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LITTLEWOOD-PALEY FUNCTIONS ON HOMOGENEOUS
GROUPS

YONG DING AND SHUICHI SATO

ABSTRACT. We prove LP estimates for a class of Littlewood-Paley functions on
homogeneous groups under a sharp integrability condition of the kernel. The
results obtained in the present paper essentially improve some known results.

1. INTRODUCTION

We consider the Littlewood-Paley function on R™ defined by

s = ([Tirewer )"

where ¢ (x) = t~"¢(t"'z) and ¢ is a function in L' (R") satisfying

(L.1) /ni/l(l’) dr = 0.

Let
t

c"(|x|2 F 2)(n )2
be the Poisson kernel for the upper half space R* x (0,00). Define Sy (f) with

wmz(%auﬁhJ

Then Sy, is a version of the Littlewood-Paley g function. Another classical Littlewood-
Paley function is the Marcinkiewicz integral

Pt(.fl?) =

co 1/2 x
Mﬂ@0=<A UNw+ﬂ+JNw—ﬂ—2F@H“#> @ = [ W

3
which can be realized as Sy (f) by choosing ¢ to be the Haar function on R:
¥() = X[-1,0/(%) — X[0,11(),

where y g denotes the characteristic function of a set E. We refer to [27, 23, 24] for
background materials.

Let us recall a result of Benedek, Calderén and Panzone [2] on sufficient condi-
tions for LP boundedness of Sy.
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2 YONG DING AND SHUICHI SATO

Theorem A. In addition to the cancellation condition (1.1), if we assume that

(1.2) [Y(x)] <CA+|z)) "¢ for some €>0,
(1.3) / [v(z —y) —(z)|de < Cly| for some € >0,
Rr

then the operator Sy is bounded on LP(R™) for all p € (1, 00).

We can easily see that the two classical examples above fulfill the conditions
(1.2) and (1.3).
Also, we recall the following result.

Theorem B. Suppose that i satisfies (1.1) and (1.2) with e = 1. Then Sy is
bounded on L*(R™).

This can be found in Coifman and Meyer [5]; see [5, p. 148] and also Journé [15,
pp. 81-82], where a proof of Theorem B can be found. We note that in Theorem
B the condition (1.3) concerning the regularity of ) is not assumed.

Theorems A and B are improved by [17] as follows.

Theorem C. Suppose that v satisfies (1.1) and (1.2). Then Sy is bounded on
LP(R™) for allp € (1,00); furthermore, Sy, is bounded on LY (R™) for any p € (1,00)
and any w € A, (the weight class of Muckenhoupt), where LP (R™) denotes the
weighted L? space of all functions f such that ||f||p» = ||fw!/?||, < co.

For the rest of this note we assume that ¢ is compactly supported. The class
L(log L)*(R"™), a > 0, is defined to be the collection of all functions f on R such
that

[ i@iogz + @I dr < .

Similarly, let L(log L)*(S™ ') be the class of all functions € on S™! satisfying
[ 1906 log2+ [2(0)))* o) < .

where S"7! = {x € R" : |z| = 1} is the unit sphere of R" and do denotes the
Lebesgue surface measure on S™ 1.
The following result was proved in [18].

Theorem D. If 1 is in L(log L)'/?(R") and satisfies (1.1), then Sy, is bounded on
LP(R™) for all 2 < p < 0.

When ¢ € LI(R™) for some ¢ > 1, L? boundedness of Sy for p € [2,00) was
proved in [12]. Theorem D is an improvement. On the other hand, for p < 2, a
result of Duoandikoetxea [8] is known.

Theorem E. Let v’ be the exponent conjugate to r, 1 < r < oo. Then, we have
the following.

