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Summary: We consider a singular integral along a submanifold of finite type. We prove a certain
L P estimate for the singular integral, which is useful in applying an extrapolation method that
shows L P boundedness of the singular integral under a sharp condition of the kernel.

1 Introduction

Let B(0,1) = {x € R": x| < 1} and let @ : B(0, 1) — RY be a smooth function. We
assume that @ is of finite type at the origin, that is, forany & € S (the unit sphere in R9)
there exists a multi-index & = (a1, . .., an) such that |«| > 1 and 95 (D (X), &) |x=0 # O,
where 9% = (3/9x1)* ... (8/dxXn)*", || = a1 + -+ + an and (-, ) denotes the inner
product in RY.

Let a function € in L1(S"1) satisfy

/ Q) do(9) = 0, (1.1)
-1

where do denotes the Lebesgue surface measure on the unit sphere S™~1 in R". Through-
out this note we assume n > 2. Let As, s > 1, denote the collection of functions h on
Ry = {t e R:t > 0} satisfying

2+l

1/s
[hllas = sup (f Ih(t)lsdt/t> < 09,
jez \J2I

where Z denotes the set of integers. We define

2R
w(h,t) = sup lh(r —s) —h(r)|dr/r, te(0,1],
Is|<tR/2 JR
where the supremum is taken over all s and R such that |s| < tR/2 (see [6, 12]). For
n > 0, let A" denote the family of functions h satisfying

Ilhilan = sup t™"w(h,t) < co.
te(0,1]
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Define a space Ad = AsN A" and set I o2 = Ihllas + Ihilan forh e Ad.
We consider a singular Radon transform of the form:

T(Hx = D.V'/ f(x — @(y)K(y) dy (1.2)
B(0.1)

— lim / f(x — d(y)K(y) dy
1>|y|>e€

e—0

for an appropriate function f on RY, where K(y) = h(jypQ()IlyI™, v = |yl 1y,
h € Aj. See Stein [13], Fan, Guo, and Pan [4], Al-Salman and Pan [1] and also [2, 5, 14]
for this singular integral and related topics.

In the previous works, the operator T was studied under the condition that h is
a constant function. In this note, we consider the operator T under a more general
condition on h. We shall prove the following:

Theorem 1.1 Letq e (1,2], 2 € L9 andh ¢ A7 for some > 0. Suppose that
Q satisfiesthe condition (1.1). Let T be defined asin (1.2). Then we have

ITCOLpgrdy < Cp(q — l)_lllhIIAgIIQIILq<sn—1)|I fllLprey
for all p € (1, o), where the constant Cp, isindependent of g, h and €2.
Let L log L(S"1) denote the Zygmund class of the functions F on S~ satisfying

/9171 [F(©)]10g(2 + |F(0)[) do(0) < oo.

Then, as an application of Theorem 1.1 and extrapolation, we have the following theorem.

Theorem 1.2 Let h € AJ for some n > 0. Suppose that Q isin Llog L(S~1) and
satisfies the condition (1.1). Let T beasin (1.2). Then we have

ITCONLprdy < Cpll FllLp(re)
for all p e (1, c0).

The extrapolation argument that proves Theorem 1.2 from Theorem 1.1 can be found
in [8, 9, 10, 11] (see also [15, Chap. XII, pp. 119-120]). If the function h is assumed
to be a constant function in Theorem 1.2, we have a result of Al-Salman and Pan shown
in [1] (see [1, Theorem 1.1]); so we can give a different proof of the result by applying

Theorem 1.1 and extrapolation. Relevant results can be found in [8, 9, 10, 11].
In Section 2, we shall prove Theorem 1.1. Consider a singular integral of the form

SHH(X) =p.v. fR f(x — P(ynh(lyD2(y)lyl " dy,

where P(y) is a polynomial mapping from R" to RY satisfying P(—y) = —P(y) (P # 0),
h e Asfors e (1,2]and Q is a function in L9(S"1), q e (1, 2], satisfying (1.1). Then,
it has been proved that

ISCOILpdy < Cpd —D7Hs = DM Qa1 I agl FllLpza
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forall p € (1, 0o), where the constant Cy, is independent of g, s, 2, h and the polynomial
components of P if they are of fixed degree (see [8, Theorem 1]). Outline of our proof of
Theorem 1.1 is similar to that of the proof for [8, Theorem 1]. We apply methods of [4]
to obtain some basic estimates. We need to assume that h € A{ for some > 0 to prove
certain Fourier transform estimates. As in [8] (see also [9, 10]), a key idea of the proof
of Theorem 1.1 is to apply a Littlewood—Paley decomposition adapted to an appropriate
lacunary sequence depending on q for which € L9(S"1).

