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WEIGHTED WEAK TYPE (1,1) ESTIMATES FOR SINGULAR
INTEGRALS WITH NON-ISOTROPIC HOMOGENEITY

SHUICHI SATO

ABSTRACT. We prove sharp weighted weak type (1,1) estimates for rough
singular integral operators on homogeneous groups. Similar results are shown
for singular integrals on R? with the generalized homogeneity.

1. INTRODUCTION

We consider singular integrals defined by kernels homogeneous with respect to
non-isotropic dilations, which generalize homogeneous singular integrals studied in
Calder6n-Zygmund [3]. In this note we deal with weighted weak type boundedness,
for rough singular integrals on R?> with generalized homogeneity and for rough
singular integrals on homogeneous groups; we shall prove analogues of a result
of Vargas [30] concerning weighted weak type (1,1) estimates for homogeneous
singular integrals on R?.

Let P be an n x n real matrix whose eigenvalues have positive real parts. A
dilation group {A;}+>0 on R™ is defined by A; = exp((logt)P). We assume n > 2.
Then, there is a norm function r on R™ associated with {A4;};>0, which is non-
negative, continuous, even on R" and infinitely differentiable in R™ \ {0}; further-
more it satisfies

(1) r(Aiz) =tr(z) for all t > 0 and =z € R™;

(2) r(z +y) < Ni(r(z) + r(y)) for a positive constant Ny;

B)if ¥ ={z € R* :r(z) =1}, then ¥ = {# € R* : (BF,0) = 1} for a positive
symmetric matrix B, where (-,-) denotes the inner product in R".

We have a polar coordinates expression for the Lebesgue measure:

[ J@)dr= /0 /Z F(AB) L dS(8) dt

with v = trace P and dS = wdSy, where w is a strictly positive C*° function on ¥
and dSy is the Lebesgue surface measure on . Also, there are positive constants
c1,C2,dy,ds, aq,as, 1 and By such that

crlz|® <r(@) < eola|® or dila|” <r(z) < dofa)”

according as r(xz) > 1 or r(z) < 1, where | - | denotes the Euclidean norm. Let
Sn~t = {z € R* : |z| = 1} be the unit sphere with the Euclidean norm. The
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Lebesgue surface measure on S"~! will be denoted also by do. See [2, 21, 28] for
more details.
We denote by Llog L(X) the Zygmund class on ¥ with the norm defined as

19110 1, = inf {)\ 50 /)D 10(6) /A log(2 + |2(8) /\]) dS (6) < 1} .

Also, we consider the L?(X) spaces. We write [|Q[|, = ([5; [Q(8)] dS(H))l/q, 0<
q < 00, ||| = supgey [22(O)].

Let Q be locally integrable in R™ \ {0} and homogeneous of degree 0 with respect
to the dilation group {A:}. Thus Q(A4;z) = Q(z) for  # 0 and ¢t > 0. We assume
the cancellation property

(1.1) /29(0) ds() = 0.

Let K(z) = r(z)77Q(z"), where 2’ = A,;)-1(x) for z # 0, and define the
singular integral

(1.2) Tf(z) =p.v. - flz —y)K(y)dy.

Then it is known that 7" is bounded on LP(R™) for all p € (1,00) if € Llog L(X).
A proof of this based on [10] can be found in [22], where a wider class of singular
integrals including the one in (4.1) below is treated. Also, the following result is
known (see [24]).

Theorem A. Let n =2 and Q € Llog L(X). Then T is of weak type (1,1) on R?.
For Q € LY(S™1), let

(1.3) Ma(f)(x) Ziglgt"/<t|f(w—y)llﬂ(y')|dy, v =y/lyl.

Put Mq (f) = [Ma(|f]*)]*/%, s > 0. We then recall a result of Vargas [30] on R?
with the usual isotropic dilation and the Euclidean norm.

Theorem B. Let Q € LI(S"), ¢ > 1, [¢, Qdo =0, and let T be defined as in (1.2)
withn =2 and K (z) = Q(z')/|z|? (2’ = x/|z|). For a weight w define

W(x) = Q11" Mp Mg 5Ms(w)(@) + |2l Ms (w) (),

where 3 € (1,00), 1/8+1/8 =1, Q6) = Q(-0), Mg(f) = [M(|f°)]'/? with M
denoting the Hardy-Littlewood mazimal operator on R2. Then

sup hw ({z € B : [Tf(x)] > A}) < c/ 1 (2)| WV () da
A>0 R2

for a positive constant C' independent of Q, where w(E) = [, w(x) dx.

Theorem B is generalized to higher dimensions by [12] on the basis of [26]. In
this note we shall extend Theorem B to the cases of singular integrals on R? with
generalized homogeneity and singular integrals on homogeneous groups.