(1) Let 1 < ¢g<2and 0< 1/p<1/24+1/q. If ¢ is in LY(R™) and satisfies
.1), then 18 bounded on .
1.1), then Sy is bounded on LP(R™
(2) If1<q<2andl/p>1/2+1/q, then we can find € LY(R™) such that
Sy is not bounded on LP(R™).
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Part (1) of Theorem E improves a previous result in [3] and was proved by
applying a weight theory (see also [10]). Define ¢(®) on R by
(o) _ Oé(l - |m|)a—1 sgn(x), T € (_17 1)7
Vi (e) = { 0, otherwise.
Ifl<p<2 1<g<2andl/q <a<1/p-1/2, then )(* € LI(R) and Sy is
not bounded on L?; this follows from Remark 2 of [12].
Let

d(@) = || """ )x o (|z])  for z € R \ {0},
where ' = z/|z|, @ € L'(S"™"), [q.-1 Qdo = 0. Then, the Littlewood-Paley
function Sy (f) is the Marcinkiewicz integral o (f) in Stein [22] (see also Hérmander
[14)).
For pq we recall a result of Al-Salman, Al-Qassem, Cheng and Pan [1].
Theorem F. If Q € L(logL)'/?(S™'), then g is bounded on LP(R™) for all
€ (1,00).

The case p = 2 of Theorem F is due to Walsh [26].

We can also consider Littlewood-Paley functions on homogeneous groups. Let
n > 2. We also regard R™ as a homogeneous group. Multiplication of the Lie group
is given by a polynomial mapping and the underlying manifold is R" itself. We
denote by H the homogeneous group. We recall that H admits a dilation family
{A;}+>0 of the form

Atx: (talmlatazm%"')tanmn)v T = (xly"')xn)v
where 0 < a; < as < --- < a,, such that each A; is an automorphism of the group
structure, which requires
At(xy) = (Atm)(Aty)a T,y € Hat >0

(see [13, 16]). H has a homogeneous nilpotent Lie group structure, where Lebesgue
measure is a bi-invariant Haar measure, the identity is the origin 0 and 27! = —2.
We can define a norm function r on H satisfying the following conditions:
(i) 7(z) >0 for all z € H, r(z) = 0 if and only if = 0;
(ii) r is continuous on H and is C* in H \ {0};
(iil) r(Azx) = tr( ) for all t > 0 and = € H;
(iv) r(z) =r(z 1) for all z € H.
Moreover, we may assume that ¥ = {x € H : r(z) = 1} coincides with S™!. Let
v=ai + -+ a, (the homogeneous dimension of H). Then, we have the formula

(1.4) /Hf(m)dx:/ooo/zf(Ate)t”’1d5(9)dt, dS = wdo,

where w is a strictly positive C*° function on S"~! and do is the Lebesgue surface
measure on S"~! as above. The convolution is defined by

frga /f g(y~'z)dy.

We refer to [6, 20, 25] for more details.
For a function f on H, let

fi(@) = 0 f(x) = t77 f(AT ).
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We consider the Littlewood-Paley function on H defined by

s = ([Tirewr )"

where ¢ is in L' (H) and satisfies (1.1). Let Q be locally integrable in H \ {0}. We
assume that  is homogeneous of degree 0 with respect to the dilation group {4;},
which means that Q(A;z) = Q(z) for z # 0, ¢ > 0. Also, we require that

(1.5) / Q(0) dS(8) = 0.
)
The space L(log L)*(X) can be defined as above with respect to the measure dS.
If ¥ is defined by
(1.6) U(z) = r(m)’”*“ﬂ(m')x(ml] (r(z)), a>0,

then we also write ug = Sy, where 2’ = A, (;)-12 for z # 0.
Ding-Wu [7] proved the following.

Theorem G. Let Q be in Llog L(X) and satisfy (1.5). Define uq by ¥ in (1.6)
with a = 1. Then
(1) pq is bounded on LP(H) for p € (1,2];
(2) pq is of weak type (1,1).
In this note we shall prove the following.

Theorem 1. Suppose that Q is in L(log L)'/?(X) and satisfies (1.5). Then pq is
bounded on LP(H) for all p € (1,00).

Obviously, Theorem 1 improves part (1) of Theorem G essentially since L log L(X)
is a proper subspace of L(log L)'/?(%).

Following [11], to prove Theorem 1 we decompose ¥(z) = Y, 2k %" (z),
k € Z, where Z denotes the set of integers and

) () = 2757 (2)" 2" x(1,2 (27 Fr (@)
Note that for any k € Z,
Syw () =Sy (N)(z) = Syo (£)(@),

and hence
Se(f)@) <D 25 Sy (£)(@) = caSyo (f)(@).
k<0
This observation suggests to consider a function of the form
_ Q')
(1.7) ¥(z) = K(T(w))W’

where £ is in A7 (see [20]) for some 1 > 0 and supported in the interval [1, 2].

