Singular integrals associated with functions of finite type and extrapolation

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-02
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/43050
URL	http://hdl.handle.net/229//43050

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Singular integrals associated with functions of finite type and extrapolation

Shuichi Sato

Received: December 1, 2010

Summary: We consider a singular integral along a submanifold of finite type. We prove a certain L^p estimate for the singular integral, which is useful in applying an extrapolation method that shows L^p boundedness of the singular integral under a sharp condition of the kernel.

1 Introduction

Let $B(0, 1) = \{x \in \mathbb{R}^n : |x| < 1\}$ and let $\Phi : B(0, 1) \to \mathbb{R}^d$ be a smooth function. We assume that Φ is of finite type at the origin, that is, for any $\xi \in S^{d-1}$ (the unit sphere in \mathbb{R}^d) there exists a multi-index $\alpha = (\alpha_1, \ldots, \alpha_n)$ such that $|\alpha| \ge 1$ and $\partial_x^{\alpha} \langle \Phi(x), \xi \rangle|_{x=0} \ne 0$, where $\partial_x^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \dots (\partial/\partial x_n)^{\alpha_n}$, $|\alpha| = \alpha_1 + \dots + \alpha_n$ and $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^d .

Let a function Ω in $L^1(S^{n-1})$ satisfy

$$\int_{S^{n-1}} \Omega(\theta) \, d\sigma(\theta) = 0, \tag{1.1}$$

where $d\sigma$ denotes the Lebesgue surface measure on the unit sphere S^{n-1} in \mathbb{R}^n . Throughout this note we assume $n \ge 2$. Let Δ_s , $s \ge 1$, denote the collection of functions h on $\mathbb{R}_+ = \{t \in \mathbb{R} : t > 0\}$ satisfying

$$\|h\|_{\Delta_s} = \sup_{j\in\mathbb{Z}} \left(\int_{2^j}^{2^{j+1}} |h(t)|^s dt/t \right)^{1/s} < \infty,$$

where \mathbb{Z} denotes the set of integers. We define

$$\omega(h,t) = \sup_{|s| < tR/2} \int_{R}^{2R} |h(r-s) - h(r)| \, dr/r, \quad t \in (0,1],$$

where the supremum is taken over all *s* and *R* such that |s| < tR/2 (see [6, 12]). For $\eta > 0$, let Λ^{η} denote the family of functions *h* satisfying

$$\|h\|_{\Lambda^{\eta}} = \sup_{t \in (0,1]} t^{-\eta} \omega(h,t) < \infty.$$

AMS 2010 subject classification: Primary: 42B20, 42B25

Key words and phrases: Singular integral, singular Radon transform, submanifold of finite type, extrapolation

Define a space $\Lambda_s^{\eta} = \Delta_s \cap \Lambda^{\eta}$ and set $\|h\|_{\Lambda_s^{\eta}} = \|h\|_{\Delta_s} + \|h\|_{\Lambda^{\eta}}$ for $h \in \Lambda_s^{\eta}$.

We consider a singular Radon transform of the form:

$$T(f)(x) = \text{p.v.} \int_{B(0,1)} f(x - \Phi(y)) K(y) \, dy$$

$$= \lim_{\epsilon \to 0} \int_{1 > |y| > \epsilon} f(x - \Phi(y)) K(y) \, dy$$
(1.2)

for an appropriate function f on \mathbb{R}^d , where $K(y) = h(|y|)\Omega(y')|y|^{-n}$, $y' = |y|^{-1}y$, $h \in \Delta_1$. See Stein [13], Fan, Guo, and Pan [4], Al-Salman and Pan [1] and also [2, 5, 14] for this singular integral and related topics.

In the previous works, the operator T was studied under the condition that h is a constant function. In this note, we consider the operator T under a more general condition on h. We shall prove the following:

Theorem 1.1 Let $q \in (1, 2]$, $\Omega \in L^q(S^{n-1})$ and $h \in \Lambda_1^{\eta}$ for some $\eta > 0$. Suppose that Ω satisfies the condition (1.1). Let T be defined as in (1.2). Then we have

$$\|T(f)\|_{L^{p}(\mathbb{R}^{d})} \leq C_{p}(q-1)^{-1}\|h\|_{\Lambda_{1}^{\eta}}\|\Omega\|_{L^{q}(S^{n-1})}\|f\|_{L^{p}(\mathbb{R}^{d})}$$

for all $p \in (1, \infty)$, where the constant C_p is independent of q, h and Ω .

Let $L \log L(S^{n-1})$ denote the Zygmund class of the functions F on S^{n-1} satisfying

$$\int_{S^{n-1}} |F(\theta)| \log(2 + |F(\theta)|) \, d\sigma(\theta) < \infty.$$

Then, as an application of Theorem 1.1 and extrapolation, we have the following theorem.

Theorem 1.2 Let $h \in \Lambda_1^{\eta}$ for some $\eta > 0$. Suppose that Ω is in $L \log L(S^{n-1})$ and satisfies the condition (1.1). Let T be as in (1.2). Then we have

$$||T(f)||_{L^{p}(\mathbb{R}^{d})} \leq C_{p}||f||_{L^{p}(\mathbb{R}^{d})}$$

for all $p \in (1, \infty)$.

The extrapolation argument that proves Theorem 1.2 from Theorem 1.1 can be found in [8, 9, 10, 11] (see also [15, Chap. XII, pp. 119–120]). If the function h is assumed to be a constant function in Theorem 1.2, we have a result of Al-Salman and Pan shown in [1] (see [1, Theorem 1.1]); so we can give a different proof of the result by applying Theorem 1.1 and extrapolation. Relevant results can be found in [8, 9, 10, 11].

In Section 2, we shall prove Theorem 1.1. Consider a singular integral of the form

$$S(f)(x) = \operatorname{p.v.} \int_{\mathbb{R}^n} f(x - P(y))h(|y|)\Omega(y')|y|^{-n} \, dy,$$

where P(y) is a polynomial mapping from \mathbb{R}^n to \mathbb{R}^d satisfying P(-y) = -P(y) ($P \neq 0$), $h \in \Delta_s$ for $s \in (1, 2]$ and Ω is a function in $L^q(S^{n-1})$, $q \in (1, 2]$, satisfying (1.1). Then, it has been proved that

$$\|S(f)\|_{L^{p}(\mathbb{R}^{d})} \leq C_{p}(q-1)^{-1}(s-1)^{-1}\|\Omega\|_{L^{q}(S^{n-1})}\|h\|_{\Delta_{s}}\|f\|_{L^{p}(\mathbb{R}^{d})}$$

for all $p \in (1, \infty)$, where the constant C_p is independent of q, s, Ω, h and the polynomial components of P if they are of fixed degree (see [8, Theorem 1]). Outline of our proof of Theorem 1.1 is similar to that of the proof for [8, Theorem 1]. We apply methods of [4] to obtain some basic estimates. We need to assume that $h \in \Lambda_1^{\eta}$ for some $\eta > 0$ to prove certain Fourier transform estimates. As in [8] (see also [9, 10]), a key idea of the proof of Theorem 1.1 is to apply a Littlewood–Paley decomposition adapted to an appropriate lacunary sequence depending on q for which $\Omega \in L^q(S^{n-1})$.

In Section 3, we shall give analogs of Theorems 1.1 and 1.2 for a maximal singular integral operator related to *T*. In what follows we also write $||f||_{L^p(\mathbb{R}^d)} = ||f||_p$ and $||\Omega||_{L^q(S^{n-1})} = ||\Omega||_q$. Throughout this note, the letter *C* will be used to denote non-negative constants which may be different in different occurrences.

2 Proof of Theorem 1.1

Let *M* be a positive integer. We write $\Phi(y) = (\Phi_1(y), \dots, \Phi_d(y))$. Let $P_j(y)$ be the Taylor polynomial of $\Phi_j(y)$ at the origin defined by

$$P_j(y) = \sum_{|\alpha| \le M-1} \frac{1}{\alpha!} (\partial_y^{\alpha} \Phi_j)(0) y^{\alpha},$$

where $\alpha! = \alpha_1! \dots \alpha_n!$ and $y^{\alpha} = y_1^{\alpha_1} \dots y_n^{\alpha_n}$ for $\alpha = (\alpha_1, \dots, \alpha_n)$ and $y = (y_1, \dots, y_n)$. We write $P(y) = (P_1(y), P_2(y), \dots, P_d(y))$ and

$$P(y) = \sum_{j=1}^{\ell} Q_j(y), \qquad Q_j(y) = \sum_{|\gamma|=N(j)} a_{\gamma} y^{\gamma} \quad (a_{\gamma} \in \mathbb{R}^d),$$

where $0 = N(1) < N(2) < \cdots < N(\ell)$, $Q_j \neq 0$ for $j \ge 2$. Let $\beta_m = \rho^{N(m)}$ and $\alpha_m = \tau(q-1)/(qN(m))$ for $2 \le m \le \ell$, where $\tau = 4^{-1} \min(1, \eta)$, $\rho \ge 2$. Also, let $\beta_{\ell+1} = \rho^M$ and $\alpha_{\ell+1} = \epsilon_0(q-1)/q$ for some $\epsilon_0 \in (0, 1/4)$. The positive integer M and the positive number ϵ_0 will be specified in the following (see Lemma 2.4 below).