We regard R™ as the underlying manifold of a homogeneous group. The multi-
plication is given by a polynomial mapping and there is a dilation family {A;};~0
on R" such that each A; is an automorphism of the group structure with the form

1415m = (talxlata2x27 v 7tanxn)ﬂ T = (mla' - 7mn)7
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for some real numbers aq,...,a, satisfying 0 < a1 < a2 < --- < a,. We denote
by H the homogeneous group. Thus H is equipped with a homogeneous nilpotent
Lie group structure, where Lebesgue measure is a bi-invariant Haar measure, the
identity is the origin 0, 2~! = —2 and multiplication zy, x,y € H, satisfies

(4) At(xy) = (Atx)(Aty)a z,y € Ha t> 07

(5) if z = zy, then z; = 1 +y1 and 2z = z + Yy + Ri(z,y) for £ > 2 with a

polynomial Ry (z,y) depending only on z;,y;, 1 <i,j <k —1;

(6) r(xzy) < No(r(z) +r(y)) for a positive constant No.

We may assume that ¥ = S" !, where ¥ is as in (3). The space H with a left
invariant quasi-metric d(z,y) = r(z~'y) can be regarded as a space of homogeneous
type. We refer to [5, 8, 13, 20, 29] for more details.

If we define the multiplication

(z,y,u)(@",y",u') = (z+ 2"y + ¥y, u+u + (zy —ya')/2),

then R® with this group law is the Heisenberg group Hj, which is an example of
homogeneous groups. Dilations A;(z,y,u) = (tz,ty,t?u) (2-step) and A} (z,y,u) =
(tz,t?y,t>u) (3-step) are automorphisms on H;. The Euclid space R® with the
usual addition is also a homogeneous group; for the associated dilation A4; =
exp((logt)P), we may choose any diagonal matrix P with entries in ascending
order.

The convolution on H is defined by

frgla) = /H Fw)aly™'x) dy.

Let K(z) = r(z)~7Q(z') be the homogeneous kernel associated with {A4;} as above
and define

(1.4) Tf(e) = pov.f + K(o) = pav. [ J)K (G a)dy,

Then, in [29], the following two results are proved.

Theorem C. Suppose that Q € Llog L(X). Then, T is bounded on LP(H) for all
p € (1,00).

Theorem D. Let ) € Llog L(X). Then, T is of weak type (1,1) on H.

Theorem A follows from Theorem D when the matrix P is diagonal.
A result similar to Theorem C is proved in [25] for the maximal singular integrals
T, defined by

T.f(z) = sup
N,e>0

/ fley K (y) dy
e<r(y)<N

We shall prove weighted versions of Theorems A and D, generalizing Theorem
B. Let w be a measurable, almost everywhere positive function on R™, which we
call a weight function. We denote by L¥(w) (p > 0) the space of all measurable
functions f on R™ such that

o = ([ 1Py ae) " <0
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and by L1°°(w) the weak L'(w) space of all those functions f which satisfy
Il Lo (w) = iup0 Aw ({z € R* : |f(z)] > A}) < o0,
>

where we recall that w(E) = [, w(z) dz.

Let B(a,s) = {x € H : d(a,z) < s} be a ball in H with center a and radius
s. Note that |B(a,s)| = c¢s”, where |S| denotes the Lebesgue measure of a set
S and ¢ = |B(0,1)|. If s = 2* for some k € Z (the set of all integers), then
S = B(a,2%) is called a dyadic ball. Also, we write a = x5, k = k(S). We define
7B(a,s) = B(a,7s) for 7 > 0.

Let A,, 1 < p < 00, be the weight class of Muckenhoupt on H defined to be the
collection of all weight functions w on H satisfying

—1

sup <|B|1/Bw(a:) dm) <|B|1/Bw(m)1/(”1)da:>p < 00,

where the supremum is taken over all balls B in H. Let M be the Hardy-Littlewood
maximal operator defined as usual by

Mf(z) = sup | B! / F@)) dy,
B B

where the supremum is taken over all balls B in H containing z. We then recall
the class A; is defined to be the family of all weight functions w on H satisfying
Mw < Cw a.e. (See [1, 8, 14].)
For functions 2 on ¥ and f on H, we define a maximal function
Mo = spe [ 1001
r(y)<t

>0
generalizing (1.3). Some weighted estimates for Mq, T, T, analogous to those in
the Euclidean case of [9, 31] are shown in [25].
Put M,(f) = [M(f|")]"/*, s > 0, and Mqs(f) = [Ma(|f]°)]"/*. Then
(1.5) Ma,s(f) < (1QUL /N>~ Mau(f), if s <t;
(1.6) Mao,s(f) < ClQIL/* Moy (f) if g > 1.
We have the following result.

Theorem 1. Let w € Ay and 8 € (1,00). Suppose that T is as in (1.4) with
Q € LX) for some q, 1 < q < oo. Then, there exists a positive constant C
independent of 0 such that

I7 oy < € [ 17@] (19027 250 ) @) + 120 Mo ) @) do-

Here §(z) = g(z~'). See [6, 7, 12, 15, 16, 26] for relevant results. By Theorem
1 and (1.5) we can easily prove the weighted weak type estimates for T' analogous
to Theorem B (see Remark 2 of [12]).

