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Summary: We consider a singular integral along a submanifold of finite type. We prove a certain
L p estimate for the singular integral, which is useful in applying an extrapolation method that
shows L p boundedness of the singular integral under a sharp condition of the kernel.

1 Introduction
Let B(0, 1) = {x ∈ Rn : |x| < 1} and let � : B(0, 1) → R

d be a smooth function. We
assume that � is of finite type at the origin, that is, for any ξ ∈ Sd−1 (the unit sphere inRd)
there exists a multi-index α = (α1, . . . , αn) such that |α| ≥ 1 and ∂α

x 〈�(x), ξ〉|x=0 �= 0,
where ∂α

x = (∂/∂x1)
α1 . . . (∂/∂xn)

αn , |α| = α1 + · · · + αn and 〈·, ·〉 denotes the inner
product in Rd .

Let a function � in L1(Sn−1) satisfy∫
Sn−1

�(θ) dσ(θ) = 0, (1.1)

where dσ denotes the Lebesgue surface measure on the unit sphere Sn−1 in Rn . Through-
out this note we assume n ≥ 2. Let 	s, s ≥ 1, denote the collection of functions h on
R+ = {t ∈ R : t > 0} satisfying

‖h‖	s = sup
j∈Z

(∫ 2 j+1

2 j
|h(t)|s dt/t

)1/s

< ∞,

where Z denotes the set of integers. We define

ω(h, t) = sup
|s|<tR/2

∫ 2R

R
|h(r − s) − h(r)| dr/r, t ∈ (0, 1],

where the supremum is taken over all s and R such that |s| < tR/2 (see [6, 12]). For
η > 0, let �η denote the family of functions h satisfying

‖h‖�η = sup
t∈(0,1]

t−ηω(h, t) < ∞.
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Define a space �
η
s = 	s ∩ �η and set ‖h‖�

η
s

= ‖h‖	s + ‖h‖�η for h ∈ �
η
s .

We consider a singular Radon transform of the form:

T( f )(x) = p.v.

∫
B(0,1)

f(x − �(y))K(y) dy (1.2)

= lim
ε→0

∫
1>|y|>ε

f(x − �(y))K(y) dy

for an appropriate function f on Rd , where K(y) = h(|y|)�(y′)|y|−n , y′ = |y|−1y,
h ∈ 	1. See Stein [13], Fan, Guo, and Pan [4], Al-Salman and Pan [1] and also [2, 5, 14]
for this singular integral and related topics.

In the previous works, the operator T was studied under the condition that h is
a constant function. In this note, we consider the operator T under a more general
condition on h. We shall prove the following:

Theorem 1.1 Let q ∈ (1, 2], � ∈ Lq(Sn−1) and h ∈ �
η
1 for some η > 0. Suppose that

� satisfies the condition (1.1). Let T be defined as in (1.2). Then we have

‖T( f )‖L p(Rd) ≤ Cp(q − 1)−1‖h‖�
η
1
‖�‖Lq(Sn−1)‖ f ‖L p(Rd )

for all p ∈ (1,∞), where the constant Cp is independent of q, h and �.

Let L log L(Sn−1) denote the Zygmund class of the functions F on Sn−1 satisfying∫
Sn−1

|F(θ)| log(2 + |F(θ)|) dσ(θ) < ∞.

Then, as an application of Theorem 1.1 and extrapolation, we have the following theorem.

Theorem 1.2 Let h ∈ �
η
1 for some η > 0. Suppose that � is in L log L(Sn−1) and

satisfies the condition (1.1). Let T be as in (1.2). Then we have

‖T( f )‖L p(Rd) ≤ Cp‖ f ‖L p(Rd )

for all p ∈ (1,∞).

The extrapolation argument that proves Theorem 1.2 from Theorem 1.1 can be found
in [8, 9, 10, 11] (see also [15, Chap. XII, pp. 119–120]). If the function h is assumed
to be a constant function in Theorem 1.2, we have a result of Al-Salman and Pan shown
in [1] (see [1, Theorem 1.1]); so we can give a different proof of the result by applying
Theorem 1.1 and extrapolation. Relevant results can be found in [8, 9, 10, 11].

In Section 2, we shall prove Theorem 1.1. Consider a singular integral of the form

S( f )(x) = p.v.

∫
Rn

f(x − P(y))h(|y|)�(y′)|y|−n dy,

where P(y) is a polynomial mapping fromRn to Rd satisfying P(−y) = −P(y) (P �= 0),
h ∈ 	s for s ∈ (1, 2] and � is a function in Lq(Sn−1), q ∈ (1, 2], satisfying (1.1). Then,
it has been proved that

‖S( f )‖L p(Rd ) ≤ Cp(q − 1)−1(s − 1)−1‖�‖Lq(Sn−1)‖h‖	s ‖ f ‖L p(Rd )
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for all p ∈ (1,∞), where the constant Cp is independent of q, s,�, h and the polynomial
components of P if they are of fixed degree (see [8, Theorem 1]). Outline of our proof of
Theorem 1.1 is similar to that of the proof for [8, Theorem 1]. We apply methods of [4]
to obtain some basic estimates. We need to assume that h ∈ �

η
1 for some η > 0 to prove

certain Fourier transform estimates. As in [8] (see also [9, 10]), a key idea of the proof
of Theorem 1.1 is to apply a Littlewood–Paley decomposition adapted to an appropriate
lacunary sequence depending on q for which � ∈ Lq(Sn−1).

In Section 3, we shall give analogs of Theorems 1.1 and 1.2 for a maximal singular
integral operator related to T . In what follows we also write ‖ f ‖L p(Rd ) = ‖ f ‖p and
‖�‖Lq(Sn−1) = ‖�‖q . Throughout this note, the letter C will be used to denote non-
negative constants which may be different in different occurrences.

2 Proof of Theorem 1.1
Let M be a positive integer. We write �(y) = (�1(y), . . . ,�d(y)). Let Pj (y) be the
Taylor polynomial of � j(y) at the origin defined by

Pj (y) =
∑

|α|≤M−1

1

α! (∂
α
y � j)(0)yα,

where α! = α1! . . . αn ! and yα = yα1
1 . . . yαn

n for α = (α1, . . . , αn) and y = (y1, . . . , yn).
We write P(y) = (P1(y), P2(y), . . . , Pd(y)) and

P(y) =
�∑

j=1

Q j (y), Q j (y) =
∑

|γ |=N( j)

aγ yγ (aγ ∈ Rd ),

where 0 = N(1) < N(2) < · · · < N(�), Q j �= 0 for j ≥ 2. Let βm = ρN(m) and
αm = τ(q − 1)/(qN(m)) for 2 ≤ m ≤ �, where τ = 4−1 min(1, η), ρ ≥ 2. Also, let
β�+1 = ρM and α�+1 = ε0(q − 1)/q for some ε0 ∈ (0, 1/4). The positive integer M and
the positive number ε0 will be specified in the following (see Lemma 2.4 below).