Let *T* be as in Theorem 1.1. Let $E_k = \{x \in \mathbb{R}^n : \rho^k \le |x| < \rho^{k+1}\}, k \in \mathbb{Z}, \rho \ge 2$. Then $T(f)(x) = \sum_{k=-\infty}^{-1} \sigma_k * f(x)$, where $\{\sigma_k\}_{k=-\infty}^{-1}$ is a sequence of Borel measures on \mathbb{R}^d such that

$$\sigma_k * f(x) = \int_{E_k} f(x - \Phi(y)) K(y) \, dy.$$
 (2.1)

Put $P^{(m)}(y) = \sum_{j=1}^{m} Q_j(y)$ for $m = 1, 2, ..., \ell$ and $P^{(\ell+1)}(y) = \Phi(y)$. Consider a sequence $\mu^{(m)} = \{\mu_k^{(m)}\}_{k=-\infty}^{-1}$ of positive measures on \mathbb{R}^d such that

$$\mu_k^{(m)} * f(x) = \int_{E_k} f\left(x - P^{(m)}(y)\right) |K(y)| \, dy$$

for $m = 1, 2, ..., \ell + 1$. Note that $\mu_k^{(1)} = (\int_{E_k} |K(y)| \, dy) \delta_{P(0)}$, where δ_a is Dirac's delta function on \mathbb{R}^d concentrated at a. Let $\sigma^{(m)} = \{\sigma_k^{(m)}\}_{k=-\infty}^{-1}$ be a sequence of Borel

measures on \mathbb{R}^d such that

$$\sigma_k^{(m)} * f(x) = \int_{E_k} f\left(x - P^{(m)}(y)\right) K(y) \, dy,$$

for $m = 1, 2, ..., \ell + 1$. We note that $\sigma_k^{(1)} = 0$ by (1.1) and

$$(\sigma_k^{(m)} * f)^{\hat{}}(\xi) = \hat{f}(\xi) \int_{E_k} e^{-2\pi i \langle P^{(m)}(y), \xi \rangle} K(y) \, dy,$$

where \hat{f} denotes the Fourier transform of f. A similar formula holds for $\mu_k^{(m)}$.

Let $\{\gamma(j,k)\}_{k=1}^{r_j}$ be an enumeration of $\{\gamma\}_{|\gamma|=N(j)}$ for $1 \leq j \leq \ell$. Define a linear mapping L_i from \mathbb{R}^d to \mathbb{R}^{r_j} by

$$L_j(\xi) = (\langle a_{\gamma(j,1)}, \xi \rangle, \langle a_{\gamma(j,2)}, \xi \rangle, \dots, \langle a_{\gamma(j,r_j)}, \xi \rangle),$$

for $1 \leq j \leq \ell$. Let $L_{\ell+1}$ be the identity mapping on \mathbb{R}^d . Let $s_j = \operatorname{rank} L_j$. For $j \geq 2$, there exist non-singular linear transformations $R_j : \mathbb{R}^d \to \mathbb{R}^d$ and $H_j : \mathbb{R}^{s_j} \to \mathbb{R}^{s_j}$ such that

$$|H_j \pi_{s_j}^d R_j(\xi)| \le |L_j(\xi)| \le C |H_j \pi_{s_j}^d R_j(\xi)|,$$

where $\pi_{s_j}^d(\xi) = (\xi_1, \dots, \xi_{s_j})$ is the projection and *C* is a constant depending only on r_j (see [5]).

Let φ be a function in $C^{\infty}(\mathbb{R})$ satisfying $\varphi(r) = 1$ for |r| < 1/2 with support in $\{|r| \le 1\}$. Define a sequence $\tau^{(m)} = \{\tau_k^{(m)}\}_{k=-\infty}^{-1}$ of Borel measures by

$$\hat{\tau}_{k}^{(m)}(\xi) = \hat{\sigma}_{k}^{(m+1)}(\xi) \Phi_{k,m+1}(\xi) - \hat{\sigma}_{k}^{(m)}(\xi) \Phi_{k,m}(\xi)$$
(2.2)

for $m = 1, 2, \ldots, \ell$, where

$$\Phi_{k,m}(\xi) = \prod_{j=m+1}^{\ell+1} \varphi\left(\beta_j^k |H_j \pi_{s_j}^d R_j(\xi)|\right)$$

if $1 \le m \le \ell$ and $\Phi_{k,\ell+1} = 1$. Then $\sigma_k = \sigma_k^{(\ell+1)} = \sum_{m=1}^{\ell} \tau_k^{(m)}$. We note that

$$\Phi_{k,m+1}(\xi)\varphi\left(\beta_{m+1}^{k}|H_{m+1}\pi_{s_{m+1}}^{d}R_{m+1}(\xi)|\right) = \Phi_{k,m}(\xi) \quad (1 \le m \le \ell).$$
(2.3)

For $1 \le m \le \ell$, let $T_{\rho}^{(m)}(f) = \sum_{k=-\infty}^{-1} \tau_k^{(m)} * f$. Then $T = \sum_{m=1}^{\ell} T_{\rho}^{(m)}$. For a sequence $\nu = \{\nu_k\}_{k=-\infty}^{-1}$ of finite Borel measures on \mathbb{R}^d , let $\nu^*(f)(x) = \sup_k ||\nu_k| * f(x)|$, where $|\nu_k|$ denotes the total variation. We consider the maximal operators $(\mu^{(m)})^*$ $(1 \le m \le \ell + 1)$. We also write $(\mu^{(\ell+1)})^* = \mu_0^*$.

Let $\theta \in (0, 1)$. For $p \in (1, \infty)$ let p' = p/(p-1) and $\delta(p) = |1/p - 1/p'|$. Then we prove the following two propositions.

Proposition 2.1 Let $p > 1 + \theta$ and $1 \le j \le \ell + 1$. Then we have

$$\left\| (\mu^{(j)})^*(f) \right\|_{L^p(\mathbb{R}^d)} \le C(\log \rho) \|h\|_{\Lambda^{\eta}_1} \|\Omega\|_{L^q(S^{n-1})} B^{2/p} \|f\|_{L^p(\mathbb{R}^d)},$$
(2.4)

where $B = \left(1 - \rho^{-\theta \kappa/q'}\right)^{-1}$ for some positive constant κ such that

$$\left(1-\beta_m^{- heta\alpha_m}\right)^{-1}\leq B$$

for all m with $2 \le m \le \ell + 1$. The constant C is independent of $q \in (1, 2]$, $h \in \Lambda_1^{\eta}$, $\Omega \in L^q(S^{n-1})$ and ρ .

Proposition 2.2 Let $p \in (1 + \theta, (1 + \theta)/\theta)$ and $1 \le m \le \ell$. Then

$$\|T_{\rho}^{(m)}(f)\|_{L^{p}(\mathbb{R}^{d})} \leq C(\log\rho)\|h\|_{\Lambda_{1}^{\eta}}\|\Omega\|_{L^{q}(S^{n-1})}B^{1+\delta(p)}\|f\|_{L^{p}(\mathbb{R}^{d})}$$

where B is as in Proposition 2.1 and the constant C is independent of $q \in (1, 2]$, $h \in \Lambda_1^{\eta}$, $\Omega \in L^q(S^{n-1})$ and ρ .

We can easily derive Theorem 1.1 from Proposition 2.2. Proposition 2.1 is used to prove Proposition 2.2. To prove Proposition 2.2 we also need the following.