Corollary 1. Suppose that Q € LI(X) for some 1 < ¢ < 0o and w? € A,. Then
T is bounded from L'(w) to L' (w).

This follows from Theorem 1 with 3 sufficiently close to 1 and (1.6).
To prove Theorem 1, we use the following weighted L?-estimates.



WEIGHTED WEAK TYPE (1,1) ESTIMATES 5

Theorem 2. Let Q,q,T,w, 3 be as in Theorem 1. Then, there exists a constant C
independent of q and Q0 such that

1/2
1T Ly < C U2 ( / |f<m>|2MgM@,g<w><w>dw) .

To state results with Q € Llog L(X), we consider the maximal function
M*(£)(w) = sup Mr(f)(z),

where the supremum is taken over all the functions F' € L}(X) with ||F||; = 1. Put
M (f) = [M*(|£)*)]'/*. Then we have the following.

Theorem 3. Let T be as in (1.4) with Q € Llog L(X). Suppose that w € As and
B € (1,00). Then

I Al y < CN g 1l a0 o)
for a constant C independent of Q2.

Let Ay (M*) be the collection of all the weight functions w such that M*w < Cy,w
a.e. for some constant C,,. Then, if w satisfies that w™ € Ay (M*) for some 7 > 1
and Q € LlogL(X), by Theorem 3 it follows that T is bounded from L!(w) to
LY (w) on H.

To prove Theorem 3 we apply the following.

Theorem 4. Let w, 3, Q and T be as in Theoerm 3. Then
||Tf||L2(w) S C“Q“L10gL||f||L2(MﬁME(w))
with a constant C' independent of Q.

Remark 1. Let Mq(f) be as in (1.3). Let w(z) = |z|*, @ € L, ¢ > 1. Then,
Mq(w)(z) < C||Q|,w(z) if —n+ (n—1)/g < a <0 (see [19]). In the case of the
Euclidean structure, this observation and Theorem 1 will be used to get a better
result when w(z) = |z|® than the one Corollary 1 can provide (see [27] for relevant
results).

Proofs of Theorems 2 and 4 will be given in Section 2. Theorem 2 will be shown
by applying two parameter Littlewood-Paley type decomposition of T" depending
on ¢ > 1 in the theorem (see (2.4)), which is introduced in [25], and using the decay
estimates (Lemma 3) which can be proved through orthogonality via convolution.
Such two parameter decomposition is needed at the present stage of the research,
since in general homogeneous groups Fourier transform estimates cannot be applied
as effectively as in the Euclidean situation of [10] (see the proof of Theorem 7 in
Section 4) and the group convolution may be noncommutative. Theorem 4 will be
proved by extrapolation using Theorem 2.

In Section 3 we shall prove Theorems 1 and 3. We apply the Koranyi-Vagi version
of the Calderén-Zygmund decomposition f = g 4+ b. The evaluation of T'g can be
accomplished by the weighted L? estimates of Theorems 2 and 4 as usual. To treat
Tb we apply a result of Tao [29] (Proposition 2). We interpolate with change of
measures, between unweighted estimates shown from the result of Tao (Lemma 4)
and weighted estimates which can be obtained by a straightforward computation
(Lemma 5), to prove some key estimates. The interpolation is a variant of the
methods of Vargas [30]. Since Vargas’s interpolation arguments cannot be applied
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directly to get necessary estimates for the proofs of the theorems, we need to further
develop the idea of the methods and suitably modify the arguments to be adapted
for the present situation (see also [11, 12]).

We shall consider singular integrals on R? with generalized homogeneity defined
by (1.2) in Section 4. We are able to prove results analogous to those stated above
for singular integrals on H (Theorems 5-8). To prove analogues for Theorems 1 and
3 (Theorems 5, 6), we apply Proposition 2.1 of [24], which will play a role similar
to the one Proposition 2 performs in the proofs of Theorems 1 and 3.

In Section 5, we focus on the case of R* with the Euclidean structure and give
an application of Theorem 3. We shall show a sharp weighted weak type (1,1)
estimate conjectured in [9].

2. PROOFS OF THEOREMS 2 AND 4

Let ¢ be a non-negative, smooth function on H with support in B(0,1)\ B(0,1/2)
satisfying [ ¢ =1, ¢ = ¢. For p > 2, define

Ak:5pkf1¢—(5pk¢, keZ,

where 6,¢(x) = t~7¢(A; ' z). Note that supp(Ax) C B(0, p*)\B(0, p*2), Ap = Ay
and >, Ay =6, where ¢ is the delta function.

For any p > 2 we can find a sequence {¢;};ez of non-negative functions in
C§°(R) such that

supp(¥;) C {t e R: p? <t < p/*t?},
> ity =1 fort>0,

JEZ
(d/dt)™p;(t)] < emlt|™™ form =0,1,2,...,

where ¢, is a constant independent of p, which is possible as p > 2.
Define the operator S; by

(2.1) S;F(z) = (log2)™" /OOO ()0 F(x)dt/t.

