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Abstract 

This study proposes a generalized multinomial logit model that allows heteroscedastic variance and flexible utility 
function shape. The novelty of our approach is that the model is theoretically derived by applying a generalized 
extreme-value distribution to the random component of utility, while retaining its closed-form expression. In 
addition, the weibit model, in which the random utility is assumed to follow the Weibull distribution, is a special 
case of the proposed model. This is achieved by utilizing the q-generalization method developed in Tsallis statistics. 
Then, our generalized logit model is incorporated into a transportation network equilibrium model. The network 
equilibrium model with a generalized logit route choice is formulated as an optimization problem for uncongested 
networks. The objective function includes Tsallis entropy, a type of generalized entropy. The generalization of the 
Gumbel and Weibull distributions, logit and weibit models, and network equilibrium model are formulated within a 
unified framework with q-generalization or Tsallis statistics. 
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1. Introduction 

    The multinomial logit model has been indispensable in transportation studies for several 

decades. Stochastic user equilibrium models with a logit-based route choice are among the most 

widely used network equilibrium models. The multinomial logit model can be expressed in 

closed form and is easily applied. Such a simple closed formulation is desirable, especially 

considering the embedding of route choice models in network equilibrium analysis. Calculation 

of route choice probabilities is iterative and requires significant computational cost in network 

equilibrium algorithms. The closed-form logit formulation is derived from the assumption that 

the utilities are distributed independently and identically.  

 

 
* Corresponding author. Tel.: +81-(0)76-234-4614; fax: +81-(0)76-234-4644 

E-mail address: nakayama@staff.kanazawa-u.ac.jp 



2 

 

    Castillo et al. (2008) proposed the weibit model, a closed-form discrete choice model with 

Weibull-distributed utility. Fosgerau & Bierlaire (2009) considered a multiplicative error term 

and derived a closed-form model similar to the weibit model of Castillo et al. (2008). Li (2011) 

extended the logit and weibit models for other distributions and offered other alternative error 

distributions for discrete-choice models. Kitthamkesorn & Chen (2013, 2014) proposed a 

stochastic user equilibrium model with a weibit route choice. The weibit model considers 

heterogeneous perceived variances with respect to different travel costs, while the (multinomial) 

logit model has homogeneity in the variance of its error terms. Bhat (1995, 1997), DeShazo & 

Fermo (2002), Caussade et al. (2005), and Koppelman & Sethi (2005) considered an additive 

error term or scale parameter to relax the homogeneity in the error-term variance.  

    There is a possibility of integrating the logit and weibit models under a closed-form 

formulation, since both the Gumbel and Weibull distributions are in a family of extreme value 

distributions. A generalized extreme value distribution in probability and statistics could play an 

important role in the integration. The generalized extreme value (GEV) distribution consists of 

the Gumbel-, Fréchet-, and Weibull-type extreme value distributions and has a greater variety in 

shape than either the Gumbel or Weibull distribution. The Gumbel-type extreme distribution is 

the Gumbel distribution. Note that the GEV distribution above is different from the GEV 

distribution that is the basis for deriving the nested logit and other more elaborate logit models 

(e.g., cross-nested logit model) in travel behavior analysis. Recently, to avoid confusion, the 

latter GEV distribution has been referred to as the multivariate extreme value distribution. 

    Nakayama (2013) proposed a discrete choice model with a GEV-distributed utility. This 

previous model has a complicated utility function, and it results in parameter estimation 

instability. In this study, we improve the previous model and propose a more simplified 

formulation of the generalized logit model with GEV-distributed utility. The generalized logit 

model includes the (multinomial) weibit and multinomial logit models as special cases, because 

the GEV distribution combines the Gumbel-, Fréchet-, and Weibull-type extreme value 

distributions. Thus, it is a unified model of logit and weibit in a single closed-form expression. In 

contrast, the weibit models proposed previously do not include the logit model. Furthermore, the 

generalized logit model can avoid one of the limitations of the logit model, viz., the homogeneity 

of the utility’s variance.  

    The generalized logit model is incorporated into a transportation network equilibrium model as 

a route choice model formulated as an optimization problem under uncongested networks with an 

objective function that includes Tsallis entropy, a type of generalized entropy. Finally, the 
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relationship between Tsallis entropy and the generalized logit model with GEV-distributed utility 

is examined, and its mathematical framework is elucidated.  

 

 

2. GEV distribution and q-exponential function 

  

    The GEV distribution is important for deriving the generalized logit model. GEV is explained 

again in this section to help readers understand it more readily, even though Nakayama (2013) 

has already explained it. The logit model has a Gumbel-distributed utility (or error term). The 

Gumbel distribution is a type of extreme value distribution, and the GEV distribution includes 

the Gumbel distribution. The cumulative distribution function (CDF), , of GEV is 

expressed as 

 (1) 

where μ, θ (> 0), and γ are parameters (e.g., Johnson et al., 1995). When γ  = 0,  = 

exp[−exp{−(x − μ)/θ)}], because limρ→0(1 + ρ x)1/ρ = exp(x). This is the CDF of the Gumbel 

distribution. Thus, the GEV distribution includes the Gumbel distribution as a special case.  

    Tsallis (1994, 2009) proposed a type of generalization of Boltzmann–Gibbs statistical 

mechanics and thermodynamics. A core concept in his study is Tsallis entropy, a generalization 

of Boltzman–Gibbs (or Shannon) entropy. Such a generalization is sometimes called q-

generalization. The basic operations of q-analysis appear in q-generalized statistical mechanics. 

