するわが国には,地質年代の新しい火山 岩類が広く分布し、安山岩などがコンクリート用骨材と して各地で活用されている.一方,このような火山岩類 は一般に、火山ガラス、クリストバライト、トリディマ イト,オパールなどを含み,アルカリシリカ反応(以下, ASR と略す)による被害を発生してきた¹⁾.北陸地方と その周辺においても、安山岩をはじめとする火山岩類が 広く分布する²⁾. それらは、中部山岳地帯から流れ下る 大河川を有する地域では,豊富な砂利資源の重要な構成 要素である.とくに、砂利資源に乏しい能登半島では砕 石としても広く利用され,ここでも骨材供給の役割を果 たしてきた.このように、北陸地方において安山岩は骨 材資源として,川砂利と砕石のいずれにも非常に重要で あるが、反面、安山岩による顕著な ASR の発生が非常 に多く確認されてきた^{3),4)}.わが国のASR 抑制対策は, アルカリ総量規制によりコンクリートのアルカリ量を 低く抑える方法, ASR 抑制効果のある混合セメントの使 用, または ASR 反応性試験の結果が「無害」と判定さ れた骨材の使用からなるが、「無害」と判定される骨材 の使用に頼ることは、上述の地質を考慮すれば貴重な骨 材資源を放棄することであり適当でない.また,北陸地 方では冬季の日本海からの季節風や凍結防止剤の散布 による、コンクリート中へのアルカリの浸入は避けられ ず³⁾, さらに ASR の反応過程で骨材からアルカリが溶出 する問題もあり5),アルカリ総量規制は意味をなさない 場合がある.したがって、地産地消による環境負荷の低 減と資源の有効利用を念頭に置き,またコンクリートへの信頼をさらに高めるためにも,混合セメントの使用に よる,より積極的な ASR 抑制対策に期待が向けられる のは必然的であった.このような事情と期待を背景に, 平成 23 年 1 月,産学官連携による「北陸地方における コンクリートへのフライアッシュの有効利用促進検討 委員会」が設立された.本研究は,その一環でもある^の.

本研究では,能登半島で流通している代表的な反応性 岩種である安山岩の特徴,その反応性と,この地方で供 給可能な高品質化したフライアッシュ(分級灰)を使用 することによる ASR 抑制効果を,ASTM C 1260 による 促進モルタルバー試験で評価する.また,もう一つの代 表的な混和材として,現在広く使用されている高炉スラ グ微粉末による ASR 抑制効果も比較して評価する.さ らに,これらの結果を偏光顕微鏡下での観察により確認 し,促進モルタルバー試験結果の検証とともに偏光顕微 鏡観察による ASR 判定の有効性をも検討する.

2 実験概要

2·1 使用材料

北陸地方の能登半島北部の代表的な反応性岩種であ る安山岩からなる砕石3種(安山岩A,安山岩Bと安山 岩C)を骨材として使用した.いずれも,北陸地方に共 通する,新第三紀中新世以降に生成した新鮮ないしやや 変質した安山岩である.生成した年代は安山岩Aが最も 新しく,約900万年前である⁷⁾.使用した安山岩砕石3 種の採取地と,安山岩,流紋岩とデイサイトの火山岩類 の北陸地方付近における分布をFig.1に示す.安山岩砕

+ 原稿受理 平成 年 月 日 Received

* 非 会 員 (㈱太平洋コンサルタント 〒285-0802 千葉県佐倉市, Taiheiyo Consultant Co.Ltd., Sakura-shi, Chiba, 285-0802 ** 正 会 員 金沢大学理工研究域 〒920-1192 石川県金沢市, College of Science and Engineering, Kanazawa Univ., Kanazawa-shi, Ishikawa, 920-1192

Fig. 1 The regional distribution of volcanic rocks and origin of aggregates⁸⁾.

石3種は、いずれもコンクリート用骨材として長年にわたり使用されてきたものであり、これらの骨材を使用したコンクリート構造物でのASR劣化の発生は、安山岩Aと安山岩Cで多く確認されているのに対し、安山岩Bでは調査不十分で、その反応性が不明である^{4),9}.