Let T be as in Theorem 1.1. Let Ek = {x ∈ Rn : ρk ≤ |x| < ρk+1}, k ∈ Z, ρ ≥ 2.
Then T( f )(x) = ∑−1

k=−∞ σk ∗ f(x), where {σk}−1
k=−∞ is a sequence of Borel measures on

R
d such that

σk ∗ f(x) =
∫

Ek

f(x − �(y))K(y) dy. (2.1)

Put P(m)(y) = ∑m
j=1 Q j(y) for m = 1, 2, . . . , � and P(�+1)(y) = �(y). Consider

a sequence μ(m) = {μ(m)
k }−1

k=−∞ of positive measures on Rd such that

μ
(m)
k ∗ f(x) =

∫
Ek

f
(

x − P(m)(y)
)

|K(y)| dy

for m = 1, 2, . . . , � + 1. Note that μ
(1)
k = (

∫
Ek

|K(y)| dy)δP(0), where δa is Dirac’s

delta function on Rd concentrated at a. Let σ(m) = {σ(m)
k }−1

k=−∞ be a sequence of Borel
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measures on Rd such that

σ
(m)
k ∗ f(x) =

∫
Ek

f
(

x − P(m)(y)
)

K(y) dy,

for m = 1, 2, . . . , � + 1. We note that σ
(1)
k = 0 by (1.1) and

(σ
(m)
k ∗ f )ˆ(ξ) = f̂ (ξ)

∫
Ek

e−2πi〈P(m)(y),ξ〉K(y) dy,

where f̂ denotes the Fourier transform of f . A similar formula holds for μ
(m)
k .

Let {γ( j, k)}r j
k=1 be an enumeration of {γ }|γ |=N( j) for 1 ≤ j ≤ �. Define a linear

mapping L j from Rd to Rr j by

L j(ξ) = (〈aγ( j,1), ξ〉, 〈aγ( j,2), ξ〉, . . . , 〈aγ( j,r j), ξ〉),

for 1 ≤ j ≤ �. Let L�+1 be the identity mapping on Rd . Let s j = rank L j . For j ≥ 2,
there exist non-singular linear transformations Rj : Rd → R

d and Hj : Rs j → R
s j such

that

|Hjπ
d
s j

R j(ξ)| ≤ |L j (ξ)| ≤ C|Hjπ
d
s j

R j(ξ)|,

where πd
s j

(ξ) = (ξ1, . . . , ξs j ) is the projection and C is a constant depending only on r j

(see [5]).
Let ϕ be a function in C∞(R) satisfying ϕ(r) = 1 for |r| < 1/2 with support in

{|r| ≤ 1}. Define a sequence τ(m) = {τ(m)
k }−1

k=−∞ of Borel measures by

τ̂
(m)
k (ξ) = σ̂

(m+1)
k (ξ)�k,m+1(ξ) − σ̂

(m)
k (ξ)�k,m(ξ) (2.2)

for m = 1, 2, . . . , �, where

�k,m(ξ) =
�+1∏

j=m+1

ϕ
(
βk

j |Hjπ
d
s j

R j (ξ)|
)

if 1 ≤ m ≤ � and �k,�+1 = 1. Then σk = σ
(�+1)
k = ∑�

m=1 τ
(m)
k . We note that

�k,m+1(ξ)ϕ
(
βk

m+1|Hm+1π
d
sm+1

Rm+1(ξ)|
)

= �k,m(ξ) (1 ≤ m ≤ �). (2.3)

For 1 ≤ m ≤ �, let T (m)
ρ ( f ) = ∑−1

k=−∞ τ
(m)
k ∗ f . Then T = ∑�

m=1 T (m)
ρ .

For a sequence ν = {νk}−1
k=−∞ of finite Borel measures on Rd , let ν∗( f )(x) =

supk ||νk|∗ f(x)|, where |νk| denotes the total variation. We consider the maximal operators(
μ(m)

)∗
(1 ≤ m ≤ � + 1). We also write

(
μ(�+1)

)∗ = μ∗
ρ.

Let θ ∈ (0, 1). For p ∈ (1,∞) let p′ = p/(p − 1) and δ(p) = |1/p − 1/p′|. Then
we prove the following two propositions.
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Proposition 2.1 Let p > 1 + θ and 1 ≤ j ≤ � + 1. Then we have∥∥∥(μ( j))∗( f )
∥∥∥

L p(Rd )
≤ C(log ρ)‖h‖�

η
1
‖�‖Lq(Sn−1)B

2/p‖ f ‖L p(Rd ), (2.4)

where B =
(

1 − ρ−θκ/q′)−1
for some positive constant κ such that

(
1 − β−θαm

m

)−1 ≤ B

for all m with 2 ≤ m ≤ � + 1. The constant C is independent of q ∈ (1, 2], h ∈ �
η
1,

� ∈ Lq(Sn−1) and ρ.

Proposition 2.2 Let p ∈ (1 + θ, (1 + θ)/θ) and 1 ≤ m ≤ �. Then

‖T (m)
ρ ( f )‖L p(Rd ) ≤ C(log ρ)‖h‖�

η
1
‖�‖Lq(Sn−1)B

1+δ(p)‖ f ‖L p(Rd ),

where B is as in Proposition 2.1 and the constant C is independent of q ∈ (1, 2], h ∈ �
η
1,

� ∈ Lq(Sn−1) and ρ.

We can easily derive Theorem 1.1 from Proposition 2.2. Proposition 2.1 is used to
prove Proposition 2.2. To prove Proposition 2.2 we also need the following.

Lemma 2.3 Let q ∈ (1, 2], � ∈ Lq(Sn−1), h ∈ �
η
1 and A = (log ρ)‖h‖�

η
1
‖�‖q. Let

τ
(m)
k be as in (2.2). Then, for 1 ≤ m ≤ � we have

‖τ(m)
k ‖ = |τ(m)

k |(Rd ) ≤ c1 A, (2.5)

|τ̂ (m)
k (ξ)| ≤ c2 A

(
βk

m+1|Lm+1(ξ)|
)−αm+1

, (2.6)

|τ̂ (m)
k (ξ)| ≤ c3 A

(
βk+1

m+1|Lm+1(ξ)|
)αm+1

, (2.7)

for all k ∈ Z satisfying k ≤ L with some constants ci (1 ≤ i ≤ 3), where L is a negative
integer, L ≤ −4, which will be determined in Lemma 2.4 below.

