
A quasi-dynamic assignment model that
guarantees unique network equilibrium

言語: eng

出版者: 

公開日: 2017-10-03

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

https://doi.org/10.24517/00009248URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/


 1

A	Quasi‐Dynamic	Assignment	Model	That	Guarantees	Unique	
Network	Equilibrium	

 
 
Sho-ichiro Nakayama 

School of Environmental Design, Kanazawa University 
Kakuma-machi, Kanazawa 920-1192, Japan 
E-mail: snakayama@t.kanazawa-u.ac.jp 
Tel: +81 (0)76 2344614 
Fax: +81 (0)76 2344644 
 

 
Richard Connors 

Institute for Transport Studies, University of Leeds 
University Road, University of Leeds, Leeds LS2 9JT, U.K. 
E-mail: R.D.Connors@its.leeds.ac.uk 
Tel: +44 (0)113 3431799 
Fax: +44 (0)113 3435334 
 
 

ABSTRACT 
 

This paper formulates a discrete-time dynamic traffic assignment model and, under certain 
conditions, shows the existence and uniqueness of network equilibrium. Several theoretical issues 
need to be tackled. In discrete time traffic flow, the inflow to a link (or cell) in a particular discrete 
time period does not all necessarily exit within the same time period. We consider how flow is 
passed from one link and time period to the next, and the corresponding costs. Under the proposed 
model, flow departing within a discrete time period may experience different link travel times in 
different discrete time periods, even if the flow chooses a single route. Route travel time must then 
be defined so that route and OD costs are meaningful. To this end, quasi-real route travel time is 
defined. Based on this definition, a quasi-equilibrium condition for dynamic traffic assignment is 
proposed; a semi-dynamic analogue of user equilibrium. The existence and uniqueness of this 
equilibrium solution are proven. 
 

Keywords: dynamic user equilibrium, quasi-real travel time, unique network flow, link-based 
formulation, discrete time 
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1. INTRODUCTION 
Traffic conditions in most cities vary significantly within a day, so that static traffic assignment 
models often cannot represent the time-dependent congestion adequately for transportation network 
analysis. Even if the day is divided into several periods and static traffic assignment is made in each 
such time slice, the dynamics are not well described. Especially at peak times, not all of the demand 
can arrive at its destination within a single assignment, and the congestion should carry over to the 
next period. However, in the framework of static traffic assignment all demands reach their 
destinations in each time-slice and the traffic still en route is not dealt with between periods.  

 
Continuous-time dynamic traffic assignment (DTA), which describes detailed dynamic traffic queues 
and congestion in continuous time, is theoretically preferable for modeling such scenarios. However, 
we face difficulties when applying continuous-time DTA to real networks. In particular it is difficult 
to obtain sufficiently accurate and detailed OD matrix data to describe the dynamic traffic in 
continuous time. In cases without high resolution OD data, dynamic traffic assignment must be 
reasonable in discrete time.  

 
Typically, continuous-time DTA cannot necessarily be solved analytically in continuous time, and is 
in fact computed numerically in discrete time, with the discrete time interval chosen to be small. 
However, in the case of more coarse grained OD data, we will use a relatively larger discrete time 
period, e.g. 15 minutes or 30 minutes. This intermediate situation between the plausible application 
of time-sliced static assignment and continuous-time DTA is sometimes called “semi-dynamic traffic 
assignment”. Thus, we have the 4 models with increasing time resolution: (i) time-sliced static traffic 
assignment, (ii) traffic assignment with large discrete time or semi-dynamic traffic assignment, (iii) 
discrete-time DTA (with small interval) and (iv) continuous-time DTA. The capability of network 
modeling is different among these four DTA models. In general, the continuous-time DTA models 
satisfy the requirements of traffic flow theory e.g. the principle of FIFO; but uniqueness of network 
equilibrium flows is not necessarily guaranteed (Iryo, 2011). On the other hand, semi-dynamic 
models are closer to static traffic assignment, somewhat sharing the formulation and properties of 
network equilibrium. Crucially, it is possible to establish uniqueness of network equilibrium flows 
for semi-dynamic traffic assignment. If we have detailed dynamic OD data and desire high resolution 
dynamic traffic states, we must compute (iii) discrete-time DTA using small time intervals or (iv) 
continuous-time DTA. The latter is theoretically preferable, while the former is more often 
practically applicable. In cases having less data, or less demanding requirements of model outputs, 
(i) time-sliced static traffic assignment and (ii) semi-dynamic traffic assignment are more reasonable 
alternatives. Notwithstanding the computational cost of calculating continuous-time or discrete-time 
DTA, these models are not necessarily appropriate for coarse OD data. Meanwhile, time-sliced static 
traffic assignment completely neglects flow propagation between time periods. Particularly for peak 
period analysis, flow propagation is usually significant and semi-dynamic traffic assignment should 
be applied. 
 