Then S;Ko(z) = r(z)"Q(2")¥;(r(x)), where
Ko(z) = K(z)xp,(x), Do={xecR":1<r(z) <2},

¥;(s) = (log2)™* /1/2 Y;(ts)dt/t.

Here x  denotes the characteristic function of a set E. It follows that
K. Thus

jez SiKo =

Tf=> f*SKo.

We have the following L? estimates.

Lemma 1. Suppose that 1 < ¢ < 00, p = 27" and Q) € Li(X). Then, for j, k € Z
we have

If * SjEKo * Aglla < Cq'2=F=F Q[ £]]2

for some positive constants C, € independent of q and €.
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This is proved in [29] when ¢ = oo. The result for the whole range of ¢ is shown
in [25] by further developing the methods of [29].
We use the weighted Littlewood-Paley inequalities given in [25].

Lemma 2. Letw € Ay, 1 <p < oo. Then

1/2
ka*Ak SCp,w <Z|fk|2> )
k

k Lr(w) LP(w)

1/2
(2.3) H (Z | f * Ak|2> < CpwllfllLr(w),
k

LP(w)

(2.2)

where C), , is independent of p > 2.

To prove Theorem 2, we apply a Littlewood-Paley decomposition depending on
p and obtain a decomposition of T analogous to the one used in [10] in the case of
the Euclidean structure. We write

(24) Tf = Z Uk17k2f7

k1,ko

where
Uy o f = 3 f % Dy % SiKo % Agyjy b ko € Z.

J

This two parameter decomposition is to be compared with (4.2) based on the Fourier
transform. Lemma 1 enables us to get the following estimates.

Lemma 3. Let Q € L1(X), 1 < ¢ < 00, and p = 27 Then, for any integers ki, ky
we have

1Uks b Flly < Cq'27 2= dRla) | £l

with some positive constants C and € independent of q and (2.

See [25, Section 4]. We give a proof for completeness.

Proof of Lemma 3. Let L; = S; K. We may assume that all the functions under
discussion are real valued. We note that Lemma 1 and duality imply

I1F % Ap % Lyll, < Cq'2= M0l £l

If we apply this estimate and Lemma, 1 for L; and E]' along with Young’s inequality
and the evaluations

18k 45 % Apyegrllt < Cmin(L,p=F=7179) AL <

which hold for some positive constants C, ¢ independent of ¢ and can be proved

easily, then we obtain
Hf # (A L) % (Apygj % Mgy jo) % (L % Agygjr) |2

< C(N191l,)°2 > min(L, p~ G| £]lo.
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Similarly, by the associative law of convolution the same quantity can be estimated
as

Hf 5 Ny # (Lj % Apyyj) % (Dpgmgr * L) % Mgy e ,
< C(q'19lg)227 2%l £

Thus, taking the geometric mean we have

Hf % Ak1+] * L] * Akz—‘,—j X Ak2+]’/ * L]r * Ak1+]’/

2
< (¢ ||l 22 Frl2=elkel min (1, p=<(0=71=)/2) || 7]
Obviously, a similar estimate is valid for
1 # Abgjr * Ly Ao Ay Ly % Ay 2.

Thus, applying the Cotlar-Knapp-Stein lemma we can reach the conclusion. a

On the other hand, since w € A,, applying (2.2) of Lemma 2 with p = 2 we have
1/2

(2.5) Uk k2 fll 2wy £ C Z 1F * Akyj % SiKoll72(0)

J

We note that
(2.6)

g% S; KollL 1wy < / ( / | o)
H \/pi<r(y—ta)<pi+s

N
< / o)l [ S pira-tmvm / 1((y o)) w(z) de | dy,
H m—1 pi2m—1<r(y=ta)<pi2zm

where N is determined by 2V ! < p? < 2%; therefore N ~ log p. From this we can
see that

(27) I * Dby * SiKollj2 () < CUog p)IQ1L [[If * Akyai P * S5 Kol | 1 )
< Clog ) |11 1 * Ak 17 a1, ey

Qy—"x)")
r(y=tz)Y

dy) w(z) dx

Combining the inequalities (2.5) and (2.7), we have
1/2

(28) ||Uk1,k2f||L2(w) < C(IOg p)HQH}/2 Z ||f * Ak1+j||i2(Mﬁ(w))

J

< C(log P)IQULZ 1 F 11 220y ps ()

where the last inequality follows from (2.3) of Lemma 2 with p = 2 and the fact that
MpMg(w) is in A; and hence in As, if it is finite a.e. Let 0 < 6 < 1. Interpolating
with change of measures between the estimates in Lemma 3 and (2.8), we get

—(1-0)e 0 _
1Uky ko fll 2 ey < Ca'2 (1=6) (‘kllﬂkﬂ)||Q||1/2||Q||é W F 1 n2(vy Mg (0)) -
Thus by (2.4)

0 —
(29) T fllp2wey < D WUk ko Fll 2oy < Cq' 10215 122 (015 Mty )2
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for any w € Ay and 6 € (0,1). For w € Ay we choose 6 € (0, 1) sufficiently close to
1 such that w'/? € A, and 30 > 1. Then by (2.9) with w'/? and 6 in place of w
and 3, respectively, we have

IT 1l 2y < CENQAT NS N N2 (010005, 1)

Since ||} < S(X)Y/7||9,, from this and (1.5) the conclusion of Theorem 2 fol-
lows.