In Section 3, we shall give analogs of Theorems 1.1 and 1.2 for a maximal singular
integral operator related to T. In what follows we also write || f||| pgd) = | fllp and
L1l a1y = [I22]lq- Throughout this note, the letter C will be used to denote non-
negative constants which may be different in different occurrences.

2 Proof of Theorem 1.1

Let M be a positive integer. We write ®(y) = (P1(y), ..., Pa(y)). Let Pj(y) be the
Taylor polynomial of ®j(y) at the origin defined by

1
Py = ) —@5enOy,

le|<M—1 "

where a! = a1!...an! and y* =y‘1’1...y‘ﬁn fora = (a1,...,an)and y = (y1, ..., Yn).
We write P(y) = (P1(y), P2(y), ..., P4(y)) and

4
Py =) Qiy, Qim= > ay (g cRY,
j=1

ly1=N(j)

where 0 = N(1) < N2) < --- < N(®), Qj # 0for j > 2. Let B = pN™ and
am = ©(q — 1)/(qN(m)) for 2 < m < ¢, where 7 = 4~ min(1, ), p > 2. Also, let
Ber1 = pM and g1 = €o(q — 1)/ for some €q € (0, 1/4). The positive integer M and
the positive number ¢ will be specified in the following (see Lemma 2.4 below).

Let T be as in Theorem 1.1. Let Ex = {x € R" : pK < |x| < oK1}, ke Z, p > 2.
Then T(f)(x) = 2;21 0 Ok * f(X), where {crk}l::l_Oo is a sequence of Borel measures on
RY such that

o f(X) = /E fx — D(y)K(y) dy. (2.1)
k

Put PM(y) = Y1, Qj(y) form=1,2,..., ¢ and PE+D(y) = ®(y). Consider

a sequence ™ = {y,i((m)}l::l_oo of positive measures on RY such that

w4 100 = [ F (x= P™ey) Ikl dy
Ex

form=1,2,...,¢+ 1. Note that u(kl) = (fEk |K(y)| dy)8p(), Where 85 is Dirac’s
delta function on RY concentrated at a. Let (™ = {a&m)}g:l_oo be a sequence of Borel
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measures on RY such that

" t00 = [ 1 (x=P™0p) Kdy,
Ex
form=1,2,...,¢+ 1. We note that 0(1) 0 by (1.1) and

@™ % 1)@ = f(© i e 2 PTWEK (y) dy,
k

where f denotes the Fourier transform of f. A similar formula holds foru(m).
Let {y(j, k)}k: be an enumeration of {y},,|=n¢j) for 1 < j < ¢. Define a linear
mapping L from RY to R'i by

Lj(é,-:) = ((a]/(j,l)v ‘§>7 <a]/(j,2)v ‘§>7 cee <a]/(j,fj)v S))s

for1 < j < ¢. Let L1 be the identity mapping on RY. Let sj = rankLj. For j > 2,
there exist non-singular linear transformations R;j : RY — R9 and H; : RS — RSi such
that

IHjzg Rj®I < ILj )| < CIHj=g Ri4)l,

where n's () = (&1, ..., &) is the projection and C is a constant depending only on r
(see [5)).

Let ¢ be a function in C*°(R) satisfying ¢(r) = 1 for |r| < 1/2 with support in
{Ir] < 1}. Define a sequence t™ = {r&m)}[:l_oo of Borel measures by

™ (E) = 6™ (©) Dk mi1(€) — ™ () Pum(E) (2.2)
form=1,2,...,¢, where
41
oem@ = [] (BT Ri@1)
j=m+1

if1<m<¢and k1 = 1. Thenox = o ™ = 4, 7™, We note that
Pmi1(©¢ (BlvyalHmermg, Rmin @) = oem® A =m=0.  (23)

Forl<m<¢let TSV (f) =Yt o« f.Then T =0 TS™.

For a sequence v = {vk}k_:l—oo of finite Borel measures on RY, let v*(f)(x) =
supy |[[vk|* f(x) |, where |vk| denotes the total variation. \We consider the maximal operators
(1™)* (1 <m < £+ 1). We also write (u“*+1)" = k.

Let® € (0,1).Forpe (1, o0) let p = p/(p—1) and 3(p) =11/p—1/p/|. Then
we prove the following two propositions.
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Proposition2.1 Letp>1+6andl < j < ¢+ 1. Then we have

[y h| o = Clog iy IR0 a1 BY Pl fllLege),  24)

LP(RY)

where B = (1 — p~/ q/)_ for some positive constant « such that

(1-pem) ™t < B

for all mwith 2 < m < ¢ + 1. The constant C is independent of g € (1,2], h € A,
Qe L9S Y andp.