To prove Lemma 2.3 we need the following two lemmas.

Lemma 2.4 Let 1 < q ≤ 2, � ∈ Lq(Sn−1), h ∈ �
η
1 and let σk be as in (2.1). Then,

there exist a positive integer M, a positive number ε0 ∈ (0, 1/4) and a negative integer
L, L ≤ −4, such that

|σ̂k(ξ)| ≤ C(log ρ)
(
|ξ|ρkM

)−ε0/q′
‖h‖�

η
1
‖�‖q

for k ≤ L. The constants M, ε0, L and C are independent of ρ, q, h and �.

Lemma 2.5 Let ρ ≥ 2, k ∈ Z, 1 < q ≤ 2, h ∈ �
η
1 and � ∈ Lq(Sn−1). Let P be

a real-valued polynomial on Rn of degree m ≥ 1. Write

P(x) =
∑

|α|=m

aαyα + Q(y),
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where deg Q ≤ m − 1 if Q �= 0. Then there exists a constant C > 0 independent of
ρ, k, q, h,� and the coefficients of the polynomial P such that∣∣∣∣

∫
ρk≤|y|<ρk+1

exp (iP(x)) h(|x|)�(x′)|x|−n dx

∣∣∣∣
≤ C(log ρ)‖h‖�

η
1
‖�‖q

⎛
⎝ρkm

∑
|α|=m

|aα|
⎞
⎠

−τ/(mq′)

,

where τ = 4−1 min(1, η).

We can prove Lemma 2.5 similarly to the proof of Lemma 2.4 of [4]. To prove
Lemma 2.4 we need the following two results, which can be found in [4].

Lemma 2.6 Let � : B(0, 1) → R
d be smooth and of finite type at the origin. Define

Gm : B(0, 1) × Sd−1 → R by

Gm(x, ξ) =
∑

|α|=m

〈ξ, ∂α
x �(x)〉xα m!

α!

for m ≥ 1. Then, there exist constants R, δ ∈ (0, 1/4) and a mapping � from Sd−1 to
a finite set of positive integers such that

C� := sup
ξ∈Sd−1

∫
|x|≤R

|G�(ξ)(x, ξ)|−δ dx < ∞.

Lemma 2.7 Let ψ,ϕ ∈ C∞(R) be real-valued. Let s ∈ (0, 1] and a, b ∈ R with a < b.
Suppose that ϕ is compactly supported and that

|(d/dx)kψ(x)| ≤ s for x ∈ [a, b],
|(d/dx)(k+1)ψ(x)| ≤ 1 for x ∈ [a − s, b + s],

where k is a positive integer. Then, there exists a positive constant C depending only on
k and ϕ such that∣∣∣∣

∫ b

a
exp(iλψ(x))ϕ(x) dx

∣∣∣∣ ≤ C|λ|−ε/k
∫ b+s

a−s
|(d/dx)kψ(x)|−ε(1+1/k) dx

for all λ ∈ R \ {0} and ε ∈ (0, 1].
Define a function F on an appropriate subinterval of R+ by F(t) = 〈ξ,�(tx)〉 for

fixed ξ ∈ Sd−1 and x ∈ B(0, 1). Then, we note that (d/dt)m F(t) = t−m Gm(tx, ξ), where
Gm is as in Lemma 2.6.

Proof of Lemma 2.4: Take an integer ν ≥ 1 and a ∈ [2, 4] such that ρ = aν. Let �, δ, R
and �(ξ) be as in Lemma 2.6. Put �0 = maxξ∈Sd−1 �(ξ). Let L be a negative integer such
that ∣∣∣(d/dr)�〈ξ ′,�(ρksrθ)〉

∣∣∣ < 1/2
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for 1 ≤ � ≤ �0 + 1, s ∈ [1, ρ], r ∈ (0, 5), ξ ′ ∈ Sd−1 and θ ∈ Sn−1 whenever k ≤ L and
such that 2k+2 < R if k ≤ L. Then, when ξ ∈ Rd \ {0} and k ≤ L, we write

σ̂k(ξ) =
ν−1∑
j=0

∫ ρka j+1

ρka j

∫
Sn−1

exp (−2πi〈ξ,�(rθ)〉) h(r)�(θ) dσ(θ) dr/r

=
ν−1∑
j=0

∫ a

1

∫
Sn−1

exp
(
−2πi〈ξ,�(ρka jrθ)〉

)
h(ρka jr)�(θ) dσ(θ) dr/r.

Let φ ∈ C∞(R) satisfy supp(φ) ⊂ (0, 10−9), φ ≥ 0,
∫

φ(s) ds = 1. Define h j(r) =∫
s<r/2 h(ρka j(r − s))φu(s) ds, r > 0, where φu(s) = u−1φ(u−1s), u > 0. Then, if u < 1,

∫ a

1
|h(ρka jr) − h j (r)| dr/r ≤ Cω(h, u). (2.8)

We take u = (|ξ|ρkM)−ζ/q′
for a suitable M with M ≥ �0 and ζ > 0, which will be

specified below. We assume |ξ|ρkM ≥ 1 for the moment. Define

sk(ξ) =
ν−1∑
j=0

∫ a

1

∫
Sn−1

exp
(
−2πi〈ξ,�(ρka jrθ)〉

)
h j(r)�(θ) dσ(θ) dr/r.