Applying extrapolation methods using Theorem 2, we can show Theorem 4 as
follows. Decompose @ € LlogL(Z) as @ = >, ¢xQ, where each U, satisfies
(1.1), supy>q [|[Q%lli41/x < 1 and {c} is a sequence of non-negative real numbers
such that ) ;- | ke < oo (see [23]). By Theorem 2 we have

(o)

1T Fll2w) < C D kerllell 1 NI S A 20t 01y, s (0)
k=1

<C (Z ka) 1Al z2(vp n () -

k=1

Taking the infimum over the sequences {c}, we can get the conclusion of Theorem
4, since it is not difficult to show the infimum is equivalent to the norm of 2 in
Llog L.

3. PROOFS OF THEOREMS 1 AND 3
For n > 0, Q € L9(X) and a positive integer s, let
(3.1) Qs (2") = Q@ )xq)/ 10, >2m1 ().

For a weight w, define wo,, = Y51 Mg (w). Theorem 1 will be deduced from
the following.

Proposition 1. Let w € As, 8 € (1,00). Suppose that Q € LI(X) for some g > 1
and T is as in (1.4). Then, there exist positive constants C' and n independent of
Q such that

T fllro(wy < Cllfllrow)
with
W = Q7 Mp Mg 5(w) + (|9l Ms(w) + M (we,,)-
Indeed, note that
Q6] < 2707010, 7|0~

and hence ||Q, 5|, < 27*0~9||Q||,. Thus by (1.5)

Mg (w) < C27=D/B Q|1 Mg i (w).

s
Consequently, by summation in s, wg, < C’||Q||é/ﬂ’MQﬁ(w), which will be used
to get the conclusion of Theorem 1.

Assuming that f is smooth and compactly supported, we shall show that

w({z e H:|[Tf(z)] > A}) <COX'|fllpyw) for all A >0,

where W is as in Proposition 1. To prove this we may assume that ||||, = 1 and
A = 1. By the Calderén-Zygmund decomposition at height 1, we have a family
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F of disjoint dyadic balls B, an associated family {Qp}pecs of disjoint sets and
functions g, b such that

(3.2) f=g+0;
(3.3) B C @Qp C B* with B* = kB for some k > 1;
(3.4) c|B|§/ |f|§/ |f] < C|B| for some ¢,C > 0;
B B*
(3.5) lgllee < C, Ngllnice) < CFlL(mre));
(3.6) b= bs, bl < ClFllLr e
BeF
(3.7) supp(bs) C Q. / by =0, [bsll <CIBI,

where v is any weight function (see [18, Section 2], [8, 13, 20]). We may assume
without loss of generality that F has a finite cardinality.

We have
{ZE cH: |Tf(£l?)| > 1} C O1 U0, UO3,
where

O, ={x€H:|Tg(x)| >1/3},

Oy=qz€H: Y |y bpxSypyKolx)|>1/33,
s<Co |BEF

O3 = {ZE ceH: Z Z bp *Sk(B)+sK0(x) > 1/3}
s>Co |IBEF

Here S; is defined as in (2.1) with p = 2 and we recall that k(B) denotes the
radius of B. We assume that the positive constant Cy is sufficiently large. This
may imply that bp * Si(B)+s Ko is supported in an annulus {e 2B s < r(xgla:) <
cp2K(B)+st3Y (¢ ¢y > 0), if 5 > Cp.

Applying Theorem 2, by Chebyshev’s inequality and the first part of (3.5) we
have

w(O1) < ClITgll72w) < Cllglizawyy < Cllgllzewn),s

where W, = M/ngm(w). Since Wy € A; if it is finite a.e., using the second part
of (3.5), we see that

(3.8) w(01) < Cllgllprwyy < Cllfllrarwnyy < ClFllrowy)-

Note that O, is contained in E = UgCB for some C > 0, since supp(S;Ko)
is contained in {2/ < r(z) < 23} and supp(bg) in B* (see (3.7) and (3.3)).
Therefore, by (3.4) we have

(3.9) w(0z) <w(E) <Y w(CB)
B
<O 1Bligt M(w) <C Y [ 1f@IM(w) (@) ds
B B /B

< Cllfllor (m(w))
where infp M (w) = inf.cp M (w)(z).



WEIGHTED WEAK TYPE (1,1) ESTIMATES 11
To prove Proposition 1, it remains to show w(O3z) < C||f|[1w) with W de-

scribed there. In the following arguments, s is a positive integer greater than Cj,
where Cj is as in the definition of Os.

Lemma 4. Letn > 0 and

Ls(z) = x,2(r(@)r(2) 77 Q5 (2"),  Q (¢") = Q") xqaj<znsy ()
Then, if n is sufficiently small, we have

HeH 1]

for some constants C,e > 0, where F' is any subset of F.