Tsallis (1994) generalized the exponential function as follows: 

expq (x) := 1+ (1− q)x[ ]
1

1−q , (2) 

with the domain x 1+ (1− q)x ≥ 0{ } . Recently, this generalized exponential function has been 

called the q-exponential function (e.g., Umarov et al., 2008). When q = 1, exp1(x) = exp(x), 

because limρ→0(1 + ρ x)1/ρ = exp(x), as stated above. Thus, we confirm that the q-exponential 

function is a type of generalization of the exponential function. The q-logarithm function is also 

defined as follows: 

q
xx

q

q −
−

=
−

1
1:)(ln

1

 (3) 
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for x > 0. When q = 1, ln1(x) = ln(x). Therefore, the q-logarithm function includes the (standard) 

logarithm function as a special case. Furthermore, lnq(expq[x]) = x.  

    Let q = γ + 1. Using the q-exponential function in Eq. (2), the CDF of the GEV distribution is 

rewritten as 

Ĝ(x) = exp −expq −
x − μ
θ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣⎢
⎤

⎦⎥
= exp − 1− 1− q( ) x − μ

θ
⎡
⎣⎢

⎤
⎦⎥

1
1−q

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (4) 

with the domain x 1− 1− q( ) x − μ( ) θ ≥ 0{ } . The CDF of Ĝ(x) must be within the range [0.0, 

1.0] and increasing. Therefore, θ ≥ 0 is required. When q = 1, μ = 0, and θ = 1, this GEV 

distribution is the standard Gumbel distribution, whose CDF is exp[−exp(−x)]. As stated above, 

the CDF of the Gumbel distribution is exp[−exp{−(x − μ)/θ)}]. Replacing one of the exponential 

functions of the Gumbel distribution’s CDF with the q-exponential function yields that of the 

GEV distribution. Thus, the GEV distribution is a type of q-generalization of the Gumbel 

distribution.  

    Fig. 1 shows the probability density function (PDF) of the (q-form) GEV distribution with q = 

1 (and μ = 0), that is, the Gumbel distribution. The domain of the Gumbel distribution is from 

negative infinity to positive infinity. The distribution becomes flatter as θ increases. As will be 

stated below, θ determines the distribution’s variance. 

    Fig. 2 presents the PDF of the (q-form) GEV distribution with q = 1/2 and θ = 1. The 

distribution with q = 1/2 leans to the right, while the Gumbel distribution (GEV with q = 1) leans 

to the left. The domain with q = 1/2 and θ = 1 is x ≤ 2 + μ. When μ = −2, the domain is x ≤ 0. A 

change in μ translates the distribution in the x direction.  

   
Fig. 1.  PDF of GEV distribution with q = 1 and μ = 0  Fig. 2.  PDF of GEV distribution with q = 1/2 and θ = 1 
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    Figs. 3 and 4 show the PDFs of the (q-formed) GEV distribution with θ = 1 and μ = 0. The 

distribution with q < 1 leans to the right, as shown in Fig. 3, while that with q > 1 leans to the left, 

as shown in Fig. 4. Thus, the (q-formed) GEV distribution has various shapes according to the 

value of q and other parameters. This flexibility helps in fitting the distribution to the data.  

    The mean of the (q-form) GEV distribution is 

μ + Γ(2 − q)−1
q −1

θ q < 2andq ≠1

μ +ηθ q =1

⎧
⎨
⎪

⎩⎪
 (5) 

where η = 0.572216 (Euler constant) and Γ(⋅) is the gamma function. When q > 2, the 

distribution has no mean. Note that the (q-form) GEV distribution is not symmetric, and the 

mean does not generally equal the mode. The mode of the (q-form) GEV distribution is μ, and its 

variance is 

Γ(3− 2q)− Γ(2 − q)[ ]2

q −1( )2 θ 2 q < 3
2

and q ≠1

π 2θ 2

6
q =1

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 (6) 

When q ≥ 3/2, the distribution has no variance. As the value of q increases, the tail of the 

distribution becomes fatter. In the field of finance, a fat-tailed distribution is important for 

considering risks. Similarly, it is useful in transportation. One of the well-known issues 

involving a fat-tailed distribution is modeling route choice behavior. Sheffi (1985) pointed out 

that the normality assumption might not be appropriate for modeling the distribution of 

perceived travel times, and a distribution with a long tail to the right (positive skewness) could 

be more appropriate. Note that a distribution with a long tail to the left (negative skewness) must 

be applied for the error term in route choice models, since the utility is usually defined as a 

Fig. 3. PDF of GEV distribution with q < 1, θ = 1, and μ = 0 Fig. 4. PDF of GEV distribution with q > 1, θ = 1, and μ = 0 
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negative value of travel time. The (q-form) GEV distribution is negatively skewed with a long 

left tail when q < 1 as shown in Fig. 3. Thus, it would be useful as a utility distribution for route 

choice. 

 

 

3. q-generalized logit model 

  

    In the multinomial logit model, the random utility consists of the systematic utility and the 

error term. The separativeness of systematic utility and error term of an independent utility 

results in homogeneity in the variance of the error terms. On the other hand, the random utility in 

the proposed generalized logit model cannot be decomposed into a systematic utility and error 

term. Thus, the key point of this current model development is to derive a model with the 

expression of the entire random utility, Uij, without decomposition into a deterministic utility and 

error term, where Uij is the random utility of route j (= 1, 2,…, Ji) for origin-destination (OD) 

pair i ( = 1, 2,…, I ). Let vij be the mean of Uij, that is, E[Uij] = vij, where E[⋅] is the expectation 

operator. Furthermore, assume vij = Σ k=1
K αikyijk, where αik is parameter k for OD pair i, yijk is 

explanatory variable k on route j for OD pair i, and K is the total number of explanatory variables. 

In the case in which the parameters are common among the OD pairs, vij is Σ k=1
K αk yijk. Thus, the 

mean utility, instead of the systematic utility, is given by the utility function in the generalized 

logit model. 