Proposition2.2 Letpe (146, (1+6)/6)and1l <m < £. Then
ITS™ (D)llLp(ra) < Clog p) [Nl x1 121Lagsn-1,B P I Il Lpgza),

where B isasin Proposition 2.1 and the constant C isindependentof g € (1,2],h € A”,
Qe LS andp.

We can easily derive Theorem 1.1 from Proposition 2.2. Proposition 2.1 is used to
prove Proposition 2.2. To prove Proposition 2.2 we also need the following.

Lemma2.3 Letq € (1.2}, @ € LIS, h € A] and A = (log o) Ihil 7 [|22lq. Let
7™ beasin (2.2). Then, for 1 < m < ¢ we have

157l = 15" 1@ < e A, (2.5)
") = oA (B allmn®1) (2.6)
B @1 = A (AEILma@]) " 27)

for all k € Z satisfying k < L with some constants¢; (1 <i < 3), where L isa negative
integer, L < —4, which will be determined in Lemma 2.4 below.

To prove Lemma 2.3 we need the following two lemmas.

Lemma24 Letl < q <2, Q e L9S1), h € A] and let ok be asin (2.1). Then,
there exist a positive integer M, a positive number ¢p € (0, 1/4) and a negative integer
L, L < —4, such that

. —eo/q’

6x(®1 < Cllog p) (161o*) " Il 1 1lq
for k < L. The constants M, ¢p, L and C are independent of p, g, h and 2.

Lemma25 Letp > 2, ke Z, 1 <q<2he Al andQ e LIS ). Let P be
a real-valued polynomial on R" of degreem > 1. Write

POO = ) &y + Q)

loe|=m
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where deg Q < m— 1if Q # 0. Then there exists a constant C > 0 independent of
0, k, g, h, Q and the coefficients of the polynomial P such that

/k Iyl <K leXp(i P(x)) h(|x|)Q(x")|x| " dx
PR<]yl<ptt

—t/(mq’)
< Cdog p)llhll 511122l (pkm > |aa|) :

||=m
where t = 4~ min(1, »).

We can prove Lemma 2.5 similarly to the proof of Lemma 2.4 of [4]. To prove
Lemma 2.4 we need the following two results, which can be found in [4].

Lemma2.6 Let ® : B(0,1) — RY be smooth and of finite type at the origin. Define
Gm: B(0,1) x ™1 — R by

!
Gn(x & = Y (6 HOCON

lee]=m

for m > 1. Then, there exist constants R, § € (0, 1/4) and a mapping ¢ from -1 to
a finite set of positive integers such that

Cop := sup [Geee) (X, &')|_(S dx < oo.
ses-1JIX|<R
Lemma 2.7 Let v, 9 € C®°(R) bereal-valued. Let s € (0,1] anda, b € R witha < b.
Suppose that ¢ is compactly supported and that
l(d/dx)*y(x)| < s for x € [a, bl,
I(d/dx)* Dy x| <1 forxela—sb+s],

where k is a positive integer. Then, there exists a positive constant C depending only on
k and ¢ such that

b+s
< C|a| /K f |(d/dx) Ky (x)| <20 dx
a

—S

b
/ exp(i A (X)) g(x) dx
a

forall A e R\ {0} and e € (0, 1].

Define a function F on an appropriate subinterval of Ry by F(t) = (&, ®(tx)) for
fixed ¢ € ™1 and x € B(0, 1). Then, we note that (d/dt)™F(t) = t"™Gm(tx, &), where
Gm isasin Lemma 2.6.

Proof of Lemma 2.4: Take an integer v > 1 and a € [2, 4] such that p = a”. Let ®, §, R
and £(¢) be as in Lemma 2.6. Put £o = maXxggi-1 £(§). Let L be a negative integer such
that