Z bp * Sk(B)+sLs(T)
BeJ”’

<2 Y |B|

Be3”’

Lemma 5. Let L, 3" be as in Lemma 4. Then

w ({meH: >1}> 302’752|B|i%fM(w).

BF!
In proving Lemma 4 we need a result of [29]. To recall the result, we introduce
a function g defined as

Z bp * Sp(B)+sLs(z)

Beg”’

VB () = ho(Ay-r) (25 )

with a non-negative, smooth function o on H such that supp () C {d* < r(z) <
d}, vo(z) = 11if 2/d < r(z) < d/2 for a sufficiently large positive number d and
o]l < 1. Also, let B be a finite family of disjoint dyadic balls such that

(3.10) > IBl<1L.

BeB
Then, the following result is shown in [29].

Proposition 2. Let B be as in (3.10) and let bg be a function satisfying (3.7) for
each B € B. Suppose 1 < p < 2. Then, there exist a positive number ¢y and a set
E, C H such that

|Es| < C27°0%;

1/2
<27t (Z |B|||fB||%>
Lr(H\E)

BeB

Z V25 B(bB * Sk(B)+sfB)

BeB

for any functions fp in L*(H).

Proof of Lemma 4. We observe that by dilation invariance we may assume ¢ <
Y peg | B| <1 for some positive constant c. Then, if d is sufficiently large so that
s p is identically 1 on the support of bp * Si(p)+sLs, using Proposition 2 with
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B =3 and fg = L, for all B along with Chebyshev’s inequality, we get

frca )
1}

Z bp * Sk(B)+sLs(z)

Be3’

{xEH\ES:

< |E| + Z b * Sk(B)+sls(T)
BeF

< 0279 4 02 P0°(C2°™ > |B|)P?
BeJ’

< C27€05 + C2*p€08CP/22P775’
which will prove Lemma 4, if n is small enough, since ) 5 4 |B| > c. O

Proof of Lemma 5. If we apply (2.6) with p = 2 and bp * Sy(p)+sLs in place of
g * SjKo, since |27 | < 27, we see that

(3.11) |[|bB * Sk(B)+sLS||L1(w)

<C2m / b (y)] (2““9)“)7 / w(zx) da:) dy.
B* r(y=le)<2k(B)+s+3

If z€ B,y € B* and r(y 'x) < 2KB)+s+3 then
r(z7tz) < Nor(zrxp) + Nir(zg'y) + Nir(y tz) < O2HB)+s

which implies

sup 2*(’“(3)“)7/ w(z)dr < Cinf M (w).
yEB* T(y—lw)gzk(B)+s+3 B

Using this in (3.11) and applying the last property of bp in (3.7), we see that
(3.12) ||bB * Sk(By+sLsllL (w)

<C2m i%f M (w) /B* |bB(y)|dy < C2"*|B| i%f M (w).
Now Lemma 5 follows from (3.12) and Chebyshev’s inequality. O

Lemmas 4 and 5 are used to prove the following estimates.

Lemma 6. For a > 0, put

E; = {ZE ceH: Z bp * Sk(B)+sLs(m) > Oé} .
BeF
Then we have
(3.13) min(w(z),u) de < C2"° Z | B| min (u?fés,inf M(w))
Eq BeF B

for all w > 0, where € is as in Lemma 4 and w is any weight function.
Proof. For u > 0, set
F.={Be7F: i%fM(w) < w2}
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E,,= 2 €H:| > bp*SypysLs(x)| >a
BeTJg

and ¢ = F\ F,. Let a > 0 and

Z bB*Sk(BH-sLs(x) >

Eyo= {1‘ eH:
BeF,

Then, E CEua/QUE

w2 and hence

min(w(z),u) dr < /E min(w(z),u) dz +/E min(w(z),u) dx
w,1/2

!
u,1/2

S/ w(m)dm-{—/ udx.
Fuaye B

uw,1/2

By

From Lemma 5, we easily see that

/ w(z)dr <027 S |Blinf M(w) = C2" 3" |B|min (u2_“,infM(w)).
Buy2 Bez. D BET. i
Also, Lemma 4 implies that
/’ uwdr < Cu2™ Z |B|=C Z | B min (u2_ ,1%fM(w)).
w,1/2 Begg Begg

Combining these estimates, we get the conclusion of Lemma 6. O

Multiply both sides of the inequality in (3.13) by = **? (8 € (0, 1)), and integrate
them over (0,00) with respect to the measure du/u. Interchanging the order of
integration on the left hand side, performing termwise integration on the right

hand side, and using the formula

oo

e —1qpdu =0 (=
min(Z, u)u"'t — ==’ (2 >0),

0 u

we then get

0 ns —(1—0)es ; 0
/Sw(m) dr < 2 3 |BJ2 inf M (w)

1 BeF

SCQ"SQ*“*G)” 1nfM /|f )| dz
Be’?

< Cm 0 [ 1) M (w) @) da,

where the second inequality follows from (3.4). Substituting w'/? for w and reducing
7, if necessary, we get

(3.14) w(Ef) < 02~ 1-0)es/2 / £ (@) M o (w) (z) da.