Then, by (2.8)

|σ̂k(ξ) − sk(ξ)| ≤ C(log ρ)‖�‖1ω(h, u) (2.9)

≤ C(log ρ)‖�‖1‖h‖�η(|ξ|ρkM)−ηζ/q′
,

where we have used the fact that ν ≈ log ρ.
By Lemma 2.7∣∣∣∣

∫ w

1
exp

(
−2πi〈ξ,�(ρka j tθ)〉

)
dt

∣∣∣∣
≤ C|ξ|−ε/�(ξ ′)

∫ a+1/2

1/2

∣∣∣G�(ξ ′)(ρ
ka jrθ, ξ ′)

∣∣∣−ε(1+1/�(ξ ′))
dr

for w ∈ [1, a], where ξ ′ = ξ/|ξ|. Also, |h j(a)| ≤ Cu−1‖h‖	1 ,
∫ a

1 |h j(r)| dr/r ≤
C‖h‖	1 ,

∫ a
1 |h′

j (r)| dr/r ≤ Cu−1‖h‖	1 . Therefore, applying integration by parts, we
see that∣∣∣∣

∫ a

1
exp

(
−2πi〈ξ,�(ρka jrθ)〉

)
h j (r) dr/r

∣∣∣∣
≤ Cu−1‖h‖	1 |ξ|−ε/�(ξ ′)

∫ a+1/2

1/2

∣∣∣G�(ξ ′)(ρ
ka jrθ, ξ ′)

∣∣∣−ε(1+1/�(ξ ′))
dr/r.
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Note that ∫
Sn−1

(∫ a+1/2

1/2

∣∣∣G�(ξ ′)(ρ
ka jrθ, ξ ′)

∣∣∣−ε(1+1/�(ξ ′))
dr/r

)
|�(θ)| dσ(θ)

≤ C(ρka j )−n
∫

|x|≤2ρka j+1

∣∣G�(ξ ′)(x, ξ
′)
∣∣−2ε |�(x′)| dx =: I,

where ε ∈ (0, 1]. Since 2ρka j+1 < R, by Hölder’s inequality we have

I ≤ C(ρka j)−n(ρka j)n/q‖�‖q

(∫
|x|≤R

∣∣G�(ξ ′)(x, ξ
′)
∣∣−2εq′

dx

)1/q′

.

Therefore

ν−1∑
j=0

(ρka j)−n
∫

|x|≤2ρka j+1

∣∣G�(ξ ′)(x, ξ
′)
∣∣−2ε |�(x′)| dx

≤ C‖�‖qρ−kn/q′
⎛
⎝ν−1∑

j=0

a− jn/q′
⎞
⎠(∫

|x|≤R

∣∣G�(ξ ′)(x, ξ
′)
∣∣−2εq′

dx

)1/q′

≤ C(log ρ)‖�‖qρ
−kn/q′

(∫
|x|≤R

∣∣G�(ξ ′)(x, ξ
′)
∣∣−2εq′

dx

)1/q′

,

since ν ≈ log ρ. Using these estimates, we have∣∣∣∣∣∣
ν−1∑
j=0

∫ a

1

∫
Sn−1
exp

(
−2πi〈ξ,�(ρka jrθ)〉

)
h j (r)�(θ) dσ(θ) dr/r

∣∣∣∣∣∣
≤ C(log ρ)u−1‖h‖	1 |ξ|−ε/�(ξ ′)‖�‖qρ

−kn/q′
(∫

|x|≤R

∣∣G�(ξ ′)(x, ξ
′)
∣∣−2εq′

dx

)1/q′

,

where C is independent of ε, ρ, q, h and �. If we put ε = δ/(2q′), then by Lemma 2.6
we have

|sk(ξ)| ≤ CC1/q′
� (log ρ)‖h‖	1‖�‖q(|ξ|ρkM)ζ/q′

(|ξ|ρ2kn�(ξ ′)/δ)−δ/(2q′�(ξ ′)).

Therefore, if M is a positive integer such that M − 1 < 2n�0/δ ≤ M and ζ < δ/(2�0),

|sk(ξ)| ≤ CC1/q′
� (log ρ)‖h‖	1‖�‖q(|ξ|ρkM)−(δ/(2�0)−ζ)/q′

. (2.10)

Combining (2.9) and (2.10), we can see that

|σ̂k(ξ)| ≤ C(log ρ)‖h‖�
η
1
‖�‖q(|ξ|ρkM)−ε0/q′

,

where ε0 = min(ηζ, δ/(2�0) − ζ). If |ξ|ρkM ≤ 1, the conclusion of Lemma 2.4 follows
from the estimate |σ̂k(ξ)| ≤ C(log ρ)‖h‖	1‖�‖1 (see (2.14) below with m = �+1). This
completes the proof of Lemma 2.4. �
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Proof of Lemma 2.5: Let

I(x) =
∫ ρ

1
exp

⎛
⎝i

⎡
⎣(ρkt)m

∑
|α|=m

aαxα + Q(ρktx)

⎤
⎦

⎞
⎠ h(ρkt) dt/t.

Note that∫
ρk≤|y|<ρk+1

exp (iP(x)) h(|x|)�(x′)|x|−n dx =
∫

Sn−1
�(θ)I(θ) dσ(θ).

Let a ∈ [2, 4] and ν ≥ 1 be as in the proof of Lemma 2.4. Decompose I(x) = ∑ν−1
j=0 I j(x),

where

I j (x) =
∫ a

1
exp

⎛
⎝i

⎡
⎣(ρka j t)m

∑
|α|=m

aαxα + Q(ρka j tx)

⎤
⎦

⎞
⎠ h(ρka j t) dt/t.

Let h j(t) = ∫
s<t/2 h(ρka j(t − s))φu(s) ds be as in the proof of Lemma 2.4 and

Ĩ j(x) =
∫ a

1
exp

⎛
⎝i

⎡
⎣(ρka j t)m

∑
|α|=m

aαxα + Q(ρka j tx)

⎤
⎦

⎞
⎠ h j (t) dt/t.

Then by (2.8) |I j (x) − Ĩ j(x)| ≤ Cω(h, u), 0 < u < 1. So,∣∣∣∣
∫

Sn−1
�(θ)I j(θ) dσ(θ) −

∫
Sn−1

�(θ) Ĩ j (θ) dσ(θ)

∣∣∣∣ (2.11)

≤
∫

Sn−1
|�(θ)||I j(θ) − Ĩ j(θ)| dσ(θ)

≤ Cω(h, u)‖�‖1 ≤ C‖h‖�η‖�‖1uη

for 0 ≤ j ≤ ν − 1. Also, since |I(x)| ≤ C(log ρ)‖h‖	1 ,∣∣∣∣
∫

Sn−1
�(θ)I(θ) dσ(θ)

∣∣∣∣ ≤ C(log ρ)‖h‖	1‖�‖1. (2.12)

Now, we assume that b := ρkm ∑
|α|=m |aα| ≥ 1 and put u = (a jmb)−1/(4mq′). Then,

as in the proof of Lemma 2.4, an integration by parts argument implies that

| Ĩ j(x)| ≤ Cu−1‖h‖	1

∣∣∣∣∣∣(ρka j )m
∑

|α|=m

aαxα

∣∣∣∣∣∣
−1/m

, (2.13)

since ∣∣∣∣∣∣
∫ w

1
exp

⎛
⎝i

⎡
⎣(ρka j t)m

∑
|α|=m

aαxα + Q(ρka j tx)