This classification of existing research highlights the position of the model presented in this paper in 
relation to time-sliced static traffic assignment. It does not distinguish other important contributions 
to the field of DTA such as the whole link and point queue models, or the representation of spill back  
(for example Gentile et al., 2007). 
 
Development of different DTA models is important because we have to apply the models under the 
various circumstances and with variety of requirements. We can choose an appropriate model 
according to the circumstances and requirements under which it used, with respect to the purpose, 
data accuracy, computational cost and other parameters. Semi-dynamic DTA models contribute to 
this range of network models. 
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Peeta and Ziliaskopoulos (2001) provide a helpful review of the numerous past studies on DTA. 
Research continues apace, with new models and algorithms being developed in works such as Han et 
al. (2011), Szeto et al. (2011), Ban et al. (2008), Han (2007) and others. For practical applications, 
computational obstacles cannot be ignored. Route-based formulations require a tremendous number 
of variables for realistic networks. Furthermore, as noted above, continuous-time DTA computed 
using small time intervals requires high resolution OD matrices and detailed treatment of network 
flows across many time intervals; it is computationally demanding. In this paper, a link-based 
formulation of a discrete-time dynamic user equilibrium (UE) (or semi-dynamic user equilibrium) 
model with a unique solution is developed. So far, Kuwahara and Akamatsu (1993), Ran et al. 
(1996) and Li et al. (2000) have formulated link-based models for continuous time dynamic UE. The 
time discretization was examined in Wie et al. (2002).  
 
Semi-dynamic traffic assignment models with UE (dynamic user equilibrium with large discrete time 
period) have been developed by Fujita et al. (1988, 1989), Miyagi and Makimura (1991), and 
Akamatsu et al. (1998). Fujita et al. (1988) and Miyagi and Makimura (1991) tackled flow 
propagation between large discrete time periods by modifying the OD demand in the next discrete 
time period, and formulated network user equilibrium in each discrete time period as an optimization 
problem with elastic demand. Uniqueness of the network flows was guaranteed under mild 
conditions. This flow propagation via elastic OD demands is somewhat coarse, motivating Fujita et 
al. (1989) to propose a link-based flow propagation model, formulated as a variational inequality. 
However, uniqueness of this model was not examined. Akamatsu et al. (1998) adopted the vertical 
queue to represent flow propagation, and formulated network user equilibrium as an optimization 
problem, having unique network flows. In this model, queues carry over to the next period, but queue 
propagation is simplified so that each queue jumps to the destination after it passes a bottleneck. 
Thus, in previous semi-dynamic traffic assignment models, flow propagation is rather coarse or 
uniqueness of equilibrium network flows is not guaranteed. A semi-dynamic traffic assignment 
model with practical flow propagation and unique equilibrium network flows remains to be 
developed. 
 