Here we recall the definition of A7 from [20]. Let ds, 1 < s < oo, denote
the collection of all measurable functions h on Ry = {t € R : ¢t > 0} satisfying
|h|la, < oo, where

2j+1

dt l/s
d, = sup (/ |h(t)]? —)
jez \ J2i 3

1
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if 1 <s < oo, and ||All4., = [|Pll(r,). Then d, C d, if s > u. For t € (0,1],
define
2R dT
olhit)= sup [ (=)~ ) T
|s|<tR/2JR r
where the supremum is taken over all s and R such that |s| < tR/2 (see [21]). Let
7 > 0 and define A" to be the family of all locally integrable functions h on R
satisfying
[|h||lan = sup t™"w(h,t) < cc.
te(0,1]
Let A7 = d, N A"
n2 <, and A7 C A7 if s5 <51,
To prove Theorem 1 it suffices to show the following.

Theorem 2. Let ¥ be defined by (1.7). We assume that Q is in L(log L)'/*(%)
and satisfies (1.5). Then Sg is bounded on LP(H) for all p € (1, 00).

for h € A7. Then AT C AP if

We shall prove Theorem 2 via extrapolation arguments using the following esti-
mates.

Theorem 3. Let ¥ be as in (1.7). We assume that ) is in L*(X) for some s € (1,2]
and satisfies (1.5). Let 1 <p < oo. Then

1Se(H)llp < Cpls = DT ZQUf 1,

where the space L*(X) is defined with respect to the measure dS and the constant
C) is independent of s and ().

Indeed, Theorem 3 implies Theorem 2 as follows. Let 2 and ¥ be as in Theorem
2. We can decompose (2 as
Q=" bun,
m=1

where each Q,,, satisfies (1.5) and {b,,} is a sequence of non-negative real numbers
such that > m*/?b,, < oo, furthermore sup,,s, [|Qm|l141/m < 1 (see Lemma 3
of [19]). Accordingly,

U= Z Uy () = binl(r(z))

Let 1 < p < co. By Theorem 3 with s =14 1/m we have
15w, (F)llp < Cpm* b |l i1 /ml fllp < Cpm bl £,

which implies

15w (Hll» < ZIISw Dy < Cp( Zml/zb Ay

This will complete the proof of Theorem 2.

In Section 2, we shall prove some vector valued inequalities on the homogeneous
groups. To prove these inequalities we argue as in Sections 3, 4 of [12] and we apply
LP estimates of M. Christ [4] for the maximal functions along homogeneous curves.
We shall prove Theorem 3 in Section 3. The methods for the proof of Theorem
3 have some similarities to those employed in [6, 20] in studying L? boundedness
of singular integrals on homogeneous groups. Outline of the proof is based on
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Duoandikoetxea and Rubio de Francia [9], so we apply the vector valued inequalities
of Section 2, Littlewood-Paley decompositions and orthogonality arguments for
L? estimates; however the L? estimates will be obtained not through the Fourier
transform but convolution. A basic L? estimate for the orthogonality (Lemma 9)
will be proved by the methods of T. Tao [25]. Finally, in Section 4 we shall show that
Theorem 1 can be applied to prove LP boundedness of some other Littlewood-Paley
functions.

2. VECTOR VALUED INEQUALITIES

Let p(z) = [{ [¢:(2)| dt/t, p > 2. Define a maximal function
N (@) = sup|(f % pye) ()]
kEZ

Let H denote the Hilbert space L?((0,00),dt/t). For each k € Z we consider an
operator T}, defined by

(2.1) (Te(H)(@)) () = Te(f) (@, 8) = f * e(@)xp,p) (07"

The operator T3 maps functions on H to H-valued functions on H and we see that

Tl @loc = (/ o) %>/ = ([ 1o v )"

Lemma 1. Let 2 < s < oo, r = (s/2) = s/(s — 2). If Ng) is bounded on L"(H),
then

k41

1/2

1/2
Z|Tk fr) |9{> < ||1/1||1/215’1/2 <Z|fk|2> )

s

where (x) = (z~') and B, () is the operator norm of Ng) on L"(H).