(d/dn(g’, o(p*sr0))| < 1/2
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forl <t <¢y+1,se[l,plre©5),& e tando € 1 wheneverk < L and
such that 22 < Rif k < L. Then, when & € R9\ {0} and k < L, we write

v—1
aw =y [
j=0""

pkaj+1

/ BXP (=271 (£, ©(19))) h(1)QA() do(6) dir/r
o

kal

v=1 .3 ) .
= / f exp (—Zni (&, dD(pkaJrG))) h(o*alr)(6) do(6) dr /r.
i=0 1 -1

Let ¢ € C*(R) satisfy supp(¢) C (O, 1079, ¢ > 0, [ ¢(s)ds = 1. Define hj(r) =
Jser/2 h(p¥al (r — 9))¢u(s) ds, r > 0, where ¢y (s) = u=tp(u=1s), u > 0. Then, ifu < 1,

a .
/ lh(okalr) — hj(r)|dr/r < Caw(h, u). (2.8)
1

We take u = (|€]p*M)~¢/9" for a suitable M with M > ¢y and ¢ > 0, which will be
specified below. We assume |£]p*M > 1 for the moment. Define

v—=1 .3 )
@ =Y /1 /SM exp (—Zni (&, dD(pkaJrG))> hj (N (0) do(®) dr /1.
=0

Then, by (2.8)

|6k (&) — (&) < C(log p)|2]l1w(h, u) 2.9)
< C(log p) |11 Il] an (&1 oK) ~1/9,

where we have used the fact that v ~ log p.
By Lemma 2.7

Uw exp (—Zni (€, d(pkal t9)>) dt’
1

—e(1+1/€(&")

. patl)2 ,
< Clg|~</*®) / ‘Gl(é/) (pkalro, £
1/2

for w e [1,al, where & = &/|£|. Also, |hj@| < Cu~t|h|a,, [T 1hjM)dr/r <
Clihlla,, f1a|h/j nH|dr/r < Cu—1||h||A1. Therefore, applying integration by parts, we
see that

a .
‘ / exp (—27ti (£, D(p*a) r@))) hj (r) dr/r
1

. o[22
5®WMMW“®/
1/2

—e(1+1/L(&)

’Gg(g/)(pkajre, %'/) dr/r
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Note that

—e(1+1/€(&")

a+1/2 i
/ f [Gucer (pkalro. &)
-1 \J1/2

< C(pkal)™ / IGugen (x. )| 2 1Q0¢) dx = 1.

Ix|<2pkal+1

dr /r) 12(0)| do(6)

where € € (0, 1]. Since 2pKal ™1 < R, by Hélder’s inequality we have

/

j ' e 1/9
I < C(,OkaJ)—n(pkaJ)n/q”Q“q (/ . |GZ($’)(X, %./)| 2¢q dX)

X|<

Therefore

v—1
Z(,Okaj)_n / _ |Ge(g/) (X, 3;'/)|_2€ 12(x)| dx
=0 x|<2pkal 1

/

v—1

1/q
—kn/d’ —in/d —2¢q
< ClQllgp*a (2 a "‘/‘*) ( f| | RIGz@wx,s’)l “ dx)
X|=

j=0

) o d
< C(log p)||Qllqp "4 < f RIGz<g/>(x, g)| 2 dX) ,

x|
since v ~ log p. Using these estimates, we have

v—=1 .3 )
3 / / exp (—Zni (£, dD(pkaJrG))) hj (S2(6) do(©) dr /r
=0 1 -1

_ _ ’ _ ’ —2ed
< C(log pyu=t||h||a, €]~/ ||Q) g~ VA ( f ‘ R|Gas’>(xﬂ g dX)
X|=<

Sato

1/q

)

where C is independent of €, p, g, h and Q. If we put e = §/(2q’), then by Lemma 2.6

we have

(&)| < CC/% (log p) 1]l o, 12]1q(1€] M) 5/ (|&| p2KNEEN/3) =8/ QALED,

Therefore, if M is a positive integer such that M — 1 < 2n¢p/8 < M and ¢ < §/(2¢y),

(@) < CCSI,/q (log p) [Nl A, ||Q||q(|g|pkM)—(5/(2€o)—£)/q/.

Combining (2.9) and (2.10), we can see that

lok(&)| < C(log ,O)IIhIIA:ly||Q||q(|§|pkM)—€0/q”

(2.10)

where eg = min(nz, §/(260) — ¢). If |€]pKM < 1, the conclusion of Lemma 2.4 follows
from the estimate |6k (§)| < C(log p)|[h]| A, [€2]11 (see (2.14) below with m = £+ 1). This

completes the proof of Lemma 2.4.