    To meet the assumption that the mean of random utility of route j for OD pair i, which follows 

the (q-form) GEV distribution, is equal to vij, that is, E[Uij] = vij, the CDF, Gij(x), of Uij must be 

the following:  

Gij (x) = exp −
exp2−qi

(vij )
Γ(2 − qi ){ }1 (qi−1) expqi

(−x)
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= exp −expqi
−

x − 1
1− qi

1−
1+ (qi −1)vij

Γ(2 − qi )
⎧
⎨
⎩

⎫
⎬
⎭

1+ (qi −1)vij

Γ(2 − qi )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, (7) 

Substituting μ =
1

1− qi

1−
1+ (qi −1)vij

Γ(2 − qi )
⎡

⎣
⎢

⎤

⎦
⎥ and θ =

1+ (qi −1)vij

Γ(2 − qi )
 into Eq. (5), we can confirm that 

E[Uij] = vij in the distribution of Eq. (7). As Eq. (5) states, qi < 2 is required in order for the mean 

of random utility distribution to exist. Furthermore, it must be the case that 



  

7 

 

1+ (qi −1)vij ≥ 0 (8) 

to define exp2−qi(vij), if qi ≠ 1. When qi = 1, such a condition is not required. 

    The probability of choosing route j for OD pair i is the probability that the utility on route j for 

OD pair i is greater than those on any other routes for OD pair i. That is, the utility on route j for 

OD pair i is the maximum for OD pair i. Therefore, the probability of choosing route j for OD 

pair i is given by 

 (9) 

where pij is the probability of choosing route j for OD pair i, Pr[⋅] and max(⋅) are the operators 

that determine the probability and the maximum, respectively, gij(x) is the PDF of the utility on 

route j for OD pair i, Ji is the number of routes for OD pair i, and Ωi is the domain of the CDF 

for OD pair i. 

    To simplify the following equation expansion, let 

zi := expqi
(−x). (10) 

The PDF of the utility on route j for OD pair i is 

gij (x) = d
dx

Gij (x) = −
exp2−qi

(vij )
Γ(2 − qi )[ ]1 (qi−1) Gij (x) dzi

dx
 (11) 

because dzi/dx = −[expqi(−x)]qi. Substituting the above into Eq. (9) yields 

pij = −
exp2−qi

(vij )

Γ(2 − qi )[ ]1 (qi−1) Gij (x)
j=1

Ji

∏zi∈Ω̂i
∫ dz i

= −
exp2−qi

(vij )

Γ(2 − qi )[ ]1 (qi−1) exp −
zi

Γ(2 − qi )[ ]1 (qi−1) exp2−qi
(vij )

j=1

Ji

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥zi∈Ω̂i

∫ dzi

=
exp2−qi

(vij )

exp2−qi
(vij )

j=1

Ji

∑
exp −

zi

Γ(2 − qi )[ ]1 (qi−1) exp2−qi
(vij )

j=1

Ji

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
∞

0

=
exp2−qi

(vij )

exp2−qi
(vij )

j=1

Ji

∑

 (12) 

where Ω̂i  is the domain of zi. Thus, the q-generalized logit model is given by 

pij =
exp2−qi

(vij )

exp2−qi
(vij )

j=1

Ji

∑
 (13) 
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This closely resembles the choice probability equation of the multinomial logit model. When qi = 

1, the route choice probability of Eq. (13) is 

pij =
exp(vij )

exp(vij )
j=1

Ji

∑
 (14) 

because exp1(x) = exp(x) . This is the multinomial logit model equation. The above q-

generalized logit model, a discrete choice model with a (q-form) GEV-distributed utility, 

includes the multinomial logit model as a special case. 

    Eq. (13) can also be expressed as 

, (15) 

where , ξi = −1 (qi −1) , yijk is a 

variable, K is the number of variables and αik is a parameter. This is the weibit model (see e.g., 

Castillo et al., 2008). The q-generalized logit model thus involves both logit and weibit as 

special cases. 

    The CDF, )(max xGi , of the maximum of Uij (j=1, 2,…, Ji) is given by 

Gi
max (x) = Gij (x)

j=1

Ji

∏ = exp −
exp2−qi

(vij )
j=1

Ji

∑
Γ(2 − q){ }1/(qi−1) expqi

(−x)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

. (16) 

Thus, max[Uij |∀j] follows the GEV distribution. Measuring the change in consumer surplus is 

useful for policy analysis. The expected consumer surplus can be given by the mean maximum 

utility in random utility theory (e.g., Train, 2003, p.59), and, thus, the distribution of maximum 

utility is important. Comparing the above equation with Eq. (7), we obtain the following as the 

mean maximum utility: 

E max Uij |∀j( )⎡⎣ ⎤⎦ = ln2−qi
exp2−qi

(vij )
j=1

Ji

∑
⎡

⎣
⎢

⎤

⎦
⎥ . (17) 

We can confirm that substituting ln2−qi[Σj exp2−qi(vij)] into Eq. (7) yields Eq. (16). When qi = 1, 

max[Uij |∀j] = ln[Σj exp(vij)]. Thus, the above equation is the generalization of log-sum mean 

maximum utility of the logit model. Eq. (15) shows that the q-generalized logit model reduces to 
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the weibit model for qi ≠ 1. The mean maximum utility of the weibit model expressed by Eq. 

(15) is given by Eq. (17) for qi ≠ 1. Note that some simulation method might be needed to obtain 

consumer surplus in monetary terms, since the marginal utility of travel cost is not independent 

of travel cost (McFadden, 1999; Herriges and Kling, 1999; Fosgerau and Bierlaire, 2009). 

    It is natural that the variance of the utility becomes large as the lengths of routes increase. This 

is satisfied in the q-generalized logit model as follows. The CDF of random utility is given by Eq. 