Proof. Take a non-negative g € L" satisfying ||g||» < 1 and

1/2(]2
Zm(fk)@c) -/ (zmmna)gdx_
k

k
s

Then since
Te(Fl2 < Il / () oy (v~ ) dy,
H
we have
(2.2) r<ivih Y [1nwr ( [ bt a1gt) dw) dy

<l 3 [ 15PN @) w) v
where we note that

NP (g)(y) = sup
keZ

/ g(@)p,e(y ') dz|.
H




LITTLEWOOD-PALEY FUNCTIONS 7

Holder’s inequality implies

1/2]|2
23 > / PN (9) () dy < (Zw) 1N (9l
k

s

BP,T(I/N}) H (Z |fk|2>
k

1/2]|2

s

Combining (2.2) and (2.3), we get the conclusion. O

Define a maximal function
My (f)(z) = sup |f * [¢](z)] .
>0

Lemma 2. Let 1 < s < 2,7 = (s'/2) = s/(2—s). Suppose that My, is bounded on
L"(H). Then

1/2

1/2
(Dn(fk)@f) < (log p) 2|9 |[}/*C,o (1) /? (Zw) :

k
s s

where C,. (1) is the operator norm of My, on L"(H).
If h is a function on H x (0, 00), define an H-valued function Py (h) by
(Py(h)(@))(t) = Pu(R)(x,t) = h(z,t)x(1,0) (0~ "1).

Also, we define Ty (h) by (Ti(h)(z))(t) = Tr(h)(z,t) = T (h(-,))(x).
Proof of Lemma 2 requires the following.

Lemma 3. For a sequence {h(z,t)} of functions on H x (0,00) we have

1/2 1/2
H <Z|Tk(hk)|gf> <Z|Pk(hk)|%c>
P

k
under the assumptions of Lemma 2, where Tjh is defined as Tph with Yy~ in
place of ¥(y).

Proof. Choose a non-negative g € L" satisfying ||g||» < 1 and

1/2]2
(2.4) (Z |Tk(hk)|2}C> =/<Z|Tk(hk)(w)|29c> g9(z) du.
k , k

We observe that

<[l Cr (1)1

s! s'

/ (o) () Beg () de < || / My (9) ()| Po () () e d.
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Thus, applying Hélder’s inequality, we have

1/2]|?
(2.5) /(Z ITk(hk)(l“)lgc> 9(@) dz < ||Y])x <Z|Pk(hk)|gf> 1My (9)|l»

k k

S

1/2]|2
< Il Cr (@) H (Z |Pk(hk>|§c> .
k ’

s

The inequality claimed follows from (2.4) and (2.5). O

We can give the proof of Lemma 2 now. Let (-, -)9¢ denote the inner product in
H. We observe that

/ (To(fe) (), (. ) g e = / (Pl i) (@, ), Tulhe) (&, ) o de,

where Pi(fi)(2,t) = fr(z)Xx[1,,) (p~*t). Note that

1/2 1/2
(Z |Pk(fk)|:2}c> = (10gl))1/2 (Z |fk|2> .
k k

Thus, Holder’s inequality and Lemma 3 imply that

‘ [ CATACHNNEDIIEE
k
1/2 1/2
< (log p)"/? [ ly/* C. () /* (Zw) (mew@)

k

The conclusion of Lemma 2 follows from this by taking the supremum over {hy(x,t)}
with H(zk |Pk(hk)|§c)1/2H <1
Let ¥ be as in (1.7). We shall use the following estimates of My.
Lemma 4. Suppose that Q is in L' (X) (the condition (1.5) is not needed). Then
1M fll, < Gl £l
forp>1.
For 8 € X, we define

My f(z) = sup ~ /|f (46) )] dt.

s>0 S

To prove Lemma 4 we need the following result of [4].

Lemma 5. There exists a constant C), independent of 6 such that

1Mo fllp < Cpll fllp
forp>1.