O
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Proof of Lemma 2.5: Let

1(X) = / ’ exp (i |:(,0kt)m > A+ Q(,oktx):|) h(oXt) dt/t.
1

l|=m
Note that

/ exp (i P(x))h(|x|)§2(x’)|x|_”dx=/ Q6)1(0) do(6).
pR<lyl<pitt L

L(:]ta € [2,4]and v > 1 beasinthe proof of Lemma2.4. Decompose | (x) = ZJV;%) [ (),
where

1j(x) = faexp (i |:(,okajt)m > anx + Q(pkajtx):|) h(okalt) dt/t.
1

loe|=m

Lethj®) = [s_y/ h(p*al (t — 9))¢u(s) ds be as in the proof of Lemma 2.4 and

a . .
() = f exp (i |:(,0kajt)m > X+ Q(pkaltx)D hj () dt/t.
1

loe|=m

Then by (2.8) [1;(X) — 1;(X)| < Ce(h,u),0 < u < 1. So,

‘ / Q(6)1(0) do(6) — f QoI j(e)da(e)‘ (2.11)
-1 -1

IA

/er 1O)11j©6) — Tj(6)] do(6)
Co(h, w21 < ClhflanlI€2]l2u”

IA

for0 < j < v — 1. Also, since |1(x)| < C(log p)[|h[a,,

‘/Sn_l ©2(0)1(0) do(0)| < C(log p)[Ih[a, lI$2]]1. (212)

Now, we assume that b := o™ 3", |a,| = 1and putu = (aiMp)~1/4ma) Then,
as in the proof of Lemma 2.4, an integration by parts argument implies that

—1/m
15001 < Cu™thja, [(pKa)™ D anx* (213)
lo]l=m
since
/ exp (i {(pkajo"‘ D X+ Q(pkajtx)D dt
1
le|=m

—1/m
< Cl(pa)™ ) aux”

lof=m
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for w € [1, a], which follows from van der Corput’s lemma. We also have |fj x| <
C|lh||a,. Combining this with (2.13), we have

-1/2mq’)

15001 < Cu™t{ihlla, min [ 1, |(o4a))™ >~ a,x

le|=m

and hence by Holder’s inequality and [7, Corollary 1]

‘ / Q()1(6) do(6)
-1

< /SH O] do(®) < [12lqlTjlly
—1/(2m) 1/q

< Cutfhla, 1Rlq / do(6)

-1

(pa)™ H " aub”

loe|=m

—1/(4mq)
< Clhlla, I2llq ((pkaj)’“ > |aa|) :

loe|=m

By this estimate and (2.11) we see that

’ f Q)10 da(@)‘
-1

—7/(mq’)
< C(Inflanli2l1 + [Ihlla, 12lq) ((pkaJ')’“ > |aa|) :

lee]=m

where T = 4~ min(1, n). Thus

‘ / QO)1(6) do(6)
-1

/ Q(60)15(0) da(@)‘
-1

v—1
=)
j=0

—7/(mq’)
< C(log p) (INflanlI2l11 + lIhlla, [12lq) (pkm > |aa|) :

lee]=m

if pkm > jal=m |8a| > 1. Along with (2.12), this implies the conclusion of Lemma 2.5. O

Proof of Lemma 2.3: We easily see that

k+1
okt

IIU;Em)II < Cl[1 fk Ih(r)|dr/r < C(log p)[Ihlla, I2]12 (2.14)
0

forl <m< ¢+ 1. By(2.14)and (2.2) we have
I5™ | < Cdlog p)Ihla, 1212 (2.15)
for 1 <m < ¢. By (2.15) and Holder’s inequality we have (2.5).
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Letk < L, where L isas in Lemma 2.4. By Lemmas 2.4 and 2.5 we have |8l£m) @) <
CA(BKILm®)]) " form = 2, ..., ¢+ 1. Also, we note that |y m(£)| is bounded by
C (ﬁﬁq+1|Lm+1(§)|)_N forall N > 0, when 1 < m < ¢. Using these estimates and (2.14)

in the definition of 7™ in (2.2), we have (2.6).
To prove (2.7), we note that

-5 ®| = Clogplinlls IRNAlE ILma @1 (216)
Also, by (2.3) we see that
| Pimr1(6) — Pom(®)] < CBE 1 ILm+1(®)]. (2.17)
The estimates (2.14), (2.16) and (2.17) imply
2™ (©) < Clog p) [Ihlla, 12011 ILmra©). (2.18)
since
B @1 < (6™ O - 6 ©) Pmr @] + | (Pkm1® — Pkm(®) 67 )|

By (2.15) we also have |%i£m) (&)| < C(log p)|Ih]l A, lI1€2]l1. This estimate and (2.18) imply
(2.7). This completes the proof of Lemma 2.3. |

Proof of Proposition 2.2: Let T\™ (f) = Y| o™ * f for L < m < ¢, where L isasin
Lemma 2.3. Then, to prove Proposition 2.2 it suffices to show a version of Proposition 2.2
for 7™ with bounds similar to those for T\, since || T{™ (f) — T\™ (f)|lp < CA| f I
forl < p < oo, where Aisasin Lemma 2.3. Let {y}>,, be a sequence of non-negative

functions in C*(R) such that each vy is supported in [B7%, <M, Y va(®? = 1
fort > 0and