⎤
⎦

⎞
⎠ dt

∣∣∣∣∣∣
≤ C

∣∣∣∣∣∣(ρka j)m
∑

|α|=m

aαxα

∣∣∣∣∣∣
−1/m
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for w ∈ [1, a], which follows from van der Corput’s lemma. We also have | Ĩ j(x)| ≤
C‖h‖	1 . Combining this with (2.13), we have

| Ĩ j(x)| ≤ Cu−1‖h‖	1 min

⎛
⎜⎝1,

∣∣∣∣∣∣(ρka j)m
∑

|α|=m

aαxα

∣∣∣∣∣∣
−1/(2mq′)⎞⎟⎠

and hence by Hölder’s inequality and [7, Corollary 1]∣∣∣∣
∫

Sn−1
�(θ) Ĩ j(θ) dσ(θ)

∣∣∣∣ ≤
∫

Sn−1
|�(θ) Ĩ j(θ)| dσ(θ) ≤ ‖�‖q‖ Ĩ j‖q′

≤ Cu−1‖h‖	1‖�‖q

⎛
⎜⎝∫

Sn−1

∣∣∣∣∣∣(ρka j)m
∑

|α|=m

aαθα

∣∣∣∣∣∣
−1/(2m)

dσ(θ)

⎞
⎟⎠

1/q′

≤ C‖h‖	1‖�‖q

⎛
⎝(ρka j)m

∑
|α|=m

|aα|
⎞
⎠

−1/(4mq′)

.

By this estimate and (2.11) we see that∣∣∣∣
∫

Sn−1
�(θ)I j(θ) dσ(θ)

∣∣∣∣
≤ C

(‖h‖�η‖�‖1 + ‖h‖	1‖�‖q
) ⎛
⎝(ρka j)m

∑
|α|=m

|aα|
⎞
⎠

−τ/(mq′)

,

where τ = 4−1 min(1, η). Thus∣∣∣∣
∫

Sn−1
�(θ)I(θ) dσ(θ)

∣∣∣∣ ≤
ν−1∑
j=0

∣∣∣∣
∫

Sn−1
�(θ)I j(θ) dσ(θ)

∣∣∣∣

≤ C(log ρ)
(‖h‖�η‖�‖1 + ‖h‖	1‖�‖q

)⎛
⎝ρkm

∑
|α|=m

|aα|
⎞
⎠

−τ/(mq′)

,

if ρkm ∑
|α|=m |aα| ≥ 1. Along with (2.12), this implies the conclusion of Lemma 2.5. �

Proof of Lemma 2.3: We easily see that

‖σ(m)
k ‖ ≤ C‖�‖1

∫ ρk+1

ρk
|h(r)| dr/r ≤ C(log ρ)‖h‖	1‖�‖1 (2.14)

for 1 ≤ m ≤ � + 1. By (2.14) and (2.2) we have

‖τ(m)
k ‖ ≤ C(log ρ)‖h‖	1‖�‖1 (2.15)

for 1 ≤ m ≤ �. By (2.15) and Hölder’s inequality we have (2.5).
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Let k ≤ L, where L is as in Lemma 2.4. By Lemmas 2.4 and 2.5 we have |σ̂ (m)
k (ξ)| ≤

CA
(
βk

m |Lm(ξ)|)−αm for m = 2, . . . , � + 1. Also, we note that |�k,m(ξ)| is bounded by

C
(
βk

m+1|Lm+1(ξ)|
)−N

for all N > 0, when 1 ≤ m ≤ �. Using these estimates and (2.14)

in the definition of τ
(m)
k in (2.2), we have (2.6).

To prove (2.7), we note that∣∣∣σ̂ (m+1)
k (ξ) − σ̂

(m)
k (ξ)

∣∣∣ ≤ C(log ρ)‖h‖	1‖�‖1β
k+1
m+1|Lm+1(ξ)|. (2.16)

Also, by (2.3) we see that∣∣�k,m+1(ξ) − �k,m(ξ)
∣∣ ≤ Cβk

m+1|Lm+1(ξ)|. (2.17)

The estimates (2.14), (2.16) and (2.17) imply

|τ̂ (m)
k (ξ)| ≤ C(log ρ)‖h‖	1‖�‖1β

k+1
m+1|Lm+1(ξ)|, (2.18)

since

|τ̂ (m)
k (ξ)| ≤

∣∣∣(σ̂
(m+1)
k (ξ) − σ̂

(m)
k (ξ)

)
�k,m+1(ξ)

∣∣∣ +
∣∣∣(�k,m+1(ξ) − �k,m(ξ)

)
σ̂

(m)
k (ξ)

∣∣∣ .
By (2.15) we also have |τ̂ (m)

k (ξ)| ≤ C(log ρ)‖h‖	1‖�‖1. This estimate and (2.18) imply
(2.7). This completes the proof of Lemma 2.3. �

Proof of Proposition 2.2: Let T̃ (m)
ρ ( f ) = ∑

k≤L τ
(m)
k ∗ f for 1 ≤ m ≤ �, where L is as in

Lemma 2.3. Then, to prove Proposition 2.2 it suffices to show a version of Proposition 2.2
for T̃ (m)

ρ with bounds similar to those for T (m)
ρ , since ‖T (m)

ρ ( f )− T̃ (m)
ρ ( f )‖p ≤ CA‖ f ‖p

for 1 ≤ p ≤ ∞, where A is as in Lemma 2.3. Let {ψk}∞−∞ be a sequence of non-negative
functions in C∞(R) such that each ψk is supported in [β−k−1

m+1 , β−k+1
m+1 ], ∑

k ψk(t)2 = 1
for t > 0 and

|(d/dt) jψk(t)| ≤ c j |t|− j , j = 1, 2, . . . ,

where the constants c j are independent of βm+1. This is possible since βm+1 ≥ 2. Let(
S(m+1)

k ( f )
)

ˆ(ξ) = ψk

(
|Hm+1π

d
sm+1

Rm+1(ξ)|
)

f̂ (ξ).

We also write S(m+1)
k = Sk. Put

D(m)
j ( f ) =

L∑
k=−∞

Sj+k

(
τ

(m)
k ∗ Sj+k( f )

)
.