(7). From Eq. (6), the variance of the above random utility is expressed as 

Γ(3− 2qi ) − Γ(2 − qi )[ ]2

qi −1( )2

1+ (qi −1)vij

Γ(2 − qi )
⎛
⎝⎜

⎞
⎠⎟

2

qi <
3
2

and qi ≠1

π 2

6
1+ (qi −1)vij

Γ(2 − qi )
⎛
⎝⎜

⎞
⎠⎟

2

qi =1

⎧

⎨

⎪
⎪

⎩

⎪
⎪

. (18) 

As the above equation shows, the variance links to vij. Therefore, as the absolute value of the 

mean, vij, increases, the variance increases. When qi < 1 and vij = −cij, the variance of the utility 

on route j for OD pair i becomes large as its travel time increases, where cij is the travel cost on 

route j for OD pair i. Thus, the homogeneity of the utility variance is relaxed in the q-generalized 

logit model.  

    Suppose that two OD pairs in the network are connected by two pairs of non-overlapping 

routes. The route utility follows the (q-form) GEV distribution in the q-generalized logit model. 

The route disutility, that is, −Uij, can be interpreted as the random variable of generalized travel 

cost. Set c11 = 10, c12 = 20, c21 = 50, and c22 = 60. The difference between the two travel costs is 

ten for each OD pair. Therefore, the route choice probabilities between the two OD pairs are 

equal in the standard logit model. Figs. 5 and 6 show the distributions of the disutilities (or 

generalized travel costs), −U11, −U12, −U21, and −U22, for the two OD pairs when q1 = q2 = 0.5 in 

the q-generalized logit model. The figures show that the variances of the route disutilities (or 

Fig. 5. PDFs of route disutilities between OD pair 1 Fig. 6. PDFs of route disutilities between OD pair 2 
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generalized travel costs) for OD pair 2 are much larger than those for OD pair 1. The probability 

of choosing route 1 for OD pair 1, p11, is 0.771, and that of route 2, p12, is 0.229. On the other 

hand, the probability of choosing route 1 between OD pair 2, p21, is 0.587, and that of route 2, p22, 

is 0.413. Thus, the homogeneity of the utility variance is relaxed, and the q-generalized logit 

model provides more intuitive route choice probabilities for different OD pairs. 

 

 

4. Parameter estimation of q-generalized logit model 

  

    In this section, some properties of parameter estimation in the q-generalized logit model are 

discussed.  

4.1. Alternative view: logit model with a flexible utility function 

    For simplicity, qi is assumed to be common to all OD pairs, that is, qi = q, in this section. As 

stated in the previous section, the q-generalized logit model, which assumes the GEV 

distribution, is given by Eq. (13). Here, we introduce an alternative view of the model, i.e., a 

logit model with flexible utility function. This alternative view is useful for practical applications, 

i.e., empirical estimation of the model. The q-generalized logit model can be rewritten as 

pij =
exp[ f (vij )]

exp[ f (vi ′j )]
′j =1

Ji

∑
 (19) 

where [ ])(expln)( 2 ijqij vvf −=  (20) 

Thus, the q-generalized logit model can also be understood under the standard logit model 

framework, i.e., the logit model with the non-linear utility function defined as Eq. (20), where 

the standard Gumbel distribution is assumed for the error term. A similar transformation can be 

performed for the weibit model as well.  

    In the previous model of Nakayama (2013), f(vij) = ln expq{vij (s − [1− q]vij )}⎡⎣ ⎤⎦, where s is a 

parameter to be specified or estimated. Table 1 summarizes the differences between the two 

models. The difference is only in the definition of systematic utility, and the behavior of f(vij) is 

quite similar. In fact, when s is assumed to be one, the two models are identical. In other words, 

by using the mean of the GEV (instead of its mode) as a systematic utility, we can reduce one 

parameter that we were required to specify in the previous model. The important point is that this 

contributes to simplifying the model structure without loss of theoretical foundation. In the 
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function f(vij) in the previous model, the systematic utility is divided by the function of 

systematic utility, causing instability of parameter estimation. Thus, some simplifications were 

required in the previous model, but we had no theoretical rationale for assuming that s is equal to 

one. From an empirical perspective, our current work provides the theoretical rationale for the 

simplification of the previous model. 

    In this section, the systematic utility, vij, is defined as −α(yij1 + β yij2), where α and β are 

unknown parameters, and yij1 and yij2 are travel cost and time, respectively. Under such settings, 

β can be understood directly as the value of travel time. Let τij denote the generalized cost of 

route j for OD pair i, that is, τij = yij1 + βyij2. Fig. 7 shows how the utility function changes with 

changes in parameter q. As the figure illustrates, a smaller q shows higher concavity of utility 

f(vij).  

    The parameters q and α in the proposed model could play a similar role under certain 

conditions, as shown in Fig. 8, possibly causing a model identification issue. This problem is due 

primarily to the fact that both q and α are related to both the scale and the degree of concavity of 

the utility f(vij): the scale of f(vij) is monotonically increasing with respect to q, while 

monotonically decreasing with respect to α, and the degree of concavity of f(vij) is monotonically 

decreasing with respect to q, while monotonically increasing with respect to α. To avoid this 

identification issue, an alternative model introduced in Chikaraishi and Nakayama (2015) can be 

used, since only parameter q is related to the elasticity of marginal utility with respect to the 

generalized cost τij in the model. The alternative model shown in Chikaraishi and Nakayama 

(2015) is the case in which f(vij) = −α lnq(τij). This model is also a natural extension of the 

conventional logit model and includes the logit and weibit models as special cases: f(vij) = −α(τij 

− 1), when q = 0 (logit model), and f(vij) = −α ln(τij), when q = 1 (weibit model). However, its 

utility does not follow GEV. A comparative analysis of different generalized logit models can be 

found in Chikaraishi and Nakayama (2015). 