(d/dtyw®l < gt ), j=1.2,...,
where the constants c;j are independent of Sm.1. This is possible since fmy1 > 2. Let

(S™(H) "® = vk (1Hmeam, , Rma @) @)

We also write §™ = S. Put
L

D™= Sk (™ #Sk(h).

k=—o00
Then T,§m) ZJ D(m) Plancherel’s theorem and the estimates (2.5)—(2.7) imply that

[oimcn) 5 Yc INGIRHGIRE
<L

A(j+k)

<CA2m|n(1 B 172) 3 / 1 f©)1° dg

k=L JAG+R
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where A(K) = {857 < [Hms1md | Rmpa(®)] < Br/iH). Thus we have

m+1 — m+1
. —om )

[ ], = camin (1. g5q 2 1. (2.19)
By (2.19) we have

ITM™(F)ll2 < Y ID™ ()2 < CABJ fl2, (2.20)

j
-1

since B > (l — Bmit™) . where B is as in Proposition 2.1.

Taking Proposition 2.1 for granted for the moment and recalling the definition of
rlﬁm) in (2.2), by change of variables and a well-known theorem for LP boundedness of
maximal functions (see [5, Section 6]) we have

je™ ] <clam™vyran| +cfumran] @2
< CpAB?/P|flp

forp>1+6.
By (2.5), (2.21) and the proof of Lemma in [3, p. 544], we have the following.

Lemma?28 Letue (1+6,2],1/v—1/2 = 1/(2u). Then we have

k<L k<L

1/2 1/2
(Zuy")*gkﬁ) < (c1Cu) /2 ABM (ngz) :

where the constants ¢; and Cy are asin (2.5) and (2.21), respectively.

Also, the Littlewood—Paley theory implies that

1/2
ID{™ (H)llp < cp (Z T Sj+k(f)|2) , (2.22)
k<L )
1/2
H (Z |3<(f)|2> < cpll flip, (2.23)
k
p

where 1 < p < oo and cp is independent of Smy1 and the linear transformations

Rm+1, Hme1.

Letl+6 < p < 4/@3 — 0). Then, there exists u € (1 + 6, 2] such that 1/p =
1/24+(1—6)/(2u). Let1/v—1/2 = 1/(2u). Then, by (2.22), (2.23) and Lemma 2.8 we
have

IDS™ ()1l < CABYY| £, (2.24)
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where C is independent of p and the linear transformations R;, Hj, 2 <i < ¢+ 1. Noting
that 1/p = 6/2 + (1 — 6) /v and interpolating between (2.19) and (2.24), we have

||D(m)(f)||p < CABA=9/Umin (1 ﬁmeam“(m 2)> I fllp,
which implies that

- o\ L
IT™(Hllp = Y ID™(H)llp = CABE (1= A0 ) I, (2.25)
i

< CABYP|[f[lp.

A duality and interpolation argument using (2.20) and (2.25) implies the conclusion of
Proposition 2.2 with T\"™ replaced by T,™, which proves Proposition 2.2. i

We now prove Proposition 2.1 by induction on j. First, the inequality (1 @)*(f)(x) <
C(log p) Ihlla, 1R2]I1] f(x — P(0))| implies the estimate (2.4) for j = 1. Next, we prove
(2.4) for j = m by assuming (2.4) for j = m—1,2 < m < ¢ + 1. Define a sequence
n™ = (™12 of Borel measures on RY by

" © = o (Al Hord, Re®1) "V ),

where ¢ € C3°(R) is as in the definition of 7{™ in (2.2). Then, from (2.4) with j = m—1,
it follows that

[a™h| <clum | <cas Pt (2.26)
for p> 1+ 6, where A, B are as above. As in the proof of Lemma 2.3, we have

1
™1+ ™1 < Clle™ 21+ Ied™ (2.27)

k+1

p

C|IQ|I1/ Ih(r)| dr/r
ok

C(log p)Ihlla, lI€2]11 < CA.

A

IA

A

Let k < L, where L is as above. Since

™ & — i @)
< 12" ® — "V ©1 + | (¢ (5 Hrd, Rn®1) — 1) ™

arguing as in the proof of (2.7), we see that

A

2" ©® - 3" @ = Clog p)lIhllay 2 (B ILm@®1) " (228)
CA (B HILm@1) "

IA
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We also have the following:

" @ = CA(BliLm®1) (2.29)
3" @1 = Clog p)lInlla, 120 (BILm@1) (2.30)

—am

IA

CA (BhILm®1)
We can prove the estimate (2.29) arguing as in the proof of (2.6). The definition of m((m)
and (2.27) imply the first inequality of (2.30).