使用セメントは普通ポルトランドセメント(密度: 3.16g/cm³, 等価アルカリ量: 0.55%), フライアッシュは 北陸電力七尾大田火力発電所産の分級灰である.この分 級灰は、コンクリートに使用し、その耐久性と品質を高 める実用目的で,前述の「北陸地方におけるコンクリー トへのフライアッシュの有効利用促進検討委員会」の活 動で検討してきたものであり, 原料炭の選別と燃焼温度 を十分に管理することにより生産された JIS A 6201 のⅡ 種灰を、さらにサイクロンで分級して採取された、高品 質なフライアッシュである. 一般に, フライアッシュの ASR 抑制効果については、シリカ質のガラス量と比表面 積の影響が大きいことが知られている¹⁰⁾.このため,北 陸地方に分布する反応性の高い安山岩に対しても、ASR を効果的に抑制することも目的に, 粒径の小さなフライ アッシュ(平均粒径:7µm)としての適用性を検討して いる.分級前後のフライアッシュの偏光顕微鏡写真を Fig.2に示す. 分級灰は,ほぼ粒径 22 µm以下の微粒子 からなり, JIS I 種灰相当品である.一方, 高炉スラグ微 粉末は,S社製のJISA 6206の高炉スラグ微粉末 4000 を 使用した.使用したフライアッシュと高炉スラグ微粉末 の物理的性質、モルタルの活性度指数とフロー値比を Table 1 に、またそれらの化学組成を Table 2 に示す.

2.2 試験方法

2・2・1 安山岩砕石の岩石・鉱物学的試験

促進モルタルバー法(ASTM C 1260)に規定されたサ イズ(4.75~0.15mm)と粒度組成に調整した安山岩砕石 3種をエポキシ樹脂で固化したものから、20×20mmの チップを切り出した.これをスライドグラスに接着し、

Fig. 2 Photomicrographs of original fly ash(a) and classified fly ash(b:used in this study), taken under plane polarized light.

Table 1 Physical properties, activity index and ratio of flow about fly ash(FA) and ground granulated blast-furnace slag(BFS) used in this study.

Material	Density (g/cm ³)	sity n ³) Blaine finess (cm ² /g)		ivity lex s, %) 91	Ratio of flow(%)
FA	2.43	4780	91	104	107
BFS	2.90	4120	103	108	101

厚さ15~20μmの薄片試料を作製した.薄片試料を偏光 顕微鏡下で観察し,それらを構成する岩石の特徴や構成 鉱物を検討した.

2・2・2 骨材の反応性と鉱物質混和材による ASR 抑制 効果の検証試験

安山岩砕石 3 種につき,ASTM C 1260 (温度 80℃, IN の NaOH 溶液に浸漬)による促進膨張試験を行い,骨材 としての潜在的な反応性,ならびにフライアッシュと高 炉スラグ微粉末による ASR 抑制効果を検証した.ASTM C 1260 では,外部から供給される十分なアルカリが常に 反応に関与できるため,セメントやフライアッシュ,高 炉スラグ微粉末,さらに骨材中のアルカリの形態とその 量が ASR におよぼす影響について,考慮する必要がな

Table 2 Chemical compositions of fly ash(FA) and ground granulated blast-furnace slag(BFS) used in this study(mass%)

Tuble 2 Chen		positions	, or 119 us	ii(11) uii	a ground	Signatur	cu olust i		ug(DI D)	ubeu m u	mo study	(11140070)
Material	LOI	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO_3	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO
FA	2.0	53.60	28.93	6.74	3.20	0.77	0.22	0.30	0.72	1.39	0.98	0.09
BFS	0.97	33.14	14.19	0.33	42.96	5.29	1.97	0.25	0.28	0.53	0.01	0.28

いという利点がある.また,鉱物質混和材による ASR 抑制効果を過酷な条件で早期に把握する目的で,本研究 では ASTM C 1260 を採用した.