Proof of Lemma 4. By a change of variables (see (1.4)), we have

“¥li(o) = [ Flay DIl dy—//f A,0))IA0)(s)|s~ dS () ds
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It is easy to see that

[ 1) ) s < el [ 1740l ds

Thus
Maf(@) < Clll [ Mof@)2(6)] dS(6).
This estimate and Minkowski’s inequality imply the conclusion. a
Note that

Ny f(z) < C(log p) M f(x).
Thus by Lemmas 1, 2 and 4 we have the following.

Lemma 6. If1 < s < oo, then

1/2

1/2
(Z |Tk(fk)|3c> < C(logp)'*(|2x (Zlfkl2> :
k

s

where each Ty, is defined as in (2.1) with U of (1.7) in place of 9.

3. PROOF OF THEOREM 3

Let ¢ be a C* function supported in {1/2 < r(z) < 1}. We assume that [ ¢ =1,
d(z) = ¢(x), ¢(z) > 0 for all z € H. For p > 2, we define

Ak:(spk—l(z)—(spk(b, k€.

Then Ay, is supported in {p*~1/2 < r(z) < p¥} and Ax = Ay. Also, we easily see
that ), Ax = d, where § is the delta function.
Let ¥ be as in (1.7) and satisfy the assumptions of Theorem 3. We decompose

FrWy(z) =) Fi(x,t),

JEZ

where

t) = Z f * Aj+k * \I’t(m)X[pkkarl)(t).
kEZ
Define

vt = ([ 15 >|2dt) (Z/ o Ay« Ty %) "

kEZ

1/2
= <Z|Tk(f*Aj+k)|2:}c> :
k
where T}, is as in (2.1) with ¢, replaced by ¥,.
To prove Theorem 3 we apply the following estimates.
Lemma 7. Let1 <s<2andp= 25", Then we have
1U;fll2 < C(s = )7 227 Q|1 £,
where €,C are positive constants independent of s, Q € L*(X) and j € Z.
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Let ¢; € C§°(R), j € Z, be such that

djj Z 07
supp(;) C{t € R: p’ <t < p'*?},
10g221/1j(t) =1 fort>0,
JEZ
[(d/dt)™;(t)] < em|t|™ form =0,1,2,...,
where ¢, is a constant independent of p (this is possible since p > 2). We may

assume that 1;(t) = 1o (p~7t).
Let

and decompose
Q(x")
r(z)

LG 1 i(tr(z ﬂ
T oy )

> dt
—%&m,&m—ﬁ¢wmmm7—

We note that S; is supported in {p? < r(z) < 2p72}. Let
LY (2) = £t r(2))Sm (2).

m

Then by the support condition we have

k+1
\I,t(l')X[pk7pk+1)(t) = Z qutz) (m)X[pk7pk+l)(t)
m=k—2
and
k+1
Fj(a:,t) = Z Z f* Aj+k * LS;) (x)X[pk’karl)(t).
kEZ m=k—2

Lemma 7 will be derived from the following.

Lemma 8. Let 1 < s <2 and —2 <m < 1. Let {01} be a sequence of real numbers
such that o =1 or —1. Define an operator Rg-t) by

k
kEZ
Then, if p = 2%,
1B £lla < C2= @l |1,

where the constants €,C are positive and independent of s, Q € L*(X), j € Z,
t € [1,p) and the sequence {o}}.

To prove Lemma 8 we use the following estimates.

Lemma 9. Let 1 <s<2, p= 25" and —2 <m < 1. Then we have

k .
1+ LD 5 A yalls < €279 1QIL N1 112

for some positive constants €, C independent of s, 2 € L*(X), j,k € Z and t € [1,p).
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We now prove Lemma 8 taking Lemma 9 for granted. We may assume that all
the functions in question are real-valued. Arguing as in the proof of Lemma 7 of
[20] (see p. 321 of [20]) and using Lemma 9 with duality we can show that

2

< O|Ql22=<Wl2=l  min(1, p=<Ik=K1=a)72y] £ 1,

for some € > 0. We have a similar estimate for

Thus, the Cotlar-Knapp-Stein lemma, implies
1G5 fll2 < ClIQ|s27<l17227ed" 172 £,

~ (k!
pot
For Mg LD % A A w UL A

)*A]+k

f*A +kr*L( )*A+k’*A+k*L§c+m

k'4+m

2

where

k
Gigf =3 onf* Mg x LD Ajr iy
kEZ
and hence

IIRﬁt)fllz < NG fll < €L =271l 2= P2 £,
Jj'EZ
which is the assertion of Lemma 8.