Despite these existing works on discrete-time DTA or semi-dynamic traffic assignment, theoretical 
issues remain. The definition of UE is not necessarily unambiguous in the context of discrete-time 
DTA, because route travel time is not necessarily uniquely defined. By comparison, the concept of 
UE in continuous-time DTA is clear. Under the UE condition, no user can reduce his travel time he 
actually takes by changing his route unilaterally in the absence of departure time choice. The travel 
time is the time difference between departure time and actual arrival time. We shall call this the 
“real” route travel time. In discrete-time DTA, real route travel time is open to discussion; other 
relevant route travel times can also be determined. In traffic simulation, route travel time is often 
calculated to be the sum of link travel times at the moment of departure i.e. at the present moment 
without any evolution of the traffic flow. This travel time shall be called the “present” route travel 
time in this paper. The user does not necessarily act (only) on the present travel time, because he 
actually experiences the real route travel time ex post facto. Network equilibrium based on the 
present travel time is called “user optimal”, rather than UE. In continuous time DTA, the real route 
travel time is clearly unique for each route and departure time. By contrast, it is not obvious how to 
define real route travel time for discrete-time DTA. All inflow to a link (in a discrete time period) 
does not necessarily exit that link within the same discrete time period, so the inflow will enter the 
downstream link in different time periods and hence will be ascribed different travel times. Thus, 
demand departing in one discrete time may experience different travel times, raising the question of 
how route travel time should be defined for this demand. We address this question and define “quasi-
real” route travel time. On this basis, quasi-real-time-based dynamic user equilibrium (qDUE) is 
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formulated according to the semi-dynamic model of Nakayama (2009). The existence and 
uniqueness of the qDUE model are examined. 
 
 
2. NOTATION AND ASSUMPTIONS 
Notations used in this paper are as follows: 

 
xijt  = the inflow to link ij, which connects node i and node j, in time period t 
zijt  = the outflow from link ij in time period t 
yijt  = the residual flow on link ij in time period t  
xijnt  = the inflow to link ij in time period t whose destination is node n,  
zijnt  = the outflow from link ij in time period t whose destination is node n  
dint  = the travel demand whose destination is node n which departs node i in time period t  
cijt  = the travel time on link ij in time period t 
τint  = the minimum travel time from node i to node n in time period t 
x  = the vector of the link inflows (= { xijnt }) 
z  = the vector of the link outflows (= { zijnt }) 
c  = the vector of the link travel times (= { cijt }) 
τ  = the vector of the minimum travel times (= { τint }) 
N  = the set of nodes 
N−n  = the set of nodes except node n 
D  = the set of destination nodes (D ⊂ N ) 
T  = the set of (discrete) time periods 
L  = the length of the (discrete) time period 
A = the set of links 
A−n = the set of links whose start node is not node n 

out
iN = the set of end nodes of the links that are connected from node i  
in
iN  = the set of start nodes of the links that connect to node i 

 
Assumptions are as follows: 

 
A1 Time is discretized into intervals of length L. 
A2 Demand and flow variables are similarly discretized. Within each time period, 
           A2.1 link travel time does not change 
           A2.2 demand/flow depart a node at a constant rate  
           A2.3 demand/flow associated with different OD movements are treated equally. 
A3 Route choice is made based on “quasi-real travel time” (defined later). 
A4 Users experience the link travel time at the time period of their entry into the link (even if they 

do not traverse the whole of the link) 
 

As assumption A1 shows, the time period [tc, tc+L) is represented by the discrete time t in this study, 
where tc is ordinary continuous time and t is discrete time. Only when we define the flow on a link, 
imagine the time is continuous in the time period [tc, tc+L) of the discrete time period t. Consider a 
single link, with demand, d, departing in the period [tc, tc+L). The flow is assumed to depart at 
constant rate d/L throughout the time period (see sub-assumption A2.2). Then, not all of the flow will 
completely traverse the link within this time period; the part of the flow that does not exit is called 
residual flow. Assumptions on the residual flow are as follows: 
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A5 The residual flow on a link exits from the link in the next (run off) time period. Therefore the 
entire link inflow runs off in (at most) two successive time periods. 

A6 The residual flow is a continuous and increasing function of the inflow on a link. 
A7 In the next (run off) time period, the residual flow is treated as demand originating at the end 

node of the link (the start node of the next link), keeping its original destination node. 
As mentioned stated 
We clarify this approach with a simple example network consisting of two links in Figure 1. 

 
(a) The network has a single OD with demand d13t from node 1 to 3 in time period t. 
(b) The demand departs uniformly at the rate d13t/L (from a22) and hence the inflow to link 12 in 

time period t is x12t = d13t. The travel time on link 12 in time period t is c12 = c12t(x12t) as will be 
mentioned in assumption A9. 

(c) Not all of the demand flow will traverse the entire link in time period t, leaving some residual 
flow, y12t, on link 12. The magnitude of y12t will depend on the link travel time. Part of the 
demand flow, z12t = x12t − y12t, does traverse the whole of link 12 and reaches link 23 in time 
period t. This outflow from link 12 in time t is the inflow to link 23, z12t = x23t. This part of the 
flow experiences cost c12t+ c23t = c12(x12t)+ c23(x23t) due to assumption A4. 