(1) ASTM C 1260 による促進モルタルバー試験

安山岩砕石3種の反応性とフライアッシュ(略号FA) あるいは高炉スラグ微粉末(略号 BFS)の ASR 抑制効 果を確認する. FA あるいは BFS の置換率は, JIS A 5308 による ASR 抑制効果の推奨値を参考に、セメントの内 割でそれぞれ 15%あるいは 42% (現在の高炉セメントB 種の平均的な置換率)の質量置換とした(略号 FA15%, BFS42%). これに対し, FA や BFS をセメントと置換し ない試験体を OPC と表記する. モルタルバーの作製は, 使用セメントのアルカリ量を調整せず,水:(セメント +FA, BFS): 骨材=0.47:1:2.25, モルタルバーの寸法 は 25×25×285mm, 打設後 24 時間で脱型した. 80℃の 水中養生をさらに 24 時間実施後の長さを基長とした. その後,80℃の1N-NaOH 溶液に浸漬し,以降を促進養 生期間として、28日間の長さ変化を計測した.ASTMC 1260 による骨材の反応性の評価は、促進養生期間 14 日 で 0.1%未満が「無害」, 0.1~0.2%が「不明確(無害と 有害の両者が存在する)」、0.2%以上が「有害」である. (2) 偏光顕微鏡下での ASR による劣化組織の観察

ASTM C 1260 による促進養生期間 28 日の終了後,モ ルタル試験体から,厚さ 15~20µm 程度の研磨薄片試料 を作製した.これを偏光顕微鏡下で観察し,内部組織の ASR による劣化状態を評価した.ASR による劣化状態 の評価基準は,Katayama et al.の研究¹¹⁾を参考に Table 3 に示す分類を用いた.これは主に,ASR ゲルに充填され た膨張ひび割れの発生と発達の過程を評価するもので ある.ただし,本研究では劣化状態がⅢ以上に大きい部 分の,より細分化した評価を行うために,膨張ひび割れ の最大幅でさらに分類した.

2・3 試験結果と考察

2・3・1 安山岩砕石の岩石・鉱物学的試験

安山岩砕石3種は、いずれも安山岩のみから構成され、 斑晶(斑点状の大きな鉱物)として主に斜長石、斜方輝 石と単斜輝石を含む両輝石安山岩であった.さらに、安 山岩 A と安山岩 B には、少量のかんらん石斑晶が認め られた.石基(斑晶の粒間の細かな部分)は、安山岩 A、 安山岩 B と安山岩 C のいずれとも、斜長石、輝石(単斜 輝石または斜方輝石)、クリストバライト、鉄チタン鉱 物(磁鉄鉱など)の細かな結晶と、それらの粒間を埋め る火山ガラスから主には構成されていた.これらの構成

 Table 3
 The petrographic classifications of ASR stages based on Katayama et al.¹¹⁾

Stages	The progress of ASR					
0	No reaction					
I	The formation of reaction rims and exudation of					
	ASR sol/gel around the reacted aggregate.					
п	The formation of ASR gel-filled cracks within					
ш	reacted aggregate.					
т	The propagation of ASR gel-filled cracks from the					
ш	reacted aggregate into surrounding cement paste.					
IV	The formation of ASR gel-filled cracks network					
	and the migration of ASR gel into air voids.					

鉱物の量比はそれぞれで異なり, ASR 反応性を有する鉱 物について,安山岩 A は火山ガラスを非常に多く含み, 安山岩 C はクリストバライトを多く含んでいた.一方, 安山岩 B は火山ガラスとクリストバライトのいずれと も少量であった. 安山岩 Cは, 安山岩 A や安山岩 B と 比較してシリカ分(SiO2)に富み、また安山岩 A は生成 時に急冷されたものであった.一方,岩石の生成以降の 現在にいたる期間に輝石の変質などにより生成したス メクタイト(粘土鉱物の一種)が,安山岩Bに多く,安 山岩 A に少量であった. スメクタイトはアルカリを吸着 し、ASR の抑制に寄与するとされている. その一方で、 JIS A 1146 によるモルタルバー法では、このスメクタイ ト含有の影響により、骨材の ASR 反応性を適切に評価 できないことが知られている¹²⁾. したがって, いずれの 安山岩砕石も潜在的な反応性を有し,安山岩 Bの反応性 は安山岩 A および C と比較して低いものと考えられた. ASR との関連が大きい鉱物の量比と,その他の構成鉱物 を Table 4 に示す. また, それぞれの安山岩について, 主要な反応性鉱物などの含有形態を Fig. 3 に示す.