We have only to prove (2.4) with j = mfor p € (1 + 6, 2], since the estimate (2.4)
for p > 2 follows from interpolation between the estimate (2.4) for p € (1 + 0, 2] and
the obvious estimate ||(u™)*(f)|loc < CA|| fllso. Let

172
2
gm(F)0 = (Z ™ 5 100 ) :

k<L

where vi™ = 1™ — ™. Then, we see that

E™)*(F) < gm(F) + @ ™)*(| f)), (2.31)

where (2™)*(f) = supy-. 1i™ s f1. Note that to prove (2.4) with j = m it suffices to
prove it with (2™)* in place of (1(™)*. Since we have (2.26) and (2.31), to show (2.4)

with j = mit suffices to prove ||[gm(f)[lp < CAB?/P|| filpfor pe (1+6,2]. Let

Ue(m)(f) = Zekvf(m) * f,
k<L

where € = {ex}, ek = 1 or —1. Then, we shall show that
Hug")(f)H < CABYP| f||, (2.32)
p

for p € (146, 2], where C is independent of €. The desired estimate follows from (2.32)
by a well-known property of Rademacher’s functions.
To prove (2.32) we use the following:

Lemma 29 Let {p;}{° be asequence of real numbersdefinedby p; =2and1/pj41 =
1/24+ (1 —6)/(@2p;) for j > 1. Then, we have

Hug"ﬂ(f)Hpj < CjABYPI||f], forj=>1.

We canseethatl/pj = (1—al)/(1+6),wherea = (1—6)/2. Thus { pj} is decreasing
and converges to 1 + 6. We can prove Lemma 2.9 by (2.26)—(2.30).
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Proof: Define

L
U™ = > aSi« (Vf(m) * Sj+k(f)) ;

k=—o00

where § = Sﬂm) (the operators Sﬂm) are as in the proof of Proposition 2.2). Then,

&M =¥, U™. Arguing as in the proof of (2.19), and using Plancherel’s theorem and
the estimates (2.27)—(2.30), we have

Huj““)( f)”2 = cAmin (1 a2 1), (2.33)

and hence HUém)(f)H2 <Y ||UJ-(m)(f)||2 < CAB| f||2. This proves the assertion of

Lemma 2.9 for j = 1.

We now assume the estimate of Lemma 2.9 for j = sand prove it for j = s+ 1. By
induction, this will complete the proof of Lemma 2.9. From the estimate (2.31), it follows
that

EMY*F) < @™ D+ @™ AFD < gm( D) +200M™)*( f)),

where (5™)*(f) = supe-. ||uf(m)| x f|. By our assumption we have |gm(f)llps <
CAB?/Ps|| f | n. This estimate and (2.26) imply

(O™ D] < lam DI 2 [ ™ D], (2.34)
< CAB?Ps|f||p,.

Arguing as in the proof of (2.25), and using (2.27), (2.33) and (2.34), we can now obtain
the estimate of Lemma 2.9 for j = s+ 1. This completes the proof of Lemma2.9. O

Let p e (1+6,2] and let {pj}{° be as in Lemma 2.9. Then, we can find a positive
integer N such that pny1 < p < pn. The estimate (2.32) now follows from interpolation
between the estimates of Lemma 2.9 for j = N and j = N + 1. This finishes the proof
of (2.4) for j = m. By induction, this completes the proof of Proposition 2.1.

Proof of Theorem 1.1: By taking p = 29 in Proposition 2.2 we see that

ITye” (Dllp < Ca@ =) lIhlzrlI2Aqll Filp
for p € (146, (1+6)/6). This completes the proof of Theorem 1.1, since T = an:1 T;”“
and (L+6,(1+6)/0) — (1,00)as6 — 0. O

3 Estimatesfor maximal functions
Let

T*(f)(X) = sup
€€(0,1)

f it f(x — ©(y)K(y) dy|, (3.1)
e<ly|<
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where K is as in (1.2). Then, we have an analog of Theorem 1.1 for the maximal
operator T*,

Theorem 3.1 Let Q € L9(S"1), g e (1,2]andh ¢ A7 for some n > 0. Suppose that
Q satisfies (1.1). Then

IT*(F)IlLpray < Cp(@ — 1)_1|IhIIAg 121 L1l FllLp(ra)
for all p € (1, oo), where Cp, isindependent of g, h and 2.
By Theorem 3.1 and extrapolation we have the following result.