(d) In time period t the inflow to link 23 is x23t; part of this, z23t, reaches the destination, leaving 
residual flow, y23t. 

(e) In the next period, t+1, the residual flow y12t departs node 2 at a uniform rate (by assumption A7) 
Since there is no other demand flow originating at node 2, x23(t+1) = y12t, which experiences total 
cost c12t + c23(t+1). 

(f) Some of x23(t+1) reaches the destination within time period t + 1, but there is also some residual 
flow, y23(t+1), left on link 23. This residual flow will start the next time period at node 3 as 
assumed in assumption A7, and therefore will have arrived immediately at its destination with no 
further costs needing to be computed. 

 

 

d13t

Continuous time = [tc – L, tc)
(discrete time t – 1)

Continuous time = [tc, tc +L)
(discrete time t )

x23(t+1) = y12t 

Continuous time = [tc +L, tc +2L)
(discrete time t + 1)

y23(t+1)

(a)

(b)

(d)

(e)

(c)

(f)

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

L

L

L
d t13

L
x t )1(23 +

x12t

y12t x23t

y12t y23t z23t

z23(t+1)

d13t

Continuous time = [tc – L, tc)
(discrete time t – 1)

Continuous time = [tc, tc +L)
(discrete time t )

x23(t+1) = y12t 

Continuous time = [tc +L, tc +2L)
(discrete time t + 1)

y23(t+1)

(a)

(b)

(d)

(e)

(c)

(f)

1 2 311 22 33

1 2 311 22 33

1 2 311 22 33

1 2 311 22 33

1 2 311 22 33

1 2 311 22 33

L

L

L
d t13

L
x t )1(23 +

x12tx12t

y12t x23ty12t x23t

y12t y23ty12t y23t z23t

z23(t+1)

 
Figure 1: Residual flow 
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As illustrated above, the magnitude of (x12t − y12t) = x23t experience (c12t + c23t) while y12t take c12t + 
c23(t+1). Therefore, the (route) travel time of d13t (=x12t) is assumed to be the mean experienced travel 
time: c12t + (1 − y12t /x12t) c23t + (y12t /x12t) c23(t+1) for this example. This route travel time shall be called 
the quasi-real route travel time.1 Assumption A2 states that we assume all of the demand, dint, 
experiences the same travel time, even if they do not individually; the users of dint are not 
distinguished. We ascribe the quasi-real route travel time to all of the demand, dint. 

 
Assumption A5 means that we only need to track flow across (the nearest) two successive time 
periods. The model could be extended to accommodate the flow clearing over three or more time 
periods, but this would be cumbersome. In order for this assumption to be reasonable as an 
approximation to the ‘real’ (continuous time) flow behavior, the length of time period L should be 
less than the maximum link travel time. This reinforces the notion that the model is intended to be 
used with a relatively coarse time discretization. Links could of course be (artificially) divided into 
smaller components if this assumption were limiting.  

 
In general, unlike in Figure 1, the inflow to link ij will be heading to many different destinations. 
Part of the inflow, xijt, becomes the residual flow, yijt, which travels in the next time period. 
Destination information is preserved and the residual flow is treated as demand from node j in the 
next period. Assumption A7 arises from this requirement. 

 
Assumptions on the link travel time is as follows: 

 
A8 Link travel time is expressed as a function of its inflow. 
A9 The link travel time function is continuous, strictly increasing and positive. 
 

Assumptions A8 and A9 play an important role in the proof of uniqueness of the network 
equilibrium flows. However, the link travel time function based on A8 and A9, and the way residual 
flow is dealt with A5 and A7 does not ensure that we satisfy a strict and rigorous description of 
dynamic traffic flow. As mentioned previously, this model is intended to offer a representation that 
improves on the simple approach of time-sliced UE and is appropriate for a coarse discretization of 
time. We sacrifice the requirements of standard dynamic traffic flow theory in order to define a 
tractable model that guarantees uniqueness of the equilibrium flows, as will be stated later. 