Assuming Lemma 8, we can prove Lemma 7 as follows. By Lemma 8 with the
random choice of {0y}, the Khintchine inequality implies that

1/2(|2
(Z |f 5 Ay Lk+m|2> < c27> QA1

kEZ 9

This estimate is uniform in ¢ € [1, p). Thus, integration over [1, p) with respect to
the measure dt/t gives

1/2]|2 p
t
||Ujf||§=/1 (ZU*A ik * Z Lk+m > T

keZ m=—2 9
< C(log )2 >V QI1211 7113,

which proves Lemma 7.
To complete the proof of Lemma 7, it thus remains to prove Lemma 9.

Proof of Lemma 9. For u € [1,p) and —2 < m < 1, let

SO =6, LY = U™t (2))0 ok Sk pm = L™ w7 (2))So.
By the proof of Lemma 2 of [20], we have
(3.1) 151y < C(log p) ' [[£lla, | Kollas  a > 1,

where the constant C is independent of p and u € [1,p). This can be easily seen
since supp(¢) C [1,2]. Using (3.1) with ¢ = 1 and arguing as in [20], for j > 0, we
see that

(3.2) 15 % Ajlli < Cmin (1, p~ ) |1€]]4, | Ko lx

for some €, 7 > 0.
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Also, for j < 0 we have

(3.3) ‘// Ap(z)G1(y,t)g(H(y,t) H (Vo (t:)l(ti,yi) Ko(y:)) dycitda;
i=1
C(logp)n/s e(ite)/s’ ||S,
(3.4) ‘// Ap(2)G2(y,t)g(H (y,t) H (Vo (t:)l(ti,yi) Ko(y:)) dy dt dz
i=1

< CpP T g m | Ko 7

Here we have used notation similar to that in [20] modified appropriately for the
present context; £(t;,y;) = l(u‘t;p™r(y;)), g is a smooth function with com-
pact support such that ||glle < 1, ¥y = (Y1,---,4n) € H*, t = (t1,.-.,tn),
dy = dyl e dyn, dt = (dtl/tl) e (dtn/tn),

H(y,t) =wi Ay yr ... wn Ay, Yn

with wy,...,w, € H such that r(wy) < Cp?, k=1,2,...,n, DH(y,t) is the n x n
matrix whose ith column vector is 8% H (y, t):

DH(y,t) = (0t H(y,t),...,0¢ H(y,1)),
and
Gi(y,t) = G (p~" det(DH(y,1))) ,
Ga(y,t) = G (p~" det(DH(y,1))) ,

where (1, (> are functions in C*°(R) which satisfy 0 < ¢; < 1, supp((1) C [-1,1],
Gi(t)=1fort e [-1/2,1/2], (s =1 — (1, and 6, € are small positive numbers.

To prove (3.3), we argue as in the proof of (3.13) of [20] and we only have to
note that

o Sdt; s
| S < e,

since /¢ is supported in [1,2].
To prove (3.4) we recall

g(ti,yi) = / K(ti - Si:yi)QppEf (Sl) dsi,
s; <t /2

where ¢, (s;) = u=tp(u™ts;), u > 0, with ¢ € C°°(R) satisfying supp(¢) C (0,1/8),
© >0, [¢(s)ds = 1. Then, we can easily see that

dt;
/%mwm%w;smw@

o* dt;
/% Y2t o) 2 <0Mm,/’WMw| < Cllellar,
1

dt;
/I/JU |£ z,yz - (z,yz)| i <Cp€77.7

dt; »
[ 01, t1,y0)| - < Cp el
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Using these estimates and arguing as in the proof of (3.14) of [20], we can prove
(3.4).