2・3・2 骨材の反応性と鉱物質混和材による ASR 抑制 効果の検証試験

(1) ASTM C 1260 による促進モルタルバー試験

モルタル試験体の膨張挙動を Fig.4 に示す. OPC では いずれの安山岩砕石も,促進養生期間 14 日で 0.2%を超 える有害な膨張を示した.また,安山岩砕石の種類によ る膨張率の大小では,安山岩 B が最も小さく,この結果 は岩石・鉱物学的試験の観察結果とも一致していた.そ れに対して,FA15%では,いずれの安山岩砕石とも,判 定基準となる促進養生期間 14 日の膨張率は 0.1%以下で, 「無害」の判定となった.また,BFS42%では「無害」 の判定は安山岩 B のみであったが,いずれの安山岩砕石

Aggregate	Reactive minerals	ASR mitigating minerals	Other constituents
Andorita A	Cristobalite(++),Tridymite(+),	Smectite(+)	Plagioclase, Clinopyroxene, Orthopyroxene,
Andesite A	Volcanic glass(++++)		Olivine, Apatite, Quartz, Opaque mineral
Andesite B	Cristobalite(++), Tridymite(+),	Smectite(+++)	Plagioclase, Clinopyroxene, Orthopyroxene,
	Volcanic glass(+)		Olivine, Phlogopite, Quartz, Opaque mineral
Andesite C	Cristobalite(++++),	Smectite(++)	Plagioclase, Clinopyroxene, Orthopyroxene,
	Tridymite(+), Volcanic glass(+)		Quartz, Opaque mineral

Table 4 Reactive minerals and other constituents of aggregates observed under a polarizing microscope.

Abundant ++++ \sim +++ \sim ++ \sim + Few

Fig. 3 Photomicrographs of the andesitic aggregates used in this study, taken under plane polarized light.
Gls: volcanic glass ; Crs: cristobalite ; Pl: plagioclase ; Px: pyroxene ; Sm: smectite ; Opq: opaque mineral

も膨張が大きく低減し,同様な ASR 抑制効果が認めら れた.ただし,いずれの安山岩砕石とも,また FA また は BFS の混和の有無に関わらず,促進養生期間 14 日の 判定以降も膨張は継続していた.以上より,ASTM C 1260 法は鉱物質混和材による ASR 抑制効果を早期に判 定するのに有効であることが示された.しかし,この判 定結果は,あくまでも高濃度のアルカリ溶液が常時供給 される条件下によることに注意することが必要である. また,ASTM C 1260 での評価に適さない岩種(例えばチ ャート)があることにも注意する必要がある¹³⁾. (2) 偏光顕微鏡下での ASR による劣化組織の観察

Fig. 4 Expansion behaviors of mortar bars (ASTM C 1260).

促進養生期間 28 日終了後の、25×25mm 試験体断面よ り作製した研磨薄片を偏光顕微鏡下で観察した結果, Fig. 5 に示すように主な膨張ひび割れは表面と平行で, NaOH 溶液に接する周縁部に中央部より顕著に観察された.と くに FA あるいは BFS を使用した試験体では、表面から の深さ 5mm 以深には、ほとんど観察されなかった.こ れは、両試験体でのアルカリ溶液の浸透が、表面に限定 されたことにより、この箇所に集中的に発生したものと 推察された.このため、本研究では内部と周縁を区別し て評価した.偏光顕微鏡下で観察された劣化組織の一例 を、Fig. 6 に示す.

偏光顕微鏡による評価結果を Table 5 に示す.また, その評価結果とモルタルバーの膨張率との関係を Fig. 7

Fig. 5 Typical crack pattern on the cross-section of mortar bar(left:OPC ; right:FA15%,BFS42%).

Fig. 6 Photomicrographs of ASR-deteriorated mortar texture observed under a polarizing microscope (AndesiteC-OPC-rim: plane polarized light).