 
 

3. FORMULATIONS 
 

3.1 Flow Conservation 
According to assumption A5, the inflow exits the link in (at most) two successive time periods. That 
part of the inflow exiting the link within the same time period we are calling the outflow, while the 
other part is the residual flow. However, as assumption A4 states, all of the inflow experiences the 
link travel time at the time period of entry, even though only the outflow part exits in that time period. 
Furthermore, the outflow, zijt, does not include any residual flow from the previous time period, 
yij(t−1). Any previous residual flow, yij(t−1), will exist as demand from node j in time period t as 
mentioned in assumption A7. Therefore,  
 ijtijtijt yxz −=     ∀ij∈A, ∀t∈T (1) 
 

                                                 
1 A more obvious term may be mean real travel time, however, the model in this study is deterministic, rather than 

stochastic. To avoid confusion, quasi-real travel time is adopted. 
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Consider all network flows with destination node n. At node i (with i ≠ n) and time t we can specify 
the flow conservation condition as follows: 
 ∑∑

∈∈

=+
out
i

in
i Nj

ijntint
Nk

kint xqz  (2) 

where 
 ∑∑

∈
−−

∈
− −+=+=

in
i

in
i Nk

tkintkinint
Nk

tkinintint zxdydq ][ )1()1()1(  (3) 

The first equation (2) states that inflows plus flow originating at node i in time period t must balance 
with outflows. The flow originating from node i at time t comprises new demand flow, plus residual 
flow on links flowing into node i from the previous time period. The departing flow includes the 
residual flow according to assumption A7. 
 

 

k i

…
…

in
iN

zkint
j

…
…

xijnt

qint

out
iNdint

ykin(t−1) = xkin(t−1) − zkin(t−1)

Time period t

Time period t−1

 
Figure 2: Flow conservation at note i 

 
3.2 Residual Flows 
Assumption A2 states 
 
The residual flow on a link is determined by the inflow and the link travel time (which is a function 
of inflow). Let yij(xijt) denote the residual flow function of link ij, so that yijt = yij(xijt). The residual 
flow function yij(⋅) is increasing and continuous, and clearly, 0 ≤ yij(xijt) = yijt ≤ xijt (∀ij ∈ A, ∀t ∈ T ).  
 
In the simple example of Figure 1, the quasi-real route travel time is c12t + (1 − y12t /x12t) c23t + 
(y12t /x12t) c23(t+1). To define the quasi-real travel time, yij(xijt)/xijt have to be clarified. If xijt = 0, 
yij(xijt)/xijt does not have the finite value. In addition, it is natural that yij(xijt)/xijt is continuous in xijt ≥ 
0. Then, assume that lim x→+0 [x − yij(x)]/ x = t0,ij /L (∀ij ∈ A ), where t0,ij is the free-flow travel time on 
link ij. Let rijt be defined as follows: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

>
−

=
=

0if

0if

,0
ijnt

ij

ijt
ijt

ijtijt

ijt

ijt

ijt

x
L

t

x
x

yx
x
z

r  (4) 

Thus, rijt is continuous in xijt ≥ 0. Also, rijt represents the ratio of inflow which exits link ij within 
time period t and 1 − rijt stands for the ratio of the residual flow. As shown later, this is playing an 
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important role in the proof of existence of equilibrium network flow. From (1), zijt = xijt − yij(xijt). 
Therefore, zijt is also a continuous of xijt, and 0 ≤ zijt ≤ xijt (∀ij ∈ A, ∀t ∈ T ). 

 
The link inflow does not necessarily consist of inflows whose destination is a single destination node. 
Inflow is treated without any distinction according to assumption A2. Therefore, the following 
equation holds:  

 
ijt

ijt

ijnt

ijnt

x
z

x
z

=     if xijt, xijnt > 0    ∀ij∈A−n, ∀n∈D, ∀t∈T (5) 

This means that yijnt and zijnt are uniquely determined when xijnt is given.  
  