Similarly, we have for any 6 € (0,1)
(315) w (Ecs(ﬂﬂss) < C27Ts||f||L1(M1/9(w)),
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where § and 7 are sufficiently small positive constants depending on 6 and c¢s is
chosen so that Es>co ¢s27% = 1. This can be achieved by applying the proof of
(3.14) to a version of E}, where Q; _ is replaced by cg12‘sst;’s.

We note that

{er: >

s>C

Z bp * Sk(B)+sLs(T)
BeF

> 1} c | B

s>C
<> w(E,-s)

> 1}>
s>C

<C Y 2 llzranow) < CUFlEL L, o ())-
s>C)

since .o o 5279 = 1. Therefore, (3.15) implies that

(3.16) w ({w € H: Z

s>C

Z be * Sk(B)+sLs(T)
BeF

Next, let
Ry(x) = X[1,2] (r(x))r(x)_VQn7s(x’)’

where ,, ; is as in (3.1). Arguing similarly to the proof of (3.12) in view of (2.6)
(with p = 2), we have

1bs * Sicy e Rl < C /Q b5 (v)| Mg, (w)(y) dy.

Combined with (3.6), this implies

BIT) > > b * SkmyesRallLiw) < C / by)l Y Mg, (w)(y)dy

s>Co BEF s>Co
S CNfllpr (m(wan))-

Noticing Ky = Ls + R; for all s, by (3.16) and (3.17) with Chebyshev’s inequality,
we have

(3.18) w(03) < Ol fllzr (M w)) + ClFIlLr (M (wan)

for any 3 € (1,00). Thus we have w(O3) < C||f||z1(w) as claimed, which combined
with (3.8), (3.9) completes the proof of Proposition 1.

We now proceed to the proof of Theorem 3. We may assume that ||Q||L10g . = 1.
Furthermore, arguing as in the proof of Proposition 1, the proof of Theorem 3 can
be also reduced to the estimates of w(0;), i = 1,2,3, where each O; is defined
similarly. By Theorem 4 we have

(3.19) w(01) < CllFllLr(mgnas (w))-
Also
(3.20) w(02) < Ol fllpr(ar(w))-

Further, similarly to the proof of (3.18), we obtain

(3.21) w(05) < C /H 1 (@)] [Mp(w) (z) + M(wa,,) ()] de,
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where wgq ,, is defined as above from ,, ; in (3.1) with ||Q]|, replaced by ||Q||z10g .
and 7 is sufficiently small. We observe that

(3:22) wa,y < OM*(w) Y ||l < CM*(w),

s>1
since we assume that |||z 10g r, = 1. Using this in (3.21) we have
(3.23) w(03) < Ol fllpr(as (w)) + CNFllLr(vanrs (w))-
The conclusion follows from (3.19), (3.20) and (3.23).

4. SINGULAR INTEGRALS ON R? WITH THE GENERALIZED HOMOGENEITY

In this section we consider singular integrals on the Euclid space R™, with the
usual addition, associated with the non-isotropic dilations A; = exp((logt)P),
where P is not restricted to diagonal matrices. Similarly to the case of R con-
sidered as a homogeneous group with a diagonal matrix P, we can also define the
maximal operators M, M, Mq, Mq ., M*, M} in this context with a norm func-
tion r related to {A:}. Also, the Muckenhoupt class A,(R") is defined as in Section
1.

We have results on R? analogous to Theorems 1 and 3 in Section 1.

Theorem 5. Suppose that w € Ax(R?), 8 € (1,00) and Q € LI(X) for some q,
1< g<oo. Let T be as in (1.2) with n = 2. Then

I7fliimy <€ [ 1@ (19037 Mo M ) @) + 191, My w0)(2)) o
for some positive constant C independent of ).

Theorem 6. Let Q € Llog L(X) and let T be as in (1.2) withn = 2. Ifw € A>(R?)
and B € (1,00), then

1T £l ) < N 10 21 F 23 r1 013 )
with a constant C' independent of Q.

We also have an analogue of Corollary 1 in the present context.
To describe results on L? estimates, we introduce a kernel L on R® defined by

L(y) = h(rm)K(y), K(y)=ry) "2y,
where h is a bounded function on Ry = (0,00) and K is a homogeneous kernel as
n (1.2). We consider a singular integral operator S on R™ defined by

(4.1) Sf(z) =p.v. - f(z —y)L(y) dy.

Then, we have the following results, which are stated more generally than needed
for the proofs of Theorems 5 and 6.

Theorem 7. Let 2 € L9(Y), 1 < ¢ < 00, h € L*®(Ry) and let S be as in (4.1).
Suppose that w € A2(R™) and 8 € (1,00). Then

1/2
|f ()| Mg Mg g(w)() da:)

for a positive constant C independent of q, Q0 and h.