に示す. FA あるいは BFS を使用した場合, 試験体周縁 部は OPC と大差がないが, 内部での ASR 劣化が大きく 低減していたことが特徴である. さらに内部における劣 化程度の評価結果とモルタルバーの膨張率は Fig. 7 の破 線に示すように, よく対応していた. 前述したように, FA あるいは BFS の混和による組織緻密化により, 外部 からのアルカリ浸透が抑制された結果と考えられた. こ のように, 偏光顕微鏡による観察は, 骨材の構成鉱物を 識別し, その反応性を明らかにするのみではなく, モル

Table 5 Results of the petrographic classifications(ASR stages or max. crack width) about OPC and fly ash(FA) or ground granulated blast-furnace slag(BFS) admixed mortars.

Adn	nixture	OPC	FA15%	BFS42%
A mala aita A	Core	30-50 μ m	П	5-10 μ m
AndesiteA	Rim	$30-50 \ \mu m$	20μ m	20-30 μ m
AndesiteB	Core	10μ m	П	П
	Rim	20μ m	20μ m	20-30 μ m
AndesiteC	Core	10-30 µ m	5 µ m	5 µ m
	Rim	$30-40 \ \mu m$	40μ m	40-50 μ m

Fig. 7 Relationships between 28days expansion and the petrographic classifications.Broken line runs along core data.

タルあるいはコンクリートの微視的組織を同様に観察 することにより, ASR による劣化状況, すなわち膨張率 との関係などを知ることが可能であり, ASR の評価や診 断に非常に有効であると考えられた.

研磨薄片試料中の FA と BFS の反応状態を, 走査電子 顕微鏡の反射電子像により観察した結果を Fig. 8 に示す. FA あるいは BFS の周縁部に, アルカリ溶液との相互作 用による反応相が明確に識別できた.また, FA や BFS の近傍の空隙を埋めるようにポゾラン反応などの生成 物が成長し, 組織緻密化が進行しているものと考えられ た.一方, FA や BFS の周縁部に見られる反応相の厚さ は, 促進養生期間 28 日終了後も数µm以下と小さく, FA や BFS の粒子表面付近に限定されていた.ポゾラン などの反応と ASR が材齢とともに進行するが, 前者に よる組織緻密化やアルカリの低減が早期より発生し¹⁴, 骨材よりも相対的に早く反応できる FA や BFS の粒径 (比表面積) が, ASR 抑制効果に与える影響が最も大き いこととも整合していた.

3 北陸地方での混合セメントによる ASR 対策の意義

北陸地方で供給可能な高品質のFAでセメントの15% を質量置換した場合に、いずれの安山岩砕石も、ASTMC 1260における判定基準で「無害」となり、FAによる実 用化に向けて大きな期待がもたれた.さらに北陸地方に

Fig. 8 BEI of fly ash(a) and ground granulated blast-furnace slag(b) in cement paste after ASTM C 1260(28days).

おける ASR 抑制対策の基本的な考え方として,高品質 な FA を通常の使用量で混合することにより,反応性が 高い能登産の安山岩の ASR を十分かつ効果的に抑制可 能なことが示された.一方,実構造物が野外で ASTM C 1260 と同様な環境に置かれる可能性はきわめて小さい が,促進養生期間 14 日の判定後も膨張が継続し,最終 的には 0.2%を超えるものも見られたことから判断する と,野外でのコンクリートの長期にわたる実態調査や ASTM C 1293 などの他の試験法による結果との対応関 係を,今後検証することも必要である.

4 結論

(1) 試験に使用した能登半島産安山岩砕石はいずれも, ASR 反応性をもつことが岩石・鉱物学的試験により確か められた.また,ASTM C 1260 による促進膨張試験では, いずれの安山岩砕石も有害な膨張を示した.

(2)フライアッシュまたは高炉スラグ微粉末を通常の B 種の置換率で使用することにより,いずれの安山岩砕石 も,ASTM C 1260 による膨張が大きく低減した.とくに, 北陸地方で供給が可能となった高品質なフライアッシ ュで15%置換したものでは,判定基準材齢において,す べての安山岩砕石で「無害」となり,北陸地方の ASR 対策として実用化が期待できた.また,ASTM C 1260 法 は,鉱物質混和材による ASR 抑制効果を早期に判定す るのにも有効であることが示された.