3.3 Formulation  
In continuous-time DTA studies, the experienced (route) travel time is equilibrated. In some link-
based continuous-time DTA models, such as Kuwahara & Akamatsu (1993), Ran et al. (1996) and Li 
et al. (2000), UE is modeled as  

 

cij(tc) + τjn(tc + cij(tc)) − τin(tc) = 0  if xijn(tc) > 0      (6) 
cij(tc) + τjn(tc + cij(tc)) − τin(tc) ≥ 0  if xijn(tc) = 0      (7) 

 

where cij(tc) denotes the travel time on link ij experienced by flow departing from node i at 
(continuous) time tc, xijn(tc) is the inflow to link ij at the time tc whose destination is node n, and 
τin(tc) is the minimum travel time from node i to node n (destination) at time tc. Note that cij(tc), τin(tc), 
and xijn(tc) are used only in the description of the continuous-time DTA, while cijt, τint, and xijnt are 
employed in the discrete-time DTA. The conditions (6) and (7) mean that link ij is on the route 
which has the minimum travel time. 

 
In this study, some part of the link inflow cannot exit the link within one time period, and departs 
from the end of the link in the next period. The other part of the flow does exit the link and enters the 
next link in the current time period. As described earlier, the quasi-real route travel time is adopted in 
this study as the basis for route choice and hence underlies network equilibrium. To derive the 
minimum value of the quasi-real route travel times, the following is proposed: 

 

 ( ) )1(1 +−+≡ tjnijtjntijtijnt rr ττμ .  (8) 
 

In the above equation, the weighted average of the minimum travel time from node j and node n in 
time period t and t + 1 is used. In the remainder of this paper, the minimum value of quasi-real route 
travel times is called the quasi-real minimum travel time. In the next section we show that the quasi-
real minimum travel time can be derived using the above equation. 

 
By discretizing (6) and (7) and using (8), a link-based formulation of discrete-time dynamic UE is 
given as 

 00 >=−+ ijntintijntijt xifτc μ   (9) 
 00 =≥−+ ijntintijntijt xifτc μ .  (10) 
This means that a link is on the route which has the minimum of (quasi-real) route travel time. The 
above equilibrium is formulated as the complementarity problem for which the following holds: 

( ) 0=−+ intijntijtijnt τcx μ  ∀ij ∈ A−n, n ∈ D, t ∈ T (11) 

0,0 ≥−+≥ intijntijtijnt τcx μ  ∀ ij ∈ A−n, n ∈ D, t ∈ T (12) 

( ) 0=−− intintintint vquτ  ∀ ij ∈ A−n, n ∈ D, t ∈ T (13) 
0,0 ≥−−≥ intintintint vquτ  ∀ ij ∈ A−n, n ∈ D, t ∈ T, (14) 
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where 
∑
∈

=
out
iNj

ijntint xu  ∀ij ∈ A−n, n ∈ D, t ∈ T (15) 

∑
∈

=
in
iNk

kintint zv  ∀i ∈ N−n, n ∈ D, t ∈ T (16) 

∑
∈

−− −+=
in
iNk

kintkintintint zxdq )( 11 . ∀i ∈ N−n, n ∈ D, t ∈ T (17) 

Equations (13) and (14) represent the flow conservation. The original flow conservation is expressed 
as an equation, but the complementarity form is used for consistent formulation. The (quasi-real) 
minimum travel time, τint, is greater than 0, and uint = qint + vint by (13).  
 
3.4 Quasi-real minimum travel time and qDUE 
The definition of the weighted average of minimum travel times (or quasi-real route travel time) in 
(8) is worth clarifying. Figure 3 shows an example of the quasi-real travel time on a route which 
consists of 3 (series connected) links. 
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23232
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1 2 3 41 2 3 4

1 2 3 41 2 3 4

[enter link 23 at t ]
r12t L
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(1− r12t) L 

23423121342312231234231212312231212

121221212

12121

)1)(1(])1()1([)1(
)1(

+++

+

−−+−+−++−++=
−++=

+=

tttttttttttttttt

ttttt

ttt

crrcrrrrcrrcrcrc
rrc

c
ττ

μτ

1− r23t : r23t

[enter link 34 at t + 2 ]

1− r12t : r12t

[enter link 34 at t + 1 ] [enter link 34 at t ]

(c) Minimum (or route) travel time from node 1 to node 4 at time period t

(b) Minimum (or route) travel time from node 2 to node 4 at time period t

(a) Minimum (or route) travel time from node 3 to node 4 at Time t

 
 