1S FllL2(w) < Cq' 1]l /9 (/

R~
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Theorem 8. Suppose that w € A2(R™) and B € (1,00). Let S be as in (4.1) with
Q€ LlogL(X) and h € L>*(Ry.). Then, there is a constant C independent of
and h such that

IS fllL2(wy < Cllbllsol| L 10g LI f 1 L2(05 M5 () -

A result similar to Theorem 7 can be found in [17]. Theorem 8 can be de-
rived from Theorem 7 by an extrapolation argument similar to the one that proves
Theorem 4 from Theorem 2.

We give a proof of Theorem 7 using Fourier transform estimates, which differs
from the proof of Theorem 2 in Section 2 in that it allows the presence of the
function h in the kernel L.

Proof of Theorem 7. We apply methods of [10]. Let E; = {z € R* : 27 < r(z) <
2011} j € Z. Set

Lj(z) = L(z)x; (2)-
Let A} = exp((logt)P*), where B* denote the adjoint of a matrix B. A norm

function s(¢) will be defined from {A}} in the same way as r(z) is defined from
{A:}. Let ¢ be a non-negative function in C>°(R; ) such that

o]

supp(e) C[274,2], Y (@)* =1, t>0.

k=—oc0

Define the operator Dy, by

(Def) (€)= p(2"s(6)) (€),

where f(€) = [ f(z)e~2(®£) dg is the Fourier transform. We write Sf = 370 __ U f,
where

(4.2) Uef =Y Djpk (Lj* Disif).
j=—o00
Then, it is known that
(4.3) 1T £l < CllRlloo |02V £

for some € > 0 (see [10], [22]). Since we also have weighted Littlewood-Paley
inequalities with operators {Dj} analogous to Lemma 2, arguing similarly to the
proof of (2.8), we have

1/2
(4.4) 10k Fllz2w) < CllRlsellR 11l 2201, 3101
Applying interpolation with change of measures between (4.3) and (4.4) and arguing
similarly to the proof of Theorem 2, we can obtain the conclusion. a

To prove Theorem 5, we show a version of Proposition 1 relevant to Theorem
5 by using a Calderén-Zygmund decomposition f = g + b analogous to (3.2) and
arguing similarly to the proof of Proposition 1. To treat T'g we apply Theorem
7 with n = 2 and h identically 1. A version of the set O2 of Section 3 can be
handled similarly. Also, to prove an analogue of (3.16), we apply Proposition 2.1 of
[24], which is analogous to Proposition 2, in the same way as Proposition 2 is used
in proving (3.16), along with an interpolation argument with change of measures
similar to the one used in the proof of (3.16). Finally, it is obvious that an analogue
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of (3.17) can be shown also in the present context. Combining results, we complete
the proof of the result analogous to Proposition 1, which implies Theorem 5.

Also, we can prove Theorem 6 arguing similarly to the proof of Theorem 5
with suitable modifications using Theorem 8 with n = 2 and A = 1 and with an
observation similar to (3.22), as we prove Theorem 3 from the procedure of the
proof of Theorem 1 with suitable adjustments in Section 3.

Remark 2. To prove Theorem 7 we applied a Littlewood-Paley decomposition
adapted to a fixed lacunary sequence. On the other hand, the Littlewood-Paley
decomposition used in the proof of Theorem 2 is adapted to a lacunary sequence
depending on ¢. This is needed to get the required estimates of Theorem 2 through
the two parameter decomposition in (2.4).

5. WEIGHTED WEAK TYPE ESTIMATES WITH {2 IN LlogL

In this section, we review Theorem 3 for the case of R® with the usual addition,
the isotropic dilation and the Euclidean norm.

Let A;(Ry) be the A; class on Ry. We recall a weight class introduced by [9].
Define

A (R™) = {w(z) = v(|z|) : visin A;(R;) and is decreasing or v® € A; (R, )}.
For e ¥ =571 let
t
My(f)(z) = supt_l/ | f(x + t0)| dt.
>0 0

Then, it was noted in [9] that My(w) < Cw uniformly in # € S*~' if w € A; (R"),
by the arguments based on results of [4]. Thus it follows that

t>0

My (w)(x) = supt™™ / w(z — )| F(y")| dy
ly| <t
<C [ M@IFO)|do(6) < CIFvu(a),

and hence M*(w) < Cw whenever w € 41 (R™). Therefore, since it is easy to see
that w™ € A;(R™) for some 7 > 1 if w € A; (R™), Theorem 3 implies the following.

Corollary 2. Let

Tf(r) =p.v. . flz—y) ?ﬁ;) dy

with Q € Llog L(S™ ') satisfying [¢,_, Qdo = 0. Suppose that w € A (R™). Then
T fllLreewy < ClIUL10g LI F I L1 ()

where C is a constant independent of Q).

This is foreseen in [9, p. 879, (e)]. If wa(z) = |z|*, then w, € A;(R") for
-1 < a<0. So, T is bounded from L'(w,) to LY (w,) if —1 < a < 0 (the range
of a is sharp). This result on the power weights follows from [27] combined with
[26]; see [16] for the two dimensional case. Our treatment of Theorem 3 provides a
different proof.
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