Table 1. Differences in model formulas between the current and previous q-generalized logit models 

 Distribution 
assumption Systematic utility Utility function after logit 

transformation f(vij)  
′f (vij )  ′′f (vij ) 

Proposed model Uij ~ GEV vij = mean of the GEV ln exp2−q (vij )⎡⎣ ⎤⎦
 1

1+ (q −1)vij

 1− q
1+ (q −1)vij{ }2

Nakayama (2013)  Uij ~ GEV vij = mode of the GEV ln expq vij (s − 1− q[ ]vij ){ }⎡⎣ ⎤⎦
 1

s + (q −1)vij

s  1− q
s + (q −1)vij{ }2
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4.2. Simulation analysis 

    In the simulation analysis, a simple route choice problem is considered, as shown in Fig. 9. In 

total, we prepare seven datasets for simulation analysis as shown in Table 2. We first set the true 

parameter values for α, β, and q, and then generate the utility value on each route for 10,000 

drivers by generating random numbers for (uniformly distributed) yij1, yij2, and the Gumbel-

distributed error, εij. We assume that drivers choose the route that has the maximum utility. 

 
Fig. 7. Effect of q value on the utility function f(vij) 

 
Fig. 8. Combination effects of q and α on the utility function f(vij) 
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    The model in this study is much simpler than the previous model of Nakayama (2013), and we 

can estimate the parameters in all datasets. Tables 3 and 4 show the estimation results of three 

different models, the logit, weibit, and proposed q-generalized logit models. Table 3 indicates 

that the model performances of the logit and weibit models measured by final log-likelihood are 

somewhat similar to those of the proposed model under particular values of q (particularly when 

q = 0.0 for weibit, and when q = 1.0 for logit), but the proposed model is superior to those 

models, especially when q is between 0.3 and 0.7. However, we also confirm that when q is 

underestimated, α is consistently overestimated, as shown in Table 4, implying that these two 

parameters can substitute for each other. 

 

 

5. q-generalized logit traffic assignment and Tsallis entropy 

  

5.1. q-generalized logit traffic assignment  

 

    The q-generalized logit route choice can be applied to traffic assignment. This is called the q-

generalized logit traffic assignment in this study. That traffic assignment is formulated as a 

fixed-point problem in which the following equation is satisfied for any OD pair and any route: 

 
Fig. 9. Route choice problem considered in the simulation analysis 

 
Table 2. Simulation datasets used in this study 

 Utility function Parameter value yij1 yij2 εij 
Sample 

size α β q

Dataset 1 Proposed:  ln[exp2−q(vij)] −2.0 1.5 0.0 Uniform[0.1, 1.0] Uniform[0.1, 1.0] Standard 
Gumbel 10,000

Dataset 2 Proposed: ln[exp2−q(vij)] −2.0 1.5 0.1 Uniform[0.1, 1.0] Uniform[0.1, 1.0] Standard 
Gumbel 10,000

Dataset 3 Proposed: ln[exp2−q(vij)] −2.0 1.5 0.3 Uniform[0.1, 1.0] Uniform[0.1, 1.0] Standard 
Gumbel 10,000

Dataset 4 Proposed: ln[exp2−q(vij)] −2.0 1.5 0.5 Uniform[0.1, 1.0] Uniform[0.1, 1.0] Standard 
Gumbel 10,000

Dataset 5 Proposed: ln[exp2−q(vij)] −2.0 1.5 0.7 Uniform[0.1, 1.0] Uniform[0.1, 1.0] Standard 
Gumbel 10,000

Dataset 6 Proposed: ln[exp2−q(vij)] −2.0 1.5 0.9 Uniform[0.1, 1.0] Uniform[0.1, 1.0] Standard 
Gumbel 10,000

Dataset 7 Proposed: ln[exp2−q(vij)] −2.0 1.5 1.0 Uniform[0.1, 1.0] Uniform[0.1, 1.0] Standard 
Gumbel 10,000

 

O D

Route 1

Route 2

Route 3
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pij =
exp2−qi vij⎡⎣ ⎤⎦

exp2−qi vi ′j⎡⎣ ⎤⎦
′j =1

Ji

∑
=

exp2−qi −α cij (p)⎡⎣ ⎤⎦

exp2−qi −α ci ′j (p)⎡⎣ ⎤⎦
′j =1

Ji

∑
 (21) 

where p is the vector of route choice probabilities, cij(p) is the travel cost function on route j for 

OD pair i, vij = −αcij(p), and α is a positive parameter. Clearly, cij(p) > 0, and vij < 0 in the 

traffic assignment of Eq. (21). Therefore, qi ≤ 1 is assumed, according to Eq. (8).  

 

5.2. Non-congested network case 

 

    The multinomial logit equation of Eq. (14) can be obtained by maximizing the Shannon (or 

Boltzman–Gibbs) entropy. The Shannon entropy for route choice probabilities for OD pair i is 

−Σj pij ln pij. As stated in section 2, the q-logarithm function is given as lnq(x) = (x1−q − 1)/(1 − q), 

and ln1(x) = ln(x) when q = 1. Using the q-logarithm function, the Tsallis entropy (e.g., Tsallis, 

2009) is defined as  

Table 3. Estimation results of logit, weibit, and proposed models 
 logit model weibit model proposed model (q-generalized logit model) 

 α β α β α β q1) 

 param t-value param t-value param t-value param t-value param t-value param t-value param t-value2) t-value3)

Dataset 1 −0.54 −11.29 1.65 9.66 −0.69 −21.59 1.65 9.39 −2.06 −5.59 1.62 9.81 0.00 0.00 0.05 

Dataset 2 −0.58 −12.09 1.64 10.34 −0.73 −23.01 1.64 10.07 −2.61 −4.90 1.62 10.46 0.00 0.00 0.35 

Dataset 3 −0.68 −14.07 1.65 12.08 −0.86 −26.54 1.66 11.69 −4.49 −1.28 1.65 11.94 0.04 0.05 1.00 

Dataset 4 −0.85 −17.25 1.61 14.82 −1.04 −31.45 1.65 14.06 −3.14 −2.27 1.62 14.55 0.33 2.46 4.91 