Lemma 2.3 Let $q \in (1, 2]$, $\Omega \in L^q(S^{n-1})$, $h \in \Lambda_1^\eta$ and $A = (\log \rho) ||h||_{\Lambda_1^\eta} ||\Omega||_q$. Let $\tau_k^{(m)}$ be as in (2.2). Then, for $1 \le m \le \ell$ we have

$$\|\tau_k^{(m)}\| = |\tau_k^{(m)}|(\mathbb{R}^d) \le c_1 A,$$
(2.5)

$$|\hat{\tau}_{k}^{(m)}(\xi)| \leq c_{2}A \left(\beta_{m+1}^{k} |L_{m+1}(\xi)|\right)^{-\alpha_{m+1}},$$
(2.6)

$$|\hat{\tau}_{k}^{(m)}(\xi)| \leq c_{3}A \left(\beta_{m+1}^{k+1}|L_{m+1}(\xi)|\right)^{\alpha_{m+1}}, \qquad (2.7)$$

for all $k \in \mathbb{Z}$ satisfying $k \leq L$ with some constants c_i $(1 \leq i \leq 3)$, where L is a negative integer, $L \leq -4$, which will be determined in Lemma 2.4 below.

To prove Lemma 2.3 we need the following two lemmas.

Lemma 2.4 Let $1 < q \leq 2$, $\Omega \in L^q(S^{n-1})$, $h \in \Lambda_1^\eta$ and let σ_k be as in (2.1). Then, there exist a positive integer M, a positive number $\epsilon_0 \in (0, 1/4)$ and a negative integer $L, L \leq -4$, such that

$$|\hat{\sigma}_k(\xi)| \le C(\log \rho) \left(|\xi| \rho^{kM} \right)^{-\epsilon_0/q'} \|h\|_{\Lambda_1^{\eta}} \|\Omega\|_q$$

for $k \leq L$. The constants M, ϵ_0 , L and C are independent of ρ , q, h and Ω .

Lemma 2.5 Let $\rho \ge 2$, $k \in \mathbb{Z}$, $1 < q \le 2$, $h \in \Lambda_1^{\eta}$ and $\Omega \in L^q(S^{n-1})$. Let P be a real-valued polynomial on \mathbb{R}^n of degree $m \ge 1$. Write

$$P(x) = \sum_{|\alpha|=m} a_{\alpha} y^{\alpha} + Q(y),$$

where deg $Q \le m - 1$ if $Q \ne 0$. Then there exists a constant C > 0 independent of ρ, k, q, h, Ω and the coefficients of the polynomial P such that

$$\left| \int_{\rho^k \le |y| < \rho^{k+1}} \exp\left(iP(x)\right) h(|x|) \Omega(x') |x|^{-n} dx \right|$$

$$\le C(\log \rho) \|h\|_{\Lambda_1^{\eta}} \|\Omega\|_q \left(\rho^{km} \sum_{|\alpha|=m} |a_{\alpha}| \right)^{-\tau/(mq')},$$

where $\tau = 4^{-1} \min(1, \eta)$.

We can prove Lemma 2.5 similarly to the proof of Lemma 2.4 of [4]. To prove Lemma 2.4 we need the following two results, which can be found in [4].

Lemma 2.6 Let Φ : $B(0, 1) \to \mathbb{R}^d$ be smooth and of finite type at the origin. Define $G_m : B(0, 1) \times S^{d-1} \to \mathbb{R}$ by

$$G_m(x,\xi) = \sum_{|\alpha|=m} \langle \xi, \, \partial_x^{\alpha} \Phi(x) \rangle x^{\alpha} \frac{m!}{\alpha!}$$

for $m \ge 1$. Then, there exist constants $R, \delta \in (0, 1/4)$ and a mapping ℓ from S^{d-1} to a finite set of positive integers such that

$$C_{\Phi} := \sup_{\xi \in S^{d-1}} \int_{|x| \le R} |G_{\ell(\xi)}(x,\xi)|^{-\delta} \, dx < \infty.$$

Lemma 2.7 Let $\psi, \varphi \in C^{\infty}(\mathbb{R})$ be real-valued. Let $s \in (0, 1]$ and $a, b \in \mathbb{R}$ with a < b. Suppose that φ is compactly supported and that

$$|(d/dx)^{k}\psi(x)| \le s \text{ for } x \in [a, b],$$

$$|(d/dx)^{(k+1)}\psi(x)| \le 1 \text{ for } x \in [a-s, b+s],$$

where k is a positive integer. Then, there exists a positive constant C depending only on k and φ such that

$$\left|\int_{a}^{b} \exp(i\lambda\psi(x))\varphi(x)\,dx\right| \le C|\lambda|^{-\epsilon/k} \int_{a-s}^{b+s} |(d/dx)^{k}\psi(x)|^{-\epsilon(1+1/k)}\,dx$$

for all $\lambda \in \mathbb{R} \setminus \{0\}$ and $\epsilon \in (0, 1]$.

Define a function F on an appropriate subinterval of \mathbb{R}_+ by $F(t) = \langle \xi, \Phi(tx) \rangle$ for fixed $\xi \in S^{d-1}$ and $x \in B(0, 1)$. Then, we note that $(d/dt)^m F(t) = t^{-m} G_m(tx, \xi)$, where G_m is as in Lemma 2.6.

Proof of Lemma 2.4: Take an integer $\nu \ge 1$ and $a \in [2, 4]$ such that $\rho = a^{\nu}$. Let Φ , δ , R and $\ell(\xi)$ be as in Lemma 2.6. Put $\ell_0 = \max_{\xi \in S^{d-1}} \ell(\xi)$. Let L be a negative integer such that

$$\left| (d/dr)^{\ell} \langle \xi', \Phi(\rho^k sr\theta) \rangle \right| < 1/2$$

for $1 \le \ell \le \ell_0 + 1$, $s \in [1, \rho]$, $r \in (0, 5)$, $\xi' \in S^{d-1}$ and $\theta \in S^{n-1}$ whenever $k \le L$ and such that $2^{k+2} < R$ if $k \le L$. Then, when $\xi \in \mathbb{R}^d \setminus \{0\}$ and $k \le L$, we write

$$\hat{\sigma}_{k}(\xi) = \sum_{j=0}^{\nu-1} \int_{\rho^{k} a^{j}}^{\rho^{k} a^{j+1}} \int_{S^{n-1}} \exp\left(-2\pi i \langle \xi, \Phi(r\theta) \rangle\right) h(r) \Omega(\theta) \, d\sigma(\theta) \, dr/r$$
$$= \sum_{j=0}^{\nu-1} \int_{1}^{a} \int_{S^{n-1}} \exp\left(-2\pi i \langle \xi, \Phi(\rho^{k} a^{j} r\theta) \rangle\right) h(\rho^{k} a^{j} r) \Omega(\theta) \, d\sigma(\theta) \, dr/r.$$

Let $\phi \in C^{\infty}(\mathbb{R})$ satisfy $\operatorname{supp}(\phi) \subset (0, 10^{-9}), \phi \ge 0, \int \phi(s) \, ds = 1$. Define $h_j(r) = \int_{s < r/2} h(\rho^k a^j(r-s))\phi_u(s) \, ds, r > 0$, where $\phi_u(s) = u^{-1}\phi(u^{-1}s), u > 0$. Then, if u < 1,

$$\int_{1}^{a} |h(\rho^{k} a^{j} r) - h_{j}(r)| \, dr/r \le C\omega(h, u).$$
(2.8)

We take $u = (|\xi|\rho^{kM})^{-\zeta/q'}$ for a suitable M with $M \ge \ell_0$ and $\zeta > 0$, which will be specified below. We assume $|\xi|\rho^{kM} \ge 1$ for the moment. Define

$$s_k(\xi) = \sum_{j=0}^{\nu-1} \int_1^a \int_{S^{n-1}} \exp\left(-2\pi i \langle \xi, \Phi(\rho^k a^j r\theta) \rangle\right) h_j(r) \Omega(\theta) \, d\sigma(\theta) \, dr/r.$$

Then, by (2.8)

$$\begin{aligned} |\hat{\sigma}_k(\xi) - s_k(\xi)| &\leq C(\log \rho) \|\Omega\|_1 \omega(h, u) \\ &\leq C(\log \rho) \|\Omega\|_1 \|h\|_{\Lambda^\eta} (|\xi| \rho^{kM})^{-\eta\zeta/q'}, \end{aligned}$$
(2.9)

where we have used the fact that $\nu \approx \log \rho$.