Then T̃ (m)
ρ = ∑

j D(m)
j . Plancherel’s theorem and the estimates (2.5)–(2.7) imply that∥∥∥D(m)

j ( f )

∥∥∥2

2
≤

∑
k≤L

C
∫

	( j+k)
|τ̂ (m)

k (ξ)|2| f̂ (ξ)|2 dξ

≤ CA2 min
(

1, β
−2αm+1(| j|−2)

m+1

) ∑
k≤L

∫
	( j+k)

| f̂ (ξ)|2 dξ

≤ CA2 min
(

1, β
−2αm+1(| j|−2)

m+1

)
‖ f ‖2

2,
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where 	(k) = {β−k−1
m+1 ≤ |Hm+1π

d
sm+1

Rm+1(ξ)| ≤ β−k+1
m+1 }. Thus we have∥∥∥D(m)

j ( f )
∥∥∥

2
≤ CA min

(
1, β

−αm+1(| j|−2)

m+1

)
‖ f ‖2. (2.19)

By (2.19) we have

‖T̃ (m)
ρ ( f )‖2 ≤

∑
j

‖D(m)
j ( f )‖2 ≤ CAB‖ f ‖2, (2.20)

since B ≥
(

1 − β
−αm+1
m+1

)−1
, where B is as in Proposition 2.1.

Taking Proposition 2.1 for granted for the moment and recalling the definition of
τ

(m)
k in (2.2), by change of variables and a well-known theorem for L p boundedness of

maximal functions (see [5, Section 6]) we have∥∥∥(τ(m))∗( f )

∥∥∥
p

≤ C
∥∥∥(μ(m+1))∗(| f |)

∥∥∥
p
+ C

∥∥∥(μ(m))∗(| f |)
∥∥∥

p
(2.21)

≤ Cp AB2/p‖ f ‖p

for p > 1 + θ .
By (2.5), (2.21) and the proof of Lemma in [3, p. 544], we have the following.

Lemma 2.8 Let u ∈ (1 + θ, 2], 1/v − 1/2 = 1/(2u). Then we have∥∥∥∥∥∥∥
⎛
⎝∑

k≤L

|τ(m)
k ∗ gk|2

⎞
⎠

1/2
∥∥∥∥∥∥∥

v

≤ (c1Cu)1/2 AB1/u

∥∥∥∥∥∥∥
⎛
⎝∑

k≤L

|gk|2
⎞
⎠

1/2
∥∥∥∥∥∥∥

v

,

where the constants c1 and Cu are as in (2.5) and (2.21), respectively.

Also, the Littlewood–Paley theory implies that

‖D(m)
j ( f )‖p ≤ cp

∥∥∥∥∥∥∥
⎛
⎝∑

k≤L

|τ(m)
k ∗ Sj+k( f )|2

⎞
⎠

1/2
∥∥∥∥∥∥∥

p

, (2.22)

∥∥∥∥∥∥
(∑

k

|Sk( f )|2
)1/2

∥∥∥∥∥∥
p

≤ cp‖ f ‖p, (2.23)

where 1 < p < ∞ and cp is independent of βm+1 and the linear transformations
Rm+1, Hm+1.

Let 1 + θ < p ≤ 4/(3 − θ). Then, there exists u ∈ (1 + θ, 2] such that 1/p =
1/2 + (1 − θ)/(2u). Let 1/v − 1/2 = 1/(2u). Then, by (2.22), (2.23) and Lemma 2.8 we
have

‖D(m)
j ( f )‖v ≤ CAB1/u‖ f ‖v, (2.24)
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where C is independent of ρ and the linear transformations Ri, Hi , 2 ≤ i ≤ �+1. Noting
that 1/p = θ/2 + (1 − θ)/v and interpolating between (2.19) and (2.24), we have

‖D(m)
j ( f )‖p ≤ CAB(1−θ)/u min

(
1, β

−θαm+1(| j|−2)

m+1

)
‖ f ‖p,

which implies that

‖T̃ (m)
ρ ( f )‖p ≤

∑
j

‖D(m)
j ( f )‖p ≤ CAB(1−θ)/u

(
1 − β

−θαm+1
m+1

)−1 ‖ f ‖p (2.25)

≤ CAB2/p‖ f ‖p.

A duality and interpolation argument using (2.20) and (2.25) implies the conclusion of
Proposition 2.2 with T (m)

ρ replaced by T̃ (m)
ρ , which proves Proposition 2.2. �

We now prove Proposition 2.1 by induction on j . First, the inequality (μ(1))∗( f )(x) ≤
C(log ρ)‖h‖	1‖�‖1| f(x − P(0))| implies the estimate (2.4) for j = 1. Next, we prove
(2.4) for j = m by assuming (2.4) for j = m − 1, 2 ≤ m ≤ � + 1. Define a sequence
η(m) = {η(m)

k }−1
k=−∞ of Borel measures on Rd by

η̂
(m)
k (ξ) = ϕ

(
βk

m |Hmπd
sm

Rm(ξ)|
)

μ̂
(m−1)
k (ξ),

where ϕ ∈ C∞
0 (R) is as in the definition of τ

(m)
k in (2.2). Then, from (2.4) with j = m −1,

it follows that ∥∥∥(η(m))∗( f )
∥∥∥

p
≤ C

∥∥∥(μ(m−1))∗( f )

∥∥∥
p

≤ CAB2/p‖ f ‖p (2.26)

for p > 1 + θ , where A, B are as above. As in the proof of Lemma 2.3, we have

‖η(m)
k ‖ + ‖μ(m)

k ‖ ≤ C‖μ(m−1)
k ‖ + ‖μ(m)

k ‖ (2.27)

≤ C‖�‖1

∫ ρk+1

ρk
|h(r)| dr/r

≤ C(log ρ)‖h‖	1‖�‖1 ≤ CA.

Let k ≤ L, where L is as above. Since

|μ̂(m)
k (ξ) − η̂

(m)
k (ξ)|

≤ |μ̂(m)
k (ξ) − μ̂

(m−1)
k (ξ)| +

∣∣∣(ϕ
(
βk

m |Hmπd
sm

Rm(ξ)|
)

− 1
)

μ̂
(m−1)
k (ξ)

∣∣∣ ,
arguing as in the proof of (2.7), we see that

|μ̂(m)
k (ξ) − η̂

(m)
k (ξ)| ≤ C(log ρ)‖h‖	1‖�‖1

(
βk+1

m |Lm(ξ)|
)αm

(2.28)

≤ CA
(
βk+1

m |Lm(ξ)|
)αm

.
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We also have the following:

|μ̂(m)
k (ξ)| ≤ CA

(
βk

m |Lm(ξ)|
)−αm

, (2.29)

|η̂(m)
k (ξ)| ≤ C(log ρ)‖h‖	1‖�‖1

(
βk

m |Lm(ξ)|
)−αm

(2.30)

≤ CA
(
βk

m |Lm(ξ)|
)−αm

.