Dataset 5 −1.12 −22.20 1.56 19.12 −1.32 −38.31 1.61 17.71 −2.33 −4.44 1.57 18.81 0.64 8.11 4.56 

Dataset 6 −1.58 −29.51 1.52 25.94 −1.81 −47.63 1.58 23.75 −2.28 −7.55 1.53 25.70 0.85 11.38 2.05 

Dataset 7 −1.99 −35.09 1.51 31.68 −2.24 −53.51 1.56 28.71 −2.09 −11.38 1.51 31.63 0.98 2.82 0.05 

1) q = exp(qq)/(1+exp(qq)) and qq was estimated;  2) standard deviation was calculated based on delta method (null: q = 0);  3) standard deviation was calculated based 
on delta method (null: q = 1) 

 

Table 4. Final log-likelihoods of logit, weibit, and proposed models 

  
Final log-likelihood 

logit weibit proposed 

dataset 1 −10742.7 −10733.6 −10733.8 

dataset 2 −10708.6 −10698.4 −10698.4 

dataset 3 −10608.0 −10596.4 −10595.6 

dataset 4 −10435.0 −10425.6 −10422.4 

dataset 5 −10112.3 −10116.4 −10102.7 

dataset 6 −9470.9 −9506.6 −9465.5 

dataset 7 −8844.2 −8935.3 −8844.1 
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Sqi
(pi ) = −

1− pij
qi

j=1

Ji

∑
qi −1

= − pij
qi

j=1

Ji

∑ lnqi
(pij ) (22) 

where pi is the vector whose component is pij ( j = 1, 2,…, Ji), and Sqi(pi) is the Tsallis entropy. 

When qi = 1, S1(pi) = −Σj pij ln pij, the standard entropy (Shannon entropy). Thus, the Tsallis 

entropy is the q-generalized entropy, and includes the standard entropy. The following 

constrained maximization problem of the Tsallis entropy yields the q-generalized logit equation 

of Eq. (21): 

max
pi

. S2−qi
(pi )  (23) 

s.t. pij
j=1

Ji

∑ =1 (24) 

In the case of a non-congested network, the q-generalized logit traffic assignment can be 

formulated as follows: 

min. pij
2−qi − vij + ln2−qi

(pij )⎡⎣ ⎤⎦
j=1

Ji

∑
i=1

I

∑

s.t. pij =1
j=1

Ji

∑ (i =1, 2,..., I )
  (25) 

When qi = 1, the objective function of the above problem is α Σi Σj pij cij + Σi Σj pij ln pij, 

because vij = −α cij. This is identical to the objective function of Fisk’s optimization problem 

(Fisk, 1980) for logit-type stochastic user equilibrium under noncongested networks (e.g., see 

Oppenheim, 1995, p. 170 for Fisk’s problem). Thus, the above problem is a generalized 

optimization problem of traffic assignment with multinomial logit route choice (multinomial 

logit-based stochastic user equilibrium).  

    Define the following Lagrangean function: 

L (p)= pij
2−qi − vij + ln2−qi

(pij )⎡⎣ ⎤⎦
j=1

Ji

∑
i=1

I

∑ − λi
i=1

I

∑ pij
j=1

Ji

∑ −1
⎛

⎝⎜
⎞

⎠⎟
 (26) 

where λi is the Lagrangean multiplier for OD pair i. The condition necessary for solving the 

above minimization problem is to find the solution of ∂L/∂pij = 0 for any i and j. Then,  

∂L
∂pij

= (2 − qi )pij
1−qi −vij + ln2−qi

(pij )⎡⎣ ⎤⎦+1− λi = 0 (27) 

because dlnq(x)/dx = x−q, since lnq(x) = (x1−q − 1)/(1 − q). The above is organized as 
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pij
1−qi =

1+ (1− qi )λi

(2 − qi ) 1+ (qi −1)vij⎡⎣ ⎤⎦
 (28) 

According to Eq. (27), λi must be greater than zero, because lnq (pij ) > 0 , vij < 0, and qi ≤ 1. 

Therefore, 2−qi, 1+ (1−qi)λi, and 1+(qi −1)vij are all positive, and then, 

pij =
1+ (qi −1)vij⎡⎣ ⎤⎦

1
qi−1

1+ (1− qi )λi

2 − qi

⎡

⎣
⎢

⎤

⎦
⎥

1
qi−1

=
exp2−qi

(vij )

1+ (1− qi )λi

2 − qi

⎡

⎣
⎢

⎤

⎦
⎥

1
qi−1

 (29) 

Summing the above equation with respect to the routes yields 

pij
j∈Ji

∑ =1=
exp2−qi

(vij )
j∈Ji

∑

1+ (1− qi )λi

2 − qi

⎡

⎣
⎢

⎤

⎦
⎥

1
qi−1

 (30) 

Combining Eqs. (29) and (30) gives 

pij =
exp2−qi

(vij )

exp2−qi
(vi ′j )

′j =1

Ji

∑
 (31) 

Thus, the minimization problem of Eq. (25) solves the q-generalized logit traffic assignment with 

Eq. (21).  