(3) フライアッシュまたは高炉スラグ微粉末を使用した場合,試験体周縁部に対して内部での ASR 劣化の低減が大きく,これがモルタルバーの膨張率とよく対応していた.したがって,両者による ASR 抑制効果は組織 緻密化に伴う,外部からのアルカリ浸透の抑制によるものが大きいと推察された.

(4) 反射電子像により観察された,フライアッシュまたは高炉スラグ微粉末の反応相は,促進養生期間 28 日終了後も粒子表面付近に限定され,それらの粒径(比表面積)の ASR 抑制効果に与える影響が非常に大きいことと整合していた.また,両者の粒子近傍の空隙を埋めるように反応生成物が成長し,組織緻密化が進行しているのが確認された.

謝辞:

本研究は、金沢大学大学院の蟹谷真生氏(現,北陸電 カ株式会社)、京都大学大学院の西澤彩氏、金沢大学の 山戸博晃主任技術職員の多大な御協力により実施され たものです.ここに記して、深く感謝の意を表します.

参考文献

1) K. Torii, "How should we cope with the recent ASR problem? - testing, diagnosis and preventive measures –", Cement and Concrete, No.696, pp.1-9, (2005).*(in Japanese)

 N. Yamada, T. Sakamoto, T. Nozawa and T. Enda, "1/500,000 Geological map Kanazawa 2nd edition", (1974) Geological Survey of Japan.* 3) T. Katayama, M. Tagami, Y. Sarai, S. Izumi and T. Hira, "Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan", Materials Characterization, Vol.53, pp.105-122 (2004).

4) T. Minato and K. Torii, "ASR-deteriorated bridges and rock type of reactive aggregate on Noto expressway", Journal of the Society of Materials Science, Japan, Vol.59, No.10, pp.781-786 (2010).*

5) K. Torii, M. Nomura and Y. Minami, "Alkali-silica reactivity and alkalis releasing property of river sands produced in Hokuriku district", Cement Science and Concrete Technology, No.60, pp.390-395 (2006).*

6) K. Torii, "Ruggedization of concrete by using fly ash – effort and imformation for ASR problem in the Hokuriku District –", Electric Power Civil Engineering, No.357, pp.11-15 (2012).*

7) K. Shibata, H. Sato and M. Nakagawa, "K-Ar ages of Neogene volcanic rocks from the Noto Peninsula", Journal of Mineralogy, Petrology and Economic Geology, Vol.76, pp.248-252 (1981).*

8) T. Daidai, "A study on alkali-silica reactivity of concrete aggregate from river and maintenance procedure of ASR-

affected bridges", Kanazawa University Dissertation (2009).* 9) K. Torii, M. Miyamura, T. Minato and G. Nishikawa,

"Deterioration of ASR-affected foundation structures on Noto expressway and its countermeasures", Concrete Journal, Vol.46, No.4, pp.27-33 (2008).*

10) Y. Kawabata and H. Matsushita, "Evaluation of character of fly ash related to suppressing effect on alkali-silica reaction", JSCE, Journal of Materials, Concrete Structures and Pavements E, Vol.63, No.3, pp.379-395 (2007).*

11) T. Katayama, T. Oshiro, Y. Sarai, K. Zaha and T. Yamato, "Late-expansive ASR due to imported sand and local aggregates in Okinawa Island, southwestern Japan", Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete(ICAAR), pp.862-873 (2008) Trondheim, Norway.

12) K. Torii, M. Nomura and A. Honda, "Petrographic features of alkali-silica reactive aggregates in Hokuriku district and comapatibility between various test methods determining alkali-silica reactivity of aggregate", JSCE, Journal of Materials, Concrete Structures and Pavements, No.767/V-64, pp.185-197 (2004).*

13) E. Iwatsuki and K. Morino, "Expansion behavior and microstructure of ASR mortar-bar by ASTM C 1260 and JIS A 5308 method", Proceedings of the Japan Concrete Institute, Vol.24, No.1, pp.687-692 (2002).*

14) S. Nagataki, H. Ohga and T. Inoue, "Effect of fly ash in controlling expansion due to alkali-aggregate reaction and its mechanism", JSCE, Journal of Materials, Concrete Structures and Pavements, No.414/V-12, pp.175-184 (1990).*