We can prove the estimate (2.29) arguing as in the proof of (2.6). The definition of η
(m)
k

and (2.27) imply the first inequality of (2.30).
We have only to prove (2.4) with j = m for p ∈ (1 + θ, 2], since the estimate (2.4)

for p > 2 follows from interpolation between the estimate (2.4) for p ∈ (1 + θ, 2] and
the obvious estimate ‖(μ(m))∗( f )‖∞ ≤ CA‖ f ‖∞. Let

gm( f )(x) =
⎛
⎝∑

k≤L

∣∣∣ν(m)
k ∗ f(x)

∣∣∣2

⎞
⎠

1/2

,

where ν
(m)
k = μ

(m)
k − η

(m)
k . Then, we see that

(μ̃(m))∗( f ) ≤ gm( f ) + (η(m))∗(| f |), (2.31)

where (μ̃(m))∗( f ) = supk≤L |μ(m)
k ∗ f |. Note that to prove (2.4) with j = m it suffices to

prove it with (μ̃(m))∗ in place of (μ(m))∗. Since we have (2.26) and (2.31), to show (2.4)
with j = m it suffices to prove ‖gm( f )‖p ≤ CAB2/p‖ f ‖p for p ∈ (1 + θ, 2]. Let

U(m)
ε ( f ) =

∑
k≤L

εkν
(m)
k ∗ f,

where ε = {εk}, εk = 1 or −1. Then, we shall show that∥∥∥U(m)
ε ( f )

∥∥∥
p

≤ CAB2/p‖ f ‖p (2.32)

for p ∈ (1 + θ, 2], where C is independent of ε. The desired estimate follows from (2.32)
by a well-known property of Rademacher’s functions.

To prove (2.32) we use the following:

Lemma 2.9 Let {p j}∞1 be a sequence of real numbers defined by p1 = 2 and 1/p j+1 =
1/2 + (1 − θ)/(2p j) for j ≥ 1. Then, we have∥∥∥U(m)

ε ( f )
∥∥∥

p j
≤ C j AB2/p j ‖ f ‖p j

for j ≥ 1.

We can see that 1/p j = (1−a j)/(1+θ), where a = (1−θ)/2. Thus {p j} is decreasing
and converges to 1 + θ . We can prove Lemma 2.9 by (2.26)–(2.30).
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Proof: Define

U(m)
j ( f ) =

L∑
k=−∞

εkS j+k

(
ν
(m)
k ∗ Sj+k( f )

)
,

where Sk = S(m)
k (the operators S(m)

k are as in the proof of Proposition 2.2). Then,

U(m)
ε = ∑

j U(m)
j . Arguing as in the proof of (2.19), and using Plancherel’s theorem and

the estimates (2.27)–(2.30), we have∥∥∥U(m)
j ( f )

∥∥∥
2

≤ CA min
(

1, β
−αm(| j|−2)
m

)
‖ f ‖2, (2.33)

and hence
∥∥∥U(m)

ε ( f )
∥∥∥

2
≤ ∑

j ‖U(m)
j ( f )‖2 ≤ CAB‖ f ‖2. This proves the assertion of

Lemma 2.9 for j = 1.
We now assume the estimate of Lemma 2.9 for j = s and prove it for j = s + 1. By

induction, this will complete the proof of Lemma 2.9. From the estimate (2.31), it follows
that

(ν̃(m))∗( f ) ≤ (μ̃(m))∗(| f |) + (η(m))∗(| f |) ≤ gm(| f |) + 2(η(m))∗(| f |),
where (ν̃(m))∗( f ) = supk≤L ||ν(m)

k | ∗ f |. By our assumption we have ‖gm( f )‖ps ≤
CAB2/ps‖ f ‖ps . This estimate and (2.26) imply∥∥∥(ν̃(m))∗( f )

∥∥∥
ps

≤ ‖gm(| f |)‖ps + 2
∥∥(η(m))∗(| f |)∥∥ps

(2.34)

≤ CAB2/ps‖ f ‖ps .

Arguing as in the proof of (2.25), and using (2.27), (2.33) and (2.34), we can now obtain
the estimate of Lemma 2.9 for j = s + 1. This completes the proof of Lemma 2.9. �

Let p ∈ (1 + θ, 2] and let {p j}∞1 be as in Lemma 2.9. Then, we can find a positive
integer N such that pN+1 < p ≤ pN . The estimate (2.32) now follows from interpolation
between the estimates of Lemma 2.9 for j = N and j = N + 1. This finishes the proof
of (2.4) for j = m. By induction, this completes the proof of Proposition 2.1.

Proof of Theorem 1.1: By taking ρ = 2q′
in Proposition 2.2 we see that

‖T (m)

2q′ ( f )‖p ≤ Cθ (q − 1)−1‖h‖�
η
1
‖�‖q‖ f ‖p

for p ∈ (1+θ, (1+θ)/θ). This completes the proof of Theorem 1.1, since T = ∑�
m=1 T (m)

ρ

and (1 + θ, (1 + θ)/θ) → (1,∞) as θ → 0. �

3 Estimates for maximal functions
Let

T∗( f )(x) = sup
ε∈(0,1)

∣∣∣∣
∫

ε<|y|<1
f(x − �(y))K(y) dy

∣∣∣∣ , (3.1)
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where K is as in (1.2). Then, we have an analog of Theorem 1.1 for the maximal
operator T∗.

Theorem 3.1 Let � ∈ Lq(Sn−1), q ∈ (1, 2] and h ∈ �
η

1 for some η > 0. Suppose that
� satisfies (1.1). Then

‖T∗( f )‖L p(Rd ) ≤ Cp(q − 1)−1‖h‖�
η
1
‖�‖Lq(Sn−1)‖ f ‖L p(Rd)

for all p ∈ (1,∞), where Cp is independent of q, h and �.

By Theorem 3.1 and extrapolation we have the following result.

Theorem 3.2 Let � ∈ L log L(Sn−1) and h ∈ �
η

1 for some η > 0. Suppose that �

satisfies the condition (1.1). Let T∗ f be defined as in (3.1) with the functions h and �.
Then

‖T∗( f )‖L p(Rd ) ≤ Cp‖ f ‖L p(Rd)

for all p ∈ (1,∞).

If the function h is identically 1, then Theorem 3.2 was shown in [1].
To prove Theorem 3.1, we use the following result.