By Lemma 2.7

$$\left| \int_{1}^{w} \exp\left(-2\pi i \langle \xi, \Phi(\rho^{k} a^{j} t\theta) \rangle\right) dt \right|$$

$$\leq C|\xi|^{-\epsilon/\ell(\xi')} \int_{1/2}^{a+1/2} \left| G_{\ell(\xi')}(\rho^{k} a^{j} r\theta, \xi') \right|^{-\epsilon(1+1/\ell(\xi'))} dt$$

for $w \in [1, a]$, where $\xi' = \xi/|\xi|$. Also, $|h_j(a)| \leq Cu^{-1} ||h||_{\Delta_1}$, $\int_1^a |h_j(r)| dr/r \leq C ||h||_{\Delta_1}$, $\int_1^a |h'_j(r)| dr/r \leq Cu^{-1} ||h||_{\Delta_1}$. Therefore, applying integration by parts, we see that

$$\begin{split} \left| \int_{1}^{a} \exp\left(-2\pi i \langle \xi, \Phi(\rho^{k} a^{j} r \theta) \rangle\right) h_{j}(r) dr/r \right| \\ &\leq C u^{-1} \|h\|_{\Delta_{1}} |\xi|^{-\epsilon/\ell(\xi')} \int_{1/2}^{a+1/2} \left| G_{\ell(\xi')}(\rho^{k} a^{j} r \theta, \xi') \right|^{-\epsilon(1+1/\ell(\xi'))} dr/r. \end{split}$$

Note that

$$\begin{split} &\int_{S^{n-1}} \left(\int_{1/2}^{a+1/2} \left| G_{\ell(\xi')}(\rho^k a^j r\theta, \xi') \right|^{-\epsilon(1+1/\ell(\xi'))} dr/r \right) |\Omega(\theta)| \, d\sigma(\theta) \\ &\leq C(\rho^k a^j)^{-n} \int_{|x| \le 2\rho^k a^{j+1}} \left| G_{\ell(\xi')}(x, \xi') \right|^{-2\epsilon} |\Omega(x')| \, dx =: I, \end{split}$$

where $\epsilon \in (0, 1]$. Since $2\rho^k a^{j+1} < R$, by Hölder's inequality we have

$$I \le C(\rho^k a^j)^{-n} (\rho^k a^j)^{n/q} \|\Omega\|_q \left(\int_{|x| \le R} \left| G_{\ell(\xi')}(x, \xi') \right|^{-2\epsilon q'} dx \right)^{1/q'}.$$

Therefore

$$\begin{split} \sum_{j=0}^{\nu-1} (\rho^k a^j)^{-n} \int_{|x| \le 2\rho^k a^{j+1}} \left| G_{\ell(\xi')}(x,\xi') \right|^{-2\epsilon} |\Omega(x')| \, dx \\ & \le C \|\Omega\|_q \rho^{-kn/q'} \left(\sum_{j=0}^{\nu-1} a^{-jn/q'} \right) \left(\int_{|x| \le R} \left| G_{\ell(\xi')}(x,\xi') \right|^{-2\epsilon q'} \, dx \right)^{1/q'} \\ & \le C (\log \rho) \|\Omega\|_q \rho^{-kn/q'} \left(\int_{|x| \le R} \left| G_{\ell(\xi')}(x,\xi') \right|^{-2\epsilon q'} \, dx \right)^{1/q'}, \end{split}$$

since $\nu \approx \log \rho$. Using these estimates, we have

$$\begin{split} & \sum_{j=0}^{\nu-1} \int_{1}^{a} \int_{S^{n-1}} \exp\left(-2\pi i \langle \xi, \Phi(\rho^{k} a^{j} r\theta) \rangle\right) h_{j}(r) \Omega(\theta) \, d\sigma(\theta) \, dr/r \\ & \leq C(\log \rho) u^{-1} \|h\|_{\Delta_{1}} |\xi|^{-\epsilon/\ell(\xi')} \|\Omega\|_{q} \rho^{-kn/q'} \left(\int_{|x| \leq R} \left|G_{\ell(\xi')}(x,\xi')\right|^{-2\epsilon q'} \, dx\right)^{1/q'}, \end{split}$$

where C is independent of ϵ , ρ , q, h and Ω . If we put $\epsilon = \delta/(2q')$, then by Lemma 2.6 we have

$$|s_k(\xi)| \le C C_{\Phi}^{1/q'}(\log \rho) \|h\|_{\Delta_1} \|\Omega\|_q (|\xi|\rho^{kM})^{\zeta/q'} (|\xi|\rho^{2kn\ell(\xi')/\delta})^{-\delta/(2q'\ell(\xi'))}.$$

Therefore, if *M* is a positive integer such that $M - 1 < 2n\ell_0/\delta \le M$ and $\zeta < \delta/(2\ell_0)$,

$$|s_k(\xi)| \le C C_{\Phi}^{1/q'}(\log \rho) ||h||_{\Delta_1} ||\Omega||_q (|\xi|\rho^{kM})^{-(\delta/(2\ell_0)-\zeta)/q'}.$$
(2.10)

Combining (2.9) and (2.10), we can see that

$$|\hat{\sigma}_k(\xi)| \le C(\log \rho) \|h\|_{\Lambda^{\eta}_1} \|\Omega\|_q (|\xi|\rho^{kM})^{-\epsilon_0/q'},$$

where $\epsilon_0 = \min(\eta \zeta, \delta/(2\ell_0) - \zeta)$. If $|\xi| \rho^{kM} \leq 1$, the conclusion of Lemma 2.4 follows from the estimate $|\hat{\sigma}_k(\xi)| \leq C(\log \rho) ||h||_{\Delta_1} ||\Omega||_1$ (see (2.14) below with $m = \ell + 1$). This completes the proof of Lemma 2.4.

Proof of Lemma 2.5: Let

$$I(x) = \int_{1}^{\rho} \exp\left(i\left[(\rho^{k}t)^{m}\sum_{|\alpha|=m}a_{\alpha}x^{\alpha} + Q(\rho^{k}tx)\right]\right)h(\rho^{k}t) dt/t.$$

Note that

$$\int_{\rho^k \le |y| < \rho^{k+1}} \exp\left(iP(x)\right) h(|x|) \Omega(x') |x|^{-n} \, dx = \int_{S^{n-1}} \Omega(\theta) I(\theta) \, d\sigma(\theta)$$

Let $a \in [2, 4]$ and $\nu \ge 1$ be as in the proof of Lemma 2.4. Decompose $I(x) = \sum_{j=0}^{\nu-1} I_j(x)$, where

$$I_j(x) = \int_1^a \exp\left(i \left[(\rho^k a^j t)^m \sum_{|\alpha|=m} a_\alpha x^\alpha + Q(\rho^k a^j tx) \right] \right) h(\rho^k a^j t) dt/t.$$

Let $h_j(t) = \int_{s < t/2} h(\rho^k a^j (t - s))\phi_u(s) ds$ be as in the proof of Lemma 2.4 and

$$\tilde{I}_j(x) = \int_1^a \exp\left(i \left[(\rho^k a^j t)^m \sum_{|\alpha|=m} a_\alpha x^\alpha + Q(\rho^k a^j tx) \right] \right) h_j(t) \, dt/t.$$

Then by (2.8) $|I_j(x) - \tilde{I}_j(x)| \le C\omega(h, u), 0 < u < 1$. So,

$$\begin{aligned} \left| \int_{S^{n-1}} \Omega(\theta) I_j(\theta) \, d\sigma(\theta) - \int_{S^{n-1}} \Omega(\theta) \tilde{I}_j(\theta) \, d\sigma(\theta) \right| & (2.11) \\ & \leq \int_{S^{n-1}} |\Omega(\theta)| |I_j(\theta) - \tilde{I}_j(\theta)| \, d\sigma(\theta) \\ & \leq C \omega(h, u) \|\Omega\|_1 \leq C \|h\|_{\Lambda^{\eta}} \|\Omega\|_1 u^{\eta} \end{aligned}$$

for $0 \le j \le \nu - 1$. Also, since $|I(x)| \le C(\log \rho) ||h||_{\Delta_1}$,

$$\left| \int_{S^{n-1}} \Omega(\theta) I(\theta) \, d\sigma(\theta) \right| \le C(\log \rho) \|h\|_{\Delta_1} \|\Omega\|_1.$$
(2.12)