Theorem3.2 Let Q@ € LlogL(S™1) and h € A'l7 for some n > 0. Suppose that Q2
satisfies the condition (1.1). Let T* f be defined as in (3.1) with the functions h and €.
Then

||T*(f)||LP(IRd) < Cpll fllLprdy
for all p e (1, 00).

If the function h is identically 1, then Theorem 3.2 was shown in [1].
To prove Theorem 3.1, we use the following result.

Lemma3.3 Let & € (0,1) and let positive numbers A = (log p)||h||Arl7||Q||q, B =

/ -1 .
(1 — p~%/a ) be as above. Define

T p(F)(X) = sup (3.2)
k<L

L
> ™ f(x)
=k

for 1 < m < ¢, where the measures qim) areasin (2.2) and L isasin Lemma 1. Let
lo = 21+ 60)/(6% — 6 + 2), (1 + 6)/6). Then, we have

1T (D)llp < CA (BHP 4 BPHO2) £,
for p € 1y, where Cisindependent of g € (1,2], 2 € L%(S""1), h e A] and p.
This can be proved by results in Section 2.

Proof: Let T,™ () = Y, 7" * f be as in the proof of Proposition 2.2. Let g be
defined by

(® = ¢ (BlvsalHmeand,  Rusa(©)])

where ¢ is as in the definition of rlﬁm) in (2.2). We now decompose

L

k—1 L
Y™ f =k T () — i (_Z ™« f) + (8 — i) * (Zr}m)* f),

j=k j=—00 j=k
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where k < L and 8 = &g is the delta function on RY (see [3, 5]). Then, we have
m<f><sup\qpkﬂ<m><f>]+zm<m><f> (33)
j=0

where

W™ (0 = sup s (57}« )]+ w0 [0 =0+ (< 7).

From Proposition 2.2 it follows that

< CAB™P {1, (3.4)
p

for pe (146, (1 + 0)/6), and the estimate (2.21) implies that

sup o Ty (1)

IM™ (£)llr < CABY"|| ||, forr > 1+4. (3.5)

Since

1/2 1/2
2
(m) (m) (m)
M| (f)s( > [@-a0x (5mx )] + }j\gok*(zk_j_l*f)]) ,
k<L—j k<L

arguing as in [5, p. 820] and using the estimates (2.6) and (2.7) along with Plancherel’s
theorem, we have

— i —2 —1/2
IM™ (Dllz < CAB™ (1= A ) il (36)

We note that for any p € lg there exists a number r € (1 + 6, 2(1 + 0)/6) such that
1/p= (1 —0)/r +6/2. Therefore, interpolating between (3.5) and (3.6), we have

0/2

_ —20m1\ " —ams10]
IM™ ()l1p = CABXE/ (1= g 2mes) g im . (37)

From (3.3), (3.4) and (3.7), it follows that

— -2
||T:,m(f)||p < CA(B:H-(S(p) + 82(1 9)/I’+1< ,3 Olm+1) ) ” f”p

m-+1
this estimate, we can obtain the conclusion of Lemma 3.3. O

-1
for p € lp. Using (1 - ,3_2“"‘“) <Band2(1—6)/r +6/2+1=2/p+1—6/2in

Proof of Theorem 3.1: Let

TH(HX) = sup
ee(O,pL+l)

/ f(x — (y)K(y) dy]
e<|yl<ptt1
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Then, we have
TH(HX) ST:(f)(X)+Jp(f)(X)s (3.8)
where J,(f)(x) = pr+15\y\<1 [ f(x — @(y)||K(y)| dy. We note that
T;(f)ST&p(f)vLMZ(IfI), (3.9)

where p} = (Y= is as in Proposition 2.1 and Tg,(T) is defined by the formula
in (3.2) with {‘EJ-(m)}jSL replaced by the sequence {oj}j<L of measures in (2.1). Since
T5 () < Xy Ty (1), using Lemma 3.3 with p = 2%, we see that

Ty

020 (Dllp = Co(q - 1)_1IIhIIA’17 121!l fiIp (3.10)

for p € ly. Also, by Proposition 2.1 with p = 29" we have
iy (1 EDIIp < Cota = DIy l1lgl Flip (3.11)
for p € lg. Note that

f IK(y)|dy < C(log p) [0l a, I€2]]1-
ptl<lyl<1

Therefore, it is easy to see that

190 (F)llp < C(q— 1)_1||h||A’17||Q||q|| fllp (3.12)
for p € ly. Since Iy — (1, 00) as & — 0, by (3.8)-(3.12) we obtain the conclusion of
Theorem 3.1. ]
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