Lemma 3.3 Let θ ∈ (0, 1) and let positive numbers A = (log ρ)‖h‖�
η
1
‖�‖q, B =(

1 − ρ−θκ/q′)−1
be as above. Define

T∗
m,ρ( f )(x) = sup

k≤L

∣∣∣∣∣∣
L∑

j=k

τ
(m)
j ∗ f(x)

∣∣∣∣∣∣ (3.2)

for 1 ≤ m ≤ �, where the measures τ
(m)
k are as in (2.2) and L is as in Lemma 1. Let

Iθ = (2(1 + θ)/(θ2 − θ + 2), (1 + θ)/θ). Then, we have

‖T∗
m,ρ( f )‖p ≤ CA

(
B1+δ(p) + B2/p+1−θ/2

)
‖ f ‖p

for p ∈ Iθ , where C is independent of q ∈ (1, 2], � ∈ Lq(Sn−1), h ∈ �
η

1 and ρ.

This can be proved by results in Section 2.

Proof: Let T̃ (m)
ρ ( f ) = ∑

k≤L τ
(m)
k ∗ f be as in the proof of Proposition 2.2. Let ϕk be

defined by

ϕ̂k(ξ) = ϕ
(
βk

m+1|Hm+1π
d
sm+1

Rm+1(ξ)|
)

,

where ϕ is as in the definition of τ
(m)
k in (2.2). We now decompose

L∑
j=k

τ
(m)
j ∗ f = ϕk ∗ T̃ (m)

ρ ( f ) − ϕk ∗
⎛
⎝ k−1∑

j=−∞
τ

(m)
j ∗ f

⎞
⎠ + (δ − ϕk) ∗

⎛
⎝ L∑

j=k

τ
(m)
j ∗ f

⎞
⎠ ,
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where k ≤ L and δ = δ0 is the delta function on Rd (see [3, 5]). Then, we have

T∗
ρ,m( f ) ≤ sup

k≤L

∣∣∣ϕk ∗ T̃ (m)
ρ ( f )

∣∣∣ +
∞∑
j=0

M(m)
j ( f ), (3.3)

where

M(m)
j ( f ) = sup

k≤L

∣∣∣ϕk ∗
(
τ

(m)
k− j−1 ∗ f

)∣∣∣ + sup
k≤L− j

∣∣∣(δ − ϕk) ∗
(
τ

(m)
j+k ∗ f

)∣∣∣ .
From Proposition 2.2 it follows that∥∥∥∥∥sup

k≤L

∣∣∣ϕk ∗ T̃ (m)
ρ ( f )

∣∣∣
∥∥∥∥∥

p

≤ CAB1+δ(p)‖ f ‖p (3.4)

for p ∈ (1 + θ, (1 + θ)/θ), and the estimate (2.21) implies that

‖M(m)
j ( f )‖r ≤ CAB2/r‖ f ‖r for r > 1 + θ . (3.5)

Since

M(m)
j ( f ) ≤

⎛
⎝ ∑

k≤L− j

∣∣∣(δ − ϕk) ∗
(
τ

(m)
j+k ∗ f

)∣∣∣2

⎞
⎠

1/2

+
⎛
⎝∑

k≤L

∣∣∣ϕk ∗
(
τ

(m)
k− j−1 ∗ f

)∣∣∣2

⎞
⎠

1/2

,

arguing as in [5, p. 820] and using the estimates (2.6) and (2.7) along with Plancherel’s
theorem, we have

‖M(m)
j ( f )‖2 ≤ CAβ

−αm+1 j
m+1

(
1 − β

−2αm+1
m+1

)−1/2 ‖ f ‖2. (3.6)

We note that for any p ∈ Iθ there exists a number r ∈ (1 + θ, 2(1 + θ)/θ) such that
1/p = (1 − θ)/r + θ/2. Therefore, interpolating between (3.5) and (3.6), we have

‖M(m)
j ( f )‖p ≤ CAB2(1−θ)/r

(
1 − β

−2αm+1
m+1

)−θ/2
β

−αm+1θ j
m+1 ‖ f ‖p. (3.7)

From (3.3), (3.4) and (3.7), it follows that

‖T∗
ρ,m( f )‖p ≤ CA

(
B1+δ(p) + B2(1−θ)/r+1

(
1 − β

−2αm+1
m+1

)−θ/2
)

‖ f ‖p

for p ∈ Iθ . Using
(

1 − β
−2αm+1
m+1

)−1 ≤ B and 2(1 − θ)/r + θ/2 + 1 = 2/p + 1 − θ/2 in

this estimate, we can obtain the conclusion of Lemma 3.3. �

Proof of Theorem 3.1: Let

T∗
ρ ( f )(x) = sup

ε∈(0,ρL+1)

∣∣∣∣
∫

ε<|y|<ρL+1
f(x − �(y))K(y) dy

∣∣∣∣ .
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Then, we have

T∗( f )(x) ≤ T∗
ρ ( f )(x) + Jρ( f )(x), (3.8)

where Jρ( f )(x) = ∫
ρL+1≤|y|<1 | f(x − �(y))||K(y)| dy. We note that

T∗
ρ ( f ) ≤ T∗

0,ρ( f ) + μ∗
ρ(| f |), (3.9)

where μ∗
ρ = (μ(�+1))∗ is as in Proposition 2.1 and T∗

0,ρ( f ) is defined by the formula

in (3.2) with {τ(m)
j } j≤L replaced by the sequence {σ j } j≤L of measures in (2.1). Since

T∗
0,ρ( f ) ≤ ∑�

m=1 T∗
m,ρ( f ), using Lemma 3.3 with ρ = 2q′

, we see that

‖T∗
0,2q′ ( f )‖p ≤ Cθ(q − 1)−1‖h‖�

η

1
‖�‖q‖ f ‖p (3.10)

for p ∈ Iθ . Also, by Proposition 2.1 with ρ = 2q′
we have

‖μ∗
2q′ (| f |)‖p ≤ Cθ (q − 1)−1‖h‖�

η
1
‖�‖q‖ f ‖p (3.11)

for p ∈ Iθ . Note that ∫
ρL+1≤|y|<1

|K(y)| dy ≤ C(log ρ)‖h‖	1‖�‖1.

Therefore, it is easy to see that

‖J2q′ ( f )‖p ≤ C(q − 1)−1‖h‖�
η
1
‖�‖q‖ f ‖p (3.12)

for p ∈ Iθ . Since Iθ → (1,∞) as θ → 0, by (3.8)–(3.12) we obtain the conclusion of
Theorem 3.1. �
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