Now, we assume that $b := \rho^{km} \sum_{|\alpha|=m} |a_{\alpha}| \ge 1$ and put $u = (a^{jm}b)^{-1/(4mq')}$. Then, as in the proof of Lemma 2.4, an integration by parts argument implies that

$$|\tilde{I}_{j}(x)| \leq Cu^{-1} ||h||_{\Delta_{1}} \left| (\rho^{k} a^{j})^{m} \sum_{|\alpha|=m} a_{\alpha} x^{\alpha} \right|^{-1/m},$$
(2.13)

since

$$\left| \int_{1}^{w} \exp\left(i \left[(\rho^{k} a^{j} t)^{m} \sum_{|\alpha|=m} a_{\alpha} x^{\alpha} + Q(\rho^{k} a^{j} t x) \right] \right) dt \right|$$
$$\leq C \left| (\rho^{k} a^{j})^{m} \sum_{|\alpha|=m} a_{\alpha} x^{\alpha} \right|^{-1/m}$$

for $w \in [1, a]$, which follows from van der Corput's lemma. We also have $|\tilde{I}_j(x)| \le C \|h\|_{\Delta_1}$. Combining this with (2.13), we have

$$|\tilde{I}_{j}(x)| \leq Cu^{-1} ||h||_{\Delta_{1}} \min\left(1, \left|(\rho^{k} a^{j})^{m} \sum_{|\alpha|=m} a_{\alpha} x^{\alpha}\right|^{-1/(2mq')}\right)$$

and hence by Hölder's inequality and [7, Corollary 1]

$$\begin{split} \left| \int_{S^{n-1}} \Omega(\theta) \tilde{I}_j(\theta) \, d\sigma(\theta) \right| &\leq \int_{S^{n-1}} |\Omega(\theta) \tilde{I}_j(\theta)| \, d\sigma(\theta) \leq \|\Omega\|_q \|\tilde{I}_j\|_{q'} \\ &\leq C u^{-1} \|h\|_{\Delta_1} \|\Omega\|_q \left(\int_{S^{n-1}} \left| (\rho^k a^j)^m \sum_{|\alpha|=m} a_\alpha \theta^\alpha \right|^{-1/(2m)} \, d\sigma(\theta) \right)^{1/q'} \\ &\leq C \|h\|_{\Delta_1} \|\Omega\|_q \left((\rho^k a^j)^m \sum_{|\alpha|=m} |a_\alpha| \right)^{-1/(4mq')} \, . \end{split}$$

By this estimate and (2.11) we see that

$$\begin{split} \left| \int_{S^{n-1}} \Omega(\theta) I_j(\theta) \, d\sigma(\theta) \right| \\ &\leq C \left(\|h\|_{\Lambda^{\eta}} \|\Omega\|_1 + \|h\|_{\Delta_1} \|\Omega\|_q \right) \left((\rho^k a^j)^m \sum_{|\alpha|=m} |a_{\alpha}| \right)^{-\tau/(mq')} \end{split}$$

where $\tau = 4^{-1} \min(1, \eta)$. Thus

$$\begin{split} \left| \int_{S^{n-1}} \Omega(\theta) I(\theta) \, d\sigma(\theta) \right| &\leq \sum_{j=0}^{\nu-1} \left| \int_{S^{n-1}} \Omega(\theta) I_j(\theta) \, d\sigma(\theta) \right| \\ &\leq C(\log \rho) \left(\|h\|_{\Lambda^{\eta}} \|\Omega\|_1 + \|h\|_{\Delta_1} \|\Omega\|_q \right) \left(\rho^{km} \sum_{|\alpha|=m} |a_{\alpha}| \right)^{-\tau/(mq')}, \end{split}$$

if $\rho^{km} \sum_{|\alpha|=m} |a_{\alpha}| \ge 1$. Along with (2.12), this implies the conclusion of Lemma 2.5. \Box

Proof of Lemma 2.3: We easily see that

$$\|\sigma_k^{(m)}\| \le C \|\Omega\|_1 \int_{\rho^k}^{\rho^{k+1}} |h(r)| \, dr/r \le C(\log \rho) \|h\|_{\Delta_1} \|\Omega\|_1 \tag{2.14}$$

for $1 \le m \le \ell + 1$. By (2.14) and (2.2) we have

$$\|\tau_k^{(m)}\| \le C(\log \rho) \|h\|_{\Delta_1} \|\Omega\|_1$$
(2.15)

for $1 \le m \le \ell$. By (2.15) and Hölder's inequality we have (2.5).

Let $k \leq L$, where L is as in Lemma 2.4. By Lemmas 2.4 and 2.5 we have $|\hat{\sigma}_k^{(m)}(\xi)| \leq CA\left(\beta_m^k |L_m(\xi)|\right)^{-\alpha_m}$ for $m = 2, \ldots, \ell + 1$. Also, we note that $|\Phi_{k,m}(\xi)|$ is bounded by $C\left(\beta_{m+1}^k |L_{m+1}(\xi)|\right)^{-N}$ for all N > 0, when $1 \leq m \leq \ell$. Using these estimates and (2.14) in the definition of $\tau_k^{(m)}$ in (2.2), we have (2.6).

To prove (2.7), we note that

$$\left|\hat{\sigma}_{k}^{(m+1)}(\xi) - \hat{\sigma}_{k}^{(m)}(\xi)\right| \le C(\log\rho) \|h\|_{\Delta_{1}} \|\Omega\|_{1} \beta_{m+1}^{k+1} |L_{m+1}(\xi)|.$$
(2.16)

Also, by (2.3) we see that

$$\left|\Phi_{k,m+1}(\xi) - \Phi_{k,m}(\xi)\right| \le C\beta_{m+1}^{k} |L_{m+1}(\xi)|.$$
(2.17)

The estimates (2.14), (2.16) and (2.17) imply

$$\hat{\tau}_{k}^{(m)}(\xi) \leq C(\log \rho) \|h\|_{\Delta_{1}} \|\Omega\|_{1} \beta_{m+1}^{k+1} |L_{m+1}(\xi)|,$$
(2.18)

since

$$|\hat{\tau}_{k}^{(m)}(\xi)| \leq \left| \left(\hat{\sigma}_{k}^{(m+1)}(\xi) - \hat{\sigma}_{k}^{(m)}(\xi) \right) \Phi_{k,m+1}(\xi) \right| + \left| \left(\Phi_{k,m+1}(\xi) - \Phi_{k,m}(\xi) \right) \hat{\sigma}_{k}^{(m)}(\xi) \right|.$$

By (2.15) we also have $|\hat{\tau}_k^{(m)}(\xi)| \le C(\log \rho) ||h||_{\Delta_1} ||\Omega||_1$. This estimate and (2.18) imply (2.7). This completes the proof of Lemma 2.3.

Proof of Proposition 2.2: Let $\tilde{T}_{\rho}^{(m)}(f) = \sum_{k \leq L} \tau_k^{(m)} * f$ for $1 \leq m \leq \ell$, where *L* is as in Lemma 2.3. Then, to prove Proposition 2.2 it suffices to show a version of Proposition 2.2 for $\tilde{T}_{\rho}^{(m)}$ with bounds similar to those for $T_{\rho}^{(m)}$, since $\|T_{\rho}^{(m)}(f) - \tilde{T}_{\rho}^{(m)}(f)\|_{p} \leq CA\|f\|_{p}$ for $1 \leq p \leq \infty$, where *A* is as in Lemma 2.3. Let $\{\psi_k\}_{-\infty}^{\infty}$ be a sequence of non-negative functions in $C^{\infty}(\mathbb{R})$ such that each ψ_k is supported in $[\beta_{m+1}^{-k-1}, \beta_{m+1}^{-k+1}], \sum_k \psi_k(t)^2 = 1$ for t > 0 and

$$|(d/dt)^{j}\psi_{k}(t)| \leq c_{j}|t|^{-j}, \quad j = 1, 2, \dots,$$

where the constants c_j are independent of β_{m+1} . This is possible since $\beta_{m+1} \ge 2$. Let

$$\left(S_k^{(m+1)}(f)\right)^{}(\xi) = \psi_k\left(|H_{m+1}\pi_{s_{m+1}}^d R_{m+1}(\xi)|\right)\hat{f}(\xi).$$

We also write $S_k^{(m+1)} = S_k$. Put

$$D_{j}^{(m)}(f) = \sum_{k=-\infty}^{L} S_{j+k} \left(\tau_{k}^{(m)} * S_{j+k}(f) \right).$$