 

5.3. Congested network case 

 

    Fisk’s optimization problem with logit route choice network equilibrium can also be applied to 

a congested network (Fisk, 1980). Note that Daganzo (1982) and Sheffi & Powell (1982) also 

examined the unconstrained formulation. Prashker & Bekhor (1999), Bekhor & Prashker (1999), 

Bekhor & Prashker (2001), and Chen et al. (2012) formulated the network equilibrium problems 

with cross-nested logit, paired combinatorial logit, generalized nested logit, and path-size logit, 

respectively. More recently, Zhou et al. (2012) considered the C-logit route choice in traffic 

assignment. Kitthamkesorn & Chen (2013, 2014) formulated an optimization problem of 

network equilibrium with weibit route choice, but they assumed that the route travel cost is the 

product of link costs or the sum of logarithms of link costs. However, it is difficult to formulate a 

q-generalized logit traffic assignment for a congested network as an optimization problem with a 

single integral and standard route travel cost structure. Aashtiani & Magnanti (1981) introduced 

a nonlinear complementarity problem for the traffic assignment problem, and we adopt that 
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problem in this paper. Compared with the weibit network equilibrium formulation of 

Kitthamkesorn & Chen (2013, 2014), our formulation uses the nonlinear complementarity 

problem but assumes the standard travel cost structure. Let 

[ ] iijqij
q

iji
p

ij pvpqf
i

i λ−++−−= −
− 1)(ln)()2(),( 2

1 pλp  (32) 

and 

fi
λ (p) = pij −1

j=1

Ji

∑  (33) 

where λ  is the vector of Lagrangean multipliers λ i and vij is a function of p for a congested 

network, vij(p). The complementarity problem of a q-generalized logit traffic assignment is to 

find p and λ  subject to 

p, f p(p,λ) + λ , f λ (p) = 0, p ≥ 0, f p (p,λ) ≥ 0, λ ≥ 0, f λ (p) ≥ 0 , (34) 

where f p (p,λ)  and f λ (p)  are the vector-valued functions whose component functions are 

fij
p(p,λ)and fi

λ (p), respectively, 〈⋅, ⋅〉 is the inner product, and 0 is the zero vector.  

    As stated in the previous section, if Eq. (27), that is, 0),( =λpp
ijf  and fi

λ (p) = 0, holds, then 

the generalized logit model is obtained. Clearly, the necessary condition of 0),( =λpp
ijf  and 

fi
λ (p) = 0 under p, λ ≥ 0 is the above problem. The sufficient condition is proven using reductio 

ad absurdum. If there exists pi such that 011 >−∑ =
iJ

j ijp , then λi = 0 . Clearly, there exists pij′ > 0. 

0),( >′ λpp
jif , even if pij′ > 0, because 0<ijv  and λi = 0 . Then, 0),( >′′ λpp

jiji fp . This contradicts 

the above complementarity problem. Thus, 011 =−∑ =
iJ

j ijp  for any OD pair. If 0),( >λpp
ijf , pij = 

0. Then, 01),( >−= i
p

ijf λλp , that is, λi < 1. There must be (at least one) pij′ > 0 because of 

011 ≥−∑ =
iJ

j ijp  and p ≥ 0, even if pij′ > 0, 0ˆ)(ln 11 >− ′
−

′′
−

′ jii
q

jiijiq
q

ji vqpqpp i

i

i , and λi < 1, as stated 

above. Then, 01),( >−= i
p

ijf λλp  and 0),( >λpp
ijij fp . This also contradicts the above 

complementarity problem. Therefore, 0),( =λpp
ijf  for any i and j. Consequently, the sufficient 

condition is proved, and the above complementarity problem solves the q-generalized logit 

traffic assignment. 

    The q-generalized logit traffic assignment model can also be formulated as a fixed-point 

problem of Eq. (21). The problem is to find pij (0 ≤ pij ≤ 1) ∀i, with ∀j subject to Eq. (21). The 

vector p is in the finite closed convex set for which 0 ≤ pij ≤ 1 (∀i, ∀j). The right-hand side of Eq. 
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(21) is also in the same closed convex set. Clearly, it is continuous in the set. According to 

Brouwer’s fixed-point theorem, the existence of a solution to the problem is guaranteed.  

    If the Jacobian of [fp(p, λ), fλ(p)]T is positive definite, the solution is unique, where T is the 

transpose of a matrix or vector. For any [p′, λ′]T,  

pfp
λ
p

ff
ff

λ
p

p
p

p ′∇′=⎥
⎦

⎤
⎢
⎣

⎡ ′
⎥
⎦

⎤
⎢
⎣

⎡
∇∇
∇∇

⎥
⎦

⎤
⎢
⎣

⎡ ′ pT
ppT

'' λ
λ

λ
λ  (35) 

because ∇λf λ = 0 and pfλλfp p ′∇=∇′ λ
λ

TpT '' . If ′p T ∇pf p ′p >0 for any p′ ≠ 0, the q-generalized 

traffic assignment has a unique network flow. The Jacobian, ∇pf p, is given by 

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≠′

≠′=′
∂
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−−

=′=′⎥
⎦

⎤
⎢
⎣

⎡

∂
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−−+−

=
∂

∂

′

−

−

′′

iiif

jjandiiif
p
v

pq

jjandiiif
p
v

pvqpq

p
f

ji

ijq
iji

ij

ij
ijiji

q
ij

ji

p
ij i

i

0

)2(

)1(1)2(

),( 1λp
 (36) 

If [ ]( ) 0)()( >′−′− pppp ijij cc , then [ ]( ) 0)()( >′−′−− pppp ijij vv . In this case, ∇pf p is positive 

definite, and the uniqueness of the solution of the complementarity problem is guaranteed. 

However, the condition [cij(p)− cij(p′)] (p − p′) > 0 might be restrictive. The condition is not 

necessary and sufficient, but just necessary. There is some room for relaxing the uniqueness 

condition, and the relaxing of this condition will be a goal of our future study. 

    There are various ways of solving the complementarity problem. One is to reformulate the 

problem using quadratic Fischer–Burmeister functions. The Fischer–Burmeister function, φ(x,y), 

is x + y − x2 + y2  (Fischer & Jiang, 2000), and Lo & Chen (2000) introduced it to traffic 

assignment formulation. The function is (always) non-negative, φ(x,y) ≥ 0, and φ(x,y) = 0 is 

equivalent to x ≥ 0, y ≥ 0, and x y = 0. Therefore, the complementarity problem of solving x f(x) 

= 0 s.t. x ≥ 0 and f(x) ≥ 0 is reformulated as min φ(x, f(x)). The solution of minimizing φ(x, f(x)) 

without constraints is identical to that of the original complementarity problem. However, the 

Fischer–Burmeister function, φ(x,y), is not differentiable at (x, y) = (0, 0). In this study, the 

following quadratic Fischer–Burmeister function is adopted: 

[ ] [ ]∑ ∑∑
= ==

+=
I

i

I

i
ii

J

j

p
ijij ffpL

i

1 1

2

1

2 )(,
2
1),(,

2
1),( pλpλp λλφφ   (37) 

Clearly, L(p, λ) ≥ 0. A solution of the unconstrained optimization problem of minimizing L(p, λ) 

is identical to that of the above complementarity problem of Eq. (34). Many algorithms for 
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unconstrained optimization problems have been developed. For example, a conjugate gradient 

method with the Polak–Ribiere formula, which guarantees its convergence, solves the above 

optimization problem. 