Applying (3.1), (3.2), (3.3) and (3.4) as in the proof of Lemma 1 of [20], we can
reach the conclusion of Lemma 9. a

We turn to the proof of Theorem 3. Let 1 < p < oco. By Lemma 6 and the
Littlewood-Paley inequality (see Lemma 6 of [20])

1/2
<Z|f*Ak|2> SCTHfHT: 1 <r<oo,
k

T

where C,. is independent of p, we have

1T ()l < Cr(log p) 12111 L£]]

for all r € (1,00), where U; is as in Lemma 7. Since we also have the L%-estimates
of Lemma 7, if p = 2° (1 < s <2), interpolation will give

U fll, < C(s = )27 WQIf,

with some € > 0, which implies

1Sw ()l < Z U3 flly < Cpls = )7 2RI £ 1lp-

This completes the proof of Theorem 3.

4. APPLICATIONS

Finally, we give some applications of Theorem 1. Firstly, we may get the L? (2 <
p < 00) boundedness for the Littlewood-Paley operators Ag and 16, related to the
area integral and the Littlewood-Paley g} function, respectively. They are defined

by
1/2
aan@ = ffirewors)
and

YA 1/2
w0 = ([ (rgem) o mwFEE) A,

respectively, where ['(z) = {(y,t) € H x Ry : 7(y 'z) < t} and ¥ is as in (1.6).

Theorem 4. Suppose that Q is in L(log L)'/?(X) and satisfies (1.5). Then B
and Aq are both bounded on LP(H) for p € [2,00).

Proof. We first show the following fact: For any measurable function ¢, we have

(4.1) /H (1or(F)(@))*6(@)dr < O /H (na () (@) M()dr,

where M denotes the Hardy-Littlewood maximal operator on H.
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In fact, without loss of generality, we may assume that ¢ > 0, then
2 t s dydt
. dr = S — * U, (y)]? d
[ aathie) swis = [ [[ . () Vv i otelda

< [ [ 1 ewmr o (/H (m)m)f—m) ay

<O, /H (1 (F) (@) Ma(y)dy.

Let ¢ = 1in (4.1). Then by L> boundedness of the Hardy-Littlewood maximal
operator M we have

/ (oo (F) (@) < Ci / (o () (@)
H H

Thus, the operator ug 5 is bounded on L?(H). When 2 < p < oo, let ¢ = (p/2)".
Then there is a non-negative function ¢ € LI(H) with ||¢||; < 1 such that

(4.2) ||M5,,\(f)||;2):/H(Ma,,\(f)(f))zﬁb(m)dm-

By (4.1), (4.2), Holder’s inequality and the LY (1 < ¢ < oo0) boundedness of the
maximal operator M we get

e (DI < Cm/H (o (H)(@)*Mé()dz < Crsllua(HIZIMEll, < Crpllna (I,

which gives the L? (2 < p < oo) boundedness of g , .
Since Aq(f)(z) < Oxypg 5 (f)(z) for any = € H, Ag is also bounded on LP(H)
for 2 < p < co. Hence we complete the proof of Theorem 4. O

Secondly, if ¥ is as in (1.6) and 1 < ¢ < oo, we define the Littlewood-Paley
operators uo g, Ao,q and ug  , by

a0 = ([ |fwt<x>|qﬂ)l/q,

t

1/q
ana(0@) = ([ . )|fwt(y>|q%)
and

YA dud 1/q
a0 = ([[ () Vrwergs) a1,

respectively. Obviously, ua,q, Aa,q and ug, 5 , are just the Littlewood-Paley oper-
ators discussed previously when g = 2.

Theorem 5. Suppose that 2 < q < co and Q € L(log L)'/?(X) with the condition
(1.5). Then we have the following conclusions:

(1) pq,q is bounded on LP(H) for 1 < p < oo.
(2) pHn,, and Aq,q are both bounded on LP(H) for p € [q,00).
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In fact, note that

for

paq(F)(@) < (My(1f1)(2)) 274 (Su (f)(x))*/

any x € H. By a proof similar to that of Lemma 4 we can easily see LP

boundedness of My. Thus, Theorem 1 and Holder’s inequality imply the conclusion

(1)

of Theorem 5.

The conclusion (2) of Theorem 5 is a direct consequence of the conclusion (1),
as can be seen from the proof of Theorem 4.
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