Then $\tilde{T}_{\rho}^{(m)} = \sum_{j} D_{j}^{(m)}$. Plancherel's theorem and the estimates (2.5)–(2.7) imply that

$$\begin{split} \left\| D_{j}^{(m)}(f) \right\|_{2}^{2} &\leq \sum_{k \leq L} C \int_{\Delta(j+k)} |\hat{\tau}_{k}^{(m)}(\xi)|^{2} |\hat{f}(\xi)|^{2} d\xi \\ &\leq CA^{2} \min\left(1, \beta_{m+1}^{-2\alpha_{m+1}(|j|-2)}\right) \sum_{k \leq L} \int_{\Delta(j+k)} |\hat{f}(\xi)|^{2} d\xi \\ &\leq CA^{2} \min\left(1, \beta_{m+1}^{-2\alpha_{m+1}(|j|-2)}\right) \|f\|_{2}^{2}, \end{split}$$

where $\Delta(k) = \{\beta_{m+1}^{-k-1} \le |H_{m+1}\pi_{s_{m+1}}^d R_{m+1}(\xi)| \le \beta_{m+1}^{-k+1}\}$. Thus we have

$$\left\| D_{j}^{(m)}(f) \right\|_{2} \le CA \min\left(1, \beta_{m+1}^{-\alpha_{m+1}(|j|-2)}\right) \|f\|_{2}.$$
(2.19)

By (2.19) we have

$$\|\tilde{T}_{\rho}^{(m)}(f)\|_{2} \leq \sum_{j} \|D_{j}^{(m)}(f)\|_{2} \leq CAB\|f\|_{2},$$
(2.20)

since $B \ge (1 - \beta_{m+1}^{-\alpha_{m+1}})^{-1}$, where *B* is as in Proposition 2.1. Taking Proposition 2.1 for granted for the moment and recalling the definition of

Taking Proposition 2.1 for granted for the moment and recalling the definition of $\tau_k^{(m)}$ in (2.2), by change of variables and a well-known theorem for L^p boundedness of maximal functions (see [5, Section 6]) we have

$$\left\| (\tau^{(m)})^*(f) \right\|_p \le C \left\| (\mu^{(m+1)})^*(|f|) \right\|_p + C \left\| (\mu^{(m)})^*(|f|) \right\|_p$$

$$\le C_p A B^{2/p} \|f\|_p$$
(2.21)

for $p > 1 + \theta$.

By (2.5), (2.21) and the proof of Lemma in [3, p. 544], we have the following.

Lemma 2.8 Let $u \in (1 + \theta, 2]$, 1/v - 1/2 = 1/(2u). Then we have

$$\left\| \left(\sum_{k \le L} |\tau_k^{(m)} * g_k|^2 \right)^{1/2} \right\|_{v} \le (c_1 C_u)^{1/2} A B^{1/u} \left\| \left(\sum_{k \le L} |g_k|^2 \right)^{1/2} \right\|_{v}$$

where the constants c_1 and C_u are as in (2.5) and (2.21), respectively.

Also, the Littlewood-Paley theory implies that

$$\|D_{j}^{(m)}(f)\|_{p} \le c_{p} \left\| \left(\sum_{k \le L} |\tau_{k}^{(m)} * S_{j+k}(f)|^{2} \right)^{1/2} \right\|_{p},$$
(2.22)

$$\left\| \left(\sum_{k} |S_{k}(f)|^{2} \right)^{1/2} \right\|_{p} \le c_{p} \|f\|_{p},$$
(2.23)

where $1 and <math>c_p$ is independent of β_{m+1} and the linear transformations R_{m+1}, H_{m+1} .

Let $1 + \theta . Then, there exists <math>u \in (1 + \theta, 2]$ such that $1/p = 1/2 + (1 - \theta)/(2u)$. Let 1/v - 1/2 = 1/(2u). Then, by (2.22), (2.23) and Lemma 2.8 we have

$$\|D_j^{(m)}(f)\|_v \le CAB^{1/u} \|f\|_v,$$
(2.24)

where *C* is independent of ρ and the linear transformations R_i , H_i , $2 \le i \le \ell + 1$. Noting that $1/p = \theta/2 + (1 - \theta)/v$ and interpolating between (2.19) and (2.24), we have

$$\|D_{j}^{(m)}(f)\|_{p} \leq CAB^{(1-\theta)/u} \min\left(1, \beta_{m+1}^{-\theta\alpha_{m+1}(|j|-2)}\right) \|f\|_{p},$$

which implies that

$$\|\tilde{T}_{\rho}^{(m)}(f)\|_{p} \leq \sum_{j} \|D_{j}^{(m)}(f)\|_{p} \leq CAB^{(1-\theta)/u} \left(1 - \beta_{m+1}^{-\theta\alpha_{m+1}}\right)^{-1} \|f\|_{p} \quad (2.25)$$

$$\leq CAB^{2/p} \|f\|_{p}.$$

A duality and interpolation argument using (2.20) and (2.25) implies the conclusion of Proposition 2.2 with $T_{\rho}^{(m)}$ replaced by $\tilde{T}_{\rho}^{(m)}$, which proves Proposition 2.2.

We now prove Proposition 2.1 by induction on *j*. First, the inequality $(\mu^{(1)})^*(f)(x) \le C(\log \rho) \|h\|_{\Delta_1} \|\Omega\|_1 |f(x - P(0))|$ implies the estimate (2.4) for j = 1. Next, we prove (2.4) for j = m by assuming (2.4) for j = m - 1, $2 \le m \le \ell + 1$. Define a sequence $\eta^{(m)} = \{\eta_k^{(m)}\}_{k=-\infty}^{-1}$ of Borel measures on \mathbb{R}^d by

$$\hat{\eta}_k^{(m)}(\xi) = \varphi\left(\beta_m^k |H_m \pi_{s_m}^d R_m(\xi)|\right) \hat{\mu}_k^{(m-1)}(\xi),$$

where $\varphi \in C_0^{\infty}(\mathbb{R})$ is as in the definition of $\tau_k^{(m)}$ in (2.2). Then, from (2.4) with j = m - 1, it follows that

$$\left\| (\eta^{(m)})^*(f) \right\|_p \le C \left\| (\mu^{(m-1)})^*(f) \right\|_p \le CAB^{2/p} \|f\|_p$$
(2.26)

for $p > 1 + \theta$, where A, B are as above. As in the proof of Lemma 2.3, we have

$$\|\eta_{k}^{(m)}\| + \|\mu_{k}^{(m)}\| \leq C \|\mu_{k}^{(m-1)}\| + \|\mu_{k}^{(m)}\|$$

$$\leq C \|\Omega\|_{1} \int_{\rho^{k}}^{\rho^{k+1}} |h(r)| \, dr/r$$

$$\leq C (\log \rho) \|h\|_{\Delta_{1}} \|\Omega\|_{1} \leq CA.$$
(2.27)

Let $k \leq L$, where L is as above. Since

$$\begin{aligned} |\hat{\mu}_{k}^{(m)}(\xi) - \hat{\eta}_{k}^{(m)}(\xi)| \\ &\leq |\hat{\mu}_{k}^{(m)}(\xi) - \hat{\mu}_{k}^{(m-1)}(\xi)| + \left| \left(\varphi \left(\beta_{m}^{k} |H_{m} \pi_{s_{m}}^{d} R_{m}(\xi)| \right) - 1 \right) \hat{\mu}_{k}^{(m-1)}(\xi) \right|, \end{aligned}$$

arguing as in the proof of (2.7), we see that

$$\begin{aligned} |\hat{\mu}_{k}^{(m)}(\xi) - \hat{\eta}_{k}^{(m)}(\xi)| &\leq C(\log \rho) \|h\|_{\Delta_{1}} \|\Omega\|_{1} \left(\beta_{m}^{k+1} |L_{m}(\xi)|\right)^{\alpha_{m}} \\ &\leq CA \left(\beta_{m}^{k+1} |L_{m}(\xi)|\right)^{\alpha_{m}}. \end{aligned}$$
(2.28)

We also have the following:

$$|\hat{\mu}_k^{(m)}(\xi)| \le CA \left(\beta_m^k |L_m(\xi)|\right)^{-\alpha_m}, \qquad (2.29)$$

$$\begin{aligned} |\hat{\eta}_k^{(m)}(\xi)| &\leq C(\log \rho) \|h\|_{\Delta_1} \|\Omega\|_1 \left(\beta_m^k |L_m(\xi)|\right)^{-\alpha_m} \\ &\leq CA \left(\beta_m^k |L_m(\xi)|\right)^{-\alpha_m}. \end{aligned}$$
(2.30)

We can prove the estimate (2.29) arguing as in the proof of (2.6). The definition of $\eta_k^{(m)}$ and (2.27) imply the first inequality of (2.30).