 

5.4. Example 

 

    The q-generalized logit traffic assignment is applied to the simple example network shown in 

Fig. 10. This is one of the simplest networks with multiple OD pairs and multiple routes. The 

network has two OD pairs, and each OD pair has two routes. OD pair 1 contains nodes 1 and 3, 

and OD pair 2 contains nodes 2 and 3. Route 1 for OD pair 1 consists of links 1 and 2, and route 

2 consists of links 1 and 3. On the other hand, route 1 for OD pair 2 consists of link 2 and route 2 

consists of link 3. The demands of OD pairs 1 and 2 are both 150. Set q1 = q2 = q and α = 2. The 

travel time functions on the three links are 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+==

2

31 200
115)()( xxtxt  (38) 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

2

2 100
110)( xxt  (39) 

where ta(⋅) is the travel time function on link a (a = 1, 2, 3). 

    When q = 1, the q-generalized logit traffic assignment becomes the standard (multinomial) 

logit traffic assignment. Then, 

p11 =
exp(−2c11)

exp(−2c11)+ exp(−2c12 )
=

exp(−2t2 )
exp(−2t2 )+ exp(−2t3)

 (40) 

 
Fig. 10.  Example network 

 

1 2 3
link 1

link 2

link 3

OD pair 1

OD pair 2
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p21 =
exp(−2c21)

exp(−2c21)+ exp(−2c22 )
=

exp(−2t2 )
exp(−2t2 )+ exp(−2t3)

 (41) 

Thus, p11 = p21 and p12 = p22, when q = 1.  

    As stated above, this example considers the case of q ≤ 1. Then, the route choice probabilities 

are given by 

p11 =
exp2−q (−2c11)

exp2−q (−2c11)+ exp2−q (−2c12 )
 (42) 

p21 =
exp2−q (−2c21)

exp2−q (−2c21)+ exp2−q(−2c22 )
 (43) 

In general, p11 ≠ p21 and p12 ≠ p22. Fig. 11 illustrates p11 and p21 of the solved q-generalized logit 

traffic assignment problem with different values of q. Note that the parameter q in the horizontal 

axis decreases in Fig. 11. When q = 1, p11 = p21 = 0.425. Because of homogeneity of variance in 

the standard multinomial logit model, p11 = p21, if q = 1. Although c11−c12 = c21−c22, c11  or c12 > 

c21 or c22, that is, the two route travel times for OD pair 1 are longer than those for OD pair 2. It 

is natural that the influence of the travel cost difference for OD pair 1 is smaller and p11 > p21, as 

discussed above, even if the differences of the two route travel times are equal for the two OD 

pairs. As Fig. 11 shows, p11 ≠ p21 when q ≠ 1, and we can confirm that the q-generalized logit 

model alleviates the homogeneity of variance. Initially, as q decreases until approximately 0.9, 

the variance of the utility on route 1 for OD pair 1 becomes increasingly different from that of 

OD pair 2. In other words, p11 and p21 differ. Then, the difference decreases gradually.  

 

 

 
Fig. 11.  Route choice probabilities and parameter q  
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6. Conclusions 

  

    The multinomial logit model has a closed-form expression and is mathematically convenient. 

However, the Gumbel-distributed utility in the multinomial logit model is restrictive, especially 

in route choice behavior and network equilibrium analysis, owing to the homogeneity of 

variance. Especially in application to the modeling of route choice behavior and network 

equilibrium analysis, the homogenous variance of the logit model can cause serious biases in the 

analysis. In this study, the GEV distribution, which includes the Gumbel and Weibull 

distributions as special cases, was incorporated into the discrete choice model. The CDF of the 

GEV distribution was given by replacing the standard exponential function with the q-

exponential function (a type of generalized exponential function) in the CDF of the Gumbel 

distribution. The q-generalized logit model with a GEV-distributed utility allows heteroscedastic 

variance and flexible shape and includes the multinomial logit and weibit models as special cases.  

    The parameter estimation of the q-generalized logit model was also examined. An 

identification problem in parameter estimation might occur under particular limited conditions. 

The results of an example of parameter estimation using simulated data indicated its applicability.  

    The generalized logit model with a GEV-distributed utility was incorporated into the 

transportation network equilibrium model. The network equilibrium model with generalized logit 

route choice was formulated as an optimization problem under uncongested networks. The 

objective function included the Tsallis entropy, a type of generalized entropy. For congested 

networks, it was formulated as the complementarity problem. The existence of equilibrium flows 

was proved, and a uniqueness condition was examined. 

    In this study, the Gumbel distribution, logit model, and network equilibrium model were 

considered in a unified framework of q-generalization with q-analysis, which included the 

operation of q-exponential and q-logarithm functions, or Tsallis statistics. In our future study, 

more relaxed conditions for unique equilibrium network flow will be examined. In addition, 

more empirical work is necessary to understand fully the properties of the proposed model. To 

do this, an efficient link-based algorithm must be developed for large-scale networks. To 

alleviate the overlapping problem in route choice, a commonality factor could be introduced into 

the model, for example by including it in Eq. (20) in an additive manner. This will be discussed 

in a later paper. 
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