We have only to prove (2.4) with j = m for $p \in (1 + \theta, 2]$, since the estimate (2.4) for p > 2 follows from interpolation between the estimate (2.4) for $p \in (1 + \theta, 2]$ and the obvious estimate $\|(\mu^{(m)})^*(f)\|_{\infty} \leq CA \|f\|_{\infty}$. Let

$$g_m(f)(x) = \left(\sum_{k \le L} \left| \nu_k^{(m)} * f(x) \right|^2 \right)^{1/2},$$

where $\nu_k^{(m)} = \mu_k^{(m)} - \eta_k^{(m)}$. Then, we see that

$$(\tilde{\mu}^{(m)})^*(f) \le g_m(f) + (\eta^{(m)})^*(|f|), \qquad (2.31)$$

where $(\tilde{\mu}^{(m)})^*(f) = \sup_{k \le L} |\mu_k^{(m)} * f|$. Note that to prove (2.4) with j = m it suffices to prove it with $(\tilde{\mu}^{(m)})^*$ in place of $(\mu^{(m)})^*$. Since we have (2.26) and (2.31), to show (2.4) with j = m it suffices to prove $||g_m(f)||_p \le CAB^{2/p}||f||_p$ for $p \in (1 + \theta, 2]$. Let

$$U_{\epsilon}^{(m)}(f) = \sum_{k \le L} \epsilon_k \nu_k^{(m)} * f,$$

where $\epsilon = {\epsilon_k}, \epsilon_k = 1$ or -1. Then, we shall show that

$$\left\| U_{\epsilon}^{(m)}(f) \right\|_{p} \le CAB^{2/p} \|f\|_{p}$$
 (2.32)

for $p \in (1 + \theta, 2]$, where C is independent of ϵ . The desired estimate follows from (2.32) by a well-known property of Rademacher's functions.

To prove (2.32) we use the following:

Lemma 2.9 Let $\{p_j\}_1^\infty$ be a sequence of real numbers defined by $p_1 = 2$ and $1/p_{j+1} = 1/2 + (1-\theta)/(2p_j)$ for $j \ge 1$. Then, we have

$$\left\| U_{\epsilon}^{(m)}(f) \right\|_{p_j} \le C_j A B^{2/p_j} \| f \|_{p_j} \quad for \ j \ge 1.$$

We can see that $1/p_j = (1-a^j)/(1+\theta)$, where $a = (1-\theta)/2$. Thus $\{p_j\}$ is decreasing and converges to $1 + \theta$. We can prove Lemma 2.9 by (2.26)–(2.30).

Proof: Define

$$U_{j}^{(m)}(f) = \sum_{k=-\infty}^{L} \epsilon_{k} S_{j+k} \left(v_{k}^{(m)} * S_{j+k}(f) \right),$$

where $S_k = S_k^{(m)}$ (the operators $S_k^{(m)}$ are as in the proof of Proposition 2.2). Then, $U_{\epsilon}^{(m)} = \sum_j U_j^{(m)}$. Arguing as in the proof of (2.19), and using Plancherel's theorem and the estimates (2.27)–(2.30), we have

$$\left\| U_{j}^{(m)}(f) \right\|_{2} \le CA \min\left(1, \beta_{m}^{-\alpha_{m}(|j|-2)}\right) \|f\|_{2},$$
(2.33)

and hence $\left\| U_{\epsilon}^{(m)}(f) \right\|_{2} \leq \sum_{j} \| U_{j}^{(m)}(f) \|_{2} \leq CAB \| f \|_{2}$. This proves the assertion of Lemma 2.9 for j = 1.

We now assume the estimate of Lemma 2.9 for j = s and prove it for j = s + 1. By induction, this will complete the proof of Lemma 2.9. From the estimate (2.31), it follows that

$$(\tilde{\nu}^{(m)})^*(f) \le (\tilde{\mu}^{(m)})^*(|f|) + (\eta^{(m)})^*(|f|) \le g_m(|f|) + 2(\eta^{(m)})^*(|f|).$$

where $(\tilde{\nu}^{(m)})^*(f) = \sup_{k \leq L} ||\nu_k^{(m)}| * f|$. By our assumption we have $||g_m(f)||_{p_s} \leq CAB^{2/p_s} ||f||_{p_s}$. This estimate and (2.26) imply

$$\left\| (\tilde{v}^{(m)})^*(f) \right\|_{p_s} \le \|g_m(|f|)\|_{p_s} + 2 \left\| (\eta^{(m)})^*(|f|) \right\|_{p_s}$$

$$\le CAB^{2/p_s} \|f\|_{p_s}.$$
(2.34)

Arguing as in the proof of (2.25), and using (2.27), (2.33) and (2.34), we can now obtain the estimate of Lemma 2.9 for j = s + 1. This completes the proof of Lemma 2.9.

Let $p \in (1 + \theta, 2]$ and let $\{p_j\}_{1}^{\infty}$ be as in Lemma 2.9. Then, we can find a positive integer *N* such that $p_{N+1} . The estimate (2.32) now follows from interpolation between the estimates of Lemma 2.9 for <math>j = N$ and j = N + 1. This finishes the proof of (2.4) for j = m. By induction, this completes the proof of Proposition 2.1.

Proof of Theorem 1.1: By taking $\rho = 2^{q'}$ in Proposition 2.2 we see that

$$\|T_{2q'}^{(m)}(f)\|_{p} \le C_{\theta}(q-1)^{-1} \|h\|_{\Lambda_{1}^{\eta}} \|\Omega\|_{q} \|f\|_{p}$$

for $p \in (1+\theta, (1+\theta)/\theta)$. This completes the proof of Theorem 1.1, since $T = \sum_{m=1}^{\ell} T_{\rho}^{(m)}$ and $(1+\theta, (1+\theta)/\theta) \to (1, \infty)$ as $\theta \to 0$.

3 Estimates for maximal functions

Let

$$T^{*}(f)(x) = \sup_{\epsilon \in (0,1)} \left| \int_{\epsilon < |y| < 1} f(x - \Phi(y)) K(y) \, dy \right|, \tag{3.1}$$

where K is as in (1.2). Then, we have an analog of Theorem 1.1 for the maximal operator T^* .

Theorem 3.1 Let $\Omega \in L^q(S^{n-1})$, $q \in (1, 2]$ and $h \in \Lambda_1^\eta$ for some $\eta > 0$. Suppose that Ω satisfies (1.1). Then

$$\|T^*(f)\|_{L^p(\mathbb{R}^d)} \le C_p(q-1)^{-1} \|h\|_{\Lambda^{\eta}_1} \|\Omega\|_{L^q(S^{n-1})} \|f\|_{L^p(\mathbb{R}^d)}$$

for all $p \in (1, \infty)$, where C_p is independent of q, h and Ω .

By Theorem 3.1 and extrapolation we have the following result.

Theorem 3.2 Let $\Omega \in L \log L(S^{n-1})$ and $h \in \Lambda_1^{\eta}$ for some $\eta > 0$. Suppose that Ω satisfies the condition (1.1). Let $T^* f$ be defined as in (3.1) with the functions h and Ω . Then

$$||T^*(f)||_{L^p(\mathbb{R}^d)} \le C_p ||f||_{L^p(\mathbb{R}^d)}$$

for all $p \in (1, \infty)$.

If the function h is identically 1, then Theorem 3.2 was shown in [1]. To prove Theorem 3.1, we use the following result.

Lemma 3.3 Let $\theta \in (0, 1)$ and let positive numbers $A = (\log \rho) \|h\|_{\Lambda_1^{\eta}} \|\Omega\|_q$, $B = (1 - \rho^{-\theta \kappa/q'})^{-1}$ be as above. Define

$$T_{m,\rho}^{*}(f)(x) = \sup_{k \le L} \left| \sum_{j=k}^{L} \tau_{j}^{(m)} * f(x) \right|$$
(3.2)

for $1 \le m \le \ell$, where the measures $\tau_k^{(m)}$ are as in (2.2) and L is as in Lemma 1. Let $I_{\theta} = (2(1+\theta)/(\theta^2 - \theta + 2), (1+\theta)/\theta)$. Then, we have

$$\|T_{m,\rho}^*(f)\|_p \le CA\left(B^{1+\delta(p)} + B^{2/p+1-\theta/2}\right)\|f\|_{\mu}$$

for $p \in I_{\theta}$, where C is independent of $q \in (1, 2]$, $\Omega \in L^{q}(S^{n-1})$, $h \in \Lambda_{1}^{\eta}$ and ρ .

This can be proved by results in Section 2.

Proof: Let $\tilde{T}_{\rho}^{(m)}(f) = \sum_{k \leq L} \tau_k^{(m)} * f$ be as in the proof of Proposition 2.2. Let φ_k be defined by

$$\hat{\varphi}_{k}(\xi) = \varphi \left(\beta_{m+1}^{k} | H_{m+1} \pi_{s_{m+1}}^{d} R_{m+1}(\xi) | \right),$$

where φ is as in the definition of $\tau_k^{(m)}$ in (2.2). We now decompose

$$\sum_{j=k}^{L} \tau_{j}^{(m)} * f = \varphi_{k} * \tilde{T}_{\rho}^{(m)}(f) - \varphi_{k} * \left(\sum_{j=-\infty}^{k-1} \tau_{j}^{(m)} * f\right) + (\delta - \varphi_{k}) * \left(\sum_{j=k}^{L} \tau_{j}^{(m)} * f\right),$$

where $k \leq L$ and $\delta = \delta_0$ is the delta function on \mathbb{R}^d (see [3, 5]). Then, we have

$$T^*_{\rho,m}(f) \le \sup_{k \le L} \left| \varphi_k * \tilde{T}^{(m)}_{\rho}(f) \right| + \sum_{j=0}^{\infty} M^{(m)}_j(f),$$
(3.3)

where

$$M_{j}^{(m)}(f) = \sup_{k \le L} \left| \varphi_{k} * \left(\tau_{k-j-1}^{(m)} * f \right) \right| + \sup_{k \le L-j} \left| (\delta - \varphi_{k}) * \left(\tau_{j+k}^{(m)} * f \right) \right|$$

From Proposition 2.2 it follows that

$$\left\|\sup_{k\leq L} \left|\varphi_k * \tilde{T}_{\rho}^{(m)}(f)\right|\right\|_p \leq CAB^{1+\delta(p)} \|f\|_p$$
(3.4)

for $p \in (1 + \theta, (1 + \theta)/\theta)$, and the estimate (2.21) implies that

$$\|M_j^{(m)}(f)\|_r \le CAB^{2/r} \|f\|_r \quad \text{for } r > 1 + \theta.$$
(3.5)

Since

$$M_{j}^{(m)}(f) \leq \left(\sum_{k \leq L-j} \left| (\delta - \varphi_{k}) * \left(\tau_{j+k}^{(m)} * f\right) \right|^{2} \right)^{1/2} + \left(\sum_{k \leq L} \left| \varphi_{k} * \left(\tau_{k-j-1}^{(m)} * f\right) \right|^{2} \right)^{1/2},$$

arguing as in [5, p. 820] and using the estimates (2.6) and (2.7) along with Plancherel's theorem, we have

$$\|M_{j}^{(m)}(f)\|_{2} \leq CA\beta_{m+1}^{-\alpha_{m+1}j} \left(1 - \beta_{m+1}^{-2\alpha_{m+1}}\right)^{-1/2} \|f\|_{2}.$$
(3.6)

We note that for any $p \in I_{\theta}$ there exists a number $r \in (1 + \theta, 2(1 + \theta)/\theta)$ such that $1/p = (1 - \theta)/r + \theta/2$. Therefore, interpolating between (3.5) and (3.6), we have

$$\|M_{j}^{(m)}(f)\|_{p} \leq CAB^{2(1-\theta)/r} \left(1-\beta_{m+1}^{-2\alpha_{m+1}}\right)^{-\theta/2} \beta_{m+1}^{-\alpha_{m+1}\theta_{j}} \|f\|_{p}.$$
(3.7)

From (3.3), (3.4) and (3.7), it follows that

$$\|T_{\rho,m}^*(f)\|_p \le CA\left(B^{1+\delta(p)} + B^{2(1-\theta)/r+1}\left(1 - \beta_{m+1}^{-2\alpha_{m+1}}\right)^{-\theta/2}\right)\|f\|_p$$

for $p \in I_{\theta}$. Using $\left(1 - \beta_{m+1}^{-2\alpha_{m+1}}\right)^{-1} \leq B$ and $2(1-\theta)/r + \theta/2 + 1 = 2/p + 1 - \theta/2$ in this estimate, we can obtain the conclusion of Lemma 3.3.

Proof of Theorem 3.1: Let

$$T_{\rho}^{*}(f)(x) = \sup_{\epsilon \in (0, \rho^{L+1})} \left| \int_{\epsilon < |y| < \rho^{L+1}} f(x - \Phi(y)) K(y) \, dy \right|.$$

Then, we have

$$T^{*}(f)(x) \le T^{*}_{\rho}(f)(x) + J_{\rho}(f)(x), \qquad (3.8)$$

where $J_{\rho}(f)(x) = \int_{\rho^{L+1} \le |y| < 1} |f(x - \Phi(y))| |K(y)| dy$. We note that

$$T^*_{\rho}(f) \le T^*_{0,\rho}(f) + \mu^*_{\rho}(|f|), \tag{3.9}$$

where $\mu_{\rho}^* = (\mu^{(\ell+1)})^*$ is as in Proposition 2.1 and $T_{0,\rho}^*(f)$ is defined by the formula in (3.2) with $\{\tau_j^{(m)}\}_{j \leq L}$ replaced by the sequence $\{\sigma_j\}_{j \leq L}$ of measures in (2.1). Since $T_{0,\rho}^*(f) \leq \sum_{m=1}^{\ell} T_{m,\rho}^*(f)$, using Lemma 3.3 with $\rho = 2^{q'}$, we see that

$$\|T_{0,2q'}^*(f)\|_p \le C_{\theta}(q-1)^{-1} \|h\|_{\Lambda_1^{\eta}} \|\Omega\|_q \|f\|_p$$
(3.10)

for $p \in I_{\theta}$. Also, by Proposition 2.1 with $\rho = 2^{q'}$ we have

$$\|\mu_{2^{q'}}^*(|f|)\|_p \le C_{\theta}(q-1)^{-1} \|h\|_{\Lambda_1^{\eta}} \|\Omega\|_q \|f\|_p$$
(3.11)

for $p \in I_{\theta}$. Note that

$$\int_{\rho^{L+1} \le |y| < 1} |K(y)| \, dy \le C(\log \rho) \|h\|_{\Delta_1} \|\Omega\|_1.$$

Therefore, it is easy to see that

$$\|J_{2q'}(f)\|_{p} \le C(q-1)^{-1} \|h\|_{\Lambda_{1}^{\eta}} \|\Omega\|_{q} \|f\|_{p}$$
(3.12)

for $p \in I_{\theta}$. Since $I_{\theta} \to (1, \infty)$ as $\theta \to 0$, by (3.8)–(3.12) we obtain the conclusion of Theorem 3.1.

References

- [1] A. Al-Salman and Y. Pan, Singular integrals with rough kernels in $L \log L(S^{n-1})$, *J. Lond. Math. Soc., II. Ser.* **66** (2002), 153–174.
- [2] A. P. Calderón and A. Zygmund, On singular integrals, Am. J. Math. 78 (1956), 289–309.
- [3] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, *Invent. Math.* 84 (1986), 541–561.
- [4] D. Fan, K. Guo and Y. Pan, Singular integrals along submanifolds of finite type, *Michigan Math. J.* 44 (1997), 135–142.
- [5] D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties, Am. J. Math. 119 (1997), 799–839.
- [6] D. Fan and S. Sato, Weighted weak type (1, 1) estimates for singular integrals and Littlewood–Paley functions, *Studia Math.* 163 (2004), 119–136.

- [7] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, *J. Func. Anal.* **73** (1987), 179–194.
- [8] S. Sato, Estimates for singular integrals and extrapolation, *Studia Math.* **192** (2009), 219–233.
- [9] S. Sato, Estimates for singular integrals along surfaces of revolution, *J. Aust. Math. Soc.* 86 (2009), 413–430.
- [10] S. Sato, Estimates for Littlewood–Paley functions and extrapolation, *Integral Equations Oper. Theory* **62** (2008), 429–440.
- [11] S. Sato, A note on L^p estimates for singular integrals, Sci. Math. Jpn. 71 (2010), 343–348.
- [12] A. Seeger, Singular integral operators with rough convolution kernels, *J. Am. Math. Soc.* **9** (1996), 95–105.
- [13] E. M. Stein, Problems in harmonic analysis related to curvature and oscillatory integrals, in: *Proceedings of International Congress of Mathematicians, Berkeley* (1986), 196–221.
- [14] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.
- [15] A. Zygmund, *Trigonometric Series*, 2nd ed., Cambridge Univ. Press, Cambridge, London, New York and Melbourne, 1977.

Shuichi Sato Department of Mathematics Faculty of Education Kanazawa University Kanazawa 920-1192 Japan shuichi@kenroku.kanazawa-u.ac.jp