Figure 3.  Quasi-real travel time 
 

The quasi-real route travel time is equal to the minimum value of quasi-real route travel times in this 
case because there is only one route. As written above, rijt = zijt /xijt and 1 − rijt = yijt /xijt, that is, the 
ratio of the residual flow to inflow is 1− rijt. The quasi-real minimum travel time from node 3 to node 
4 in time period t, τ34t, is equal to the travel time on link 34, c34t, because μ344t = 0 from (8). Next, the 
quasi-real minimum travel time from node 2 to node 4 is given as 
 

τ24t = c23t + μ234t = c23t + r23t τ34t + (1 − r23t) τ34t+1 = c23t + r34t c34t +(1 − r34t) c34t+1 (18) 
 

due to (8) and (9). In the same manner, the minimum travel time from node 1 to node 4 is  
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c12t + μ124t = c12t + r12t τ24t + (1 − r12t) τ24t+1  
= c12t + r12t τ23t + (1 − r12t) τ23t+1 + r12t r23t c34t + [(1 − r12t) r23t +  (19) 
r12t (1 − r23t)]c34t+1 + (1 − r12t) (1 − r23t) c34t+2 
 

since τ24t = c23t + r23t τ34t + (1 − r23t) τ34t+1.  
 
The departing demand flow at the rate of r12t from node 1 travels on link 23 in time period t, and (1 − 
r12t) of the demand runs in time period t +1. The flow at the rate of r12t r23t departing node 1 traverses 
link 34 in time period t, [(1 − r12t) r23t + r12t (1 − r23t)] of the flow travels in time period t+1, and (1 − 

r12t) (1 − r23t) travels in time period t+2.  
 
Thus, the quasi-real minimum travel time here is the expected value of the travel time. The quasi-real 
route travel time is expressed as an unwieldy combination of link travel times, but we do not 
necessarily deal with it in this way. Using the quasi-real minimum travel time, we can constitute it 
instantly. Furthermore, the quasi-real minimum travel time is determined endogenously in the 
complementarity problem as (11) through (14) shows. 
 
Under assumption A2, each user does not recognize whether or not they exit a link within the time 
period. The user has knowledge of all link travel times in all times, but does not know if they are part 
of the residual flow. The user recognizes the minimum travel time between their origin and 
destination as an expected value because the minimum travel time varies in time. The definition of 
μijnt in (8) represents this situation.  
 
In this model, each (individual) user does not necessarily choose the minimum travel time route ex 
post facto; rather, he just chooses the “expected” route which has the minimum travel time (as an 
expected value). Also, each user “actually” chooses the expected route with the minimum travel time 
ex post facto. This is the same that the user chooses the route with the quasi-real minimum travel 
time. The traffic condition is not necessarily the ordinary dynamic UE in the sense that each user 
chooses the minimum travel time ex post facto as continuous-time dynamic UE models suppose. 
However, no user in this study can certainly reduce his quasi-real route travel time by changing his 
route choice unilaterally under assumption A3, and the traffic condition shares some properties with 
dynamic UE.  

 
The quasi-real-time-based dynamic user equilibrium (qDUE) condition is that: at the qDUE, all 
routes used by those who depart in a time and travel between an OD pair has the quasi-real minimum 
travel time while all of their unused routes have the greater or equal time. The quasi-real minimum 
travel time is the minimum of quasi-real travel times, which can be interpreted as the “expected” 
travel time.  

 
In the remainder of this section, the above qDUE condition that all routes used by those who depart 
in a time and travel between an OD pair has the quasi-real minimum travel time equal while all of 
their unused routes have greater or equal time is reached in the formulation of (11) through (14) is 
shown.  
Let nl,−1, nl,−2 ,…, nl,−m,…, nl,−Ml

 denote the nodes on route l which are used and Ml denote the number 
of links which consists of route l. When m = 1, that is, at the node which is the closest to the 
destination, nl,−1, τ nl,−1nt = cnl,−1nt due to (8) and (9), and τ nnt = τ nnt+1 = 0. Let χlkt denote the quasi-real 
route travel time of the flow who departs in time period t from node nl,−k to the destination node on 
route l. Assume that the quasi-real route travel time from node nl,−k to node n (the destination) on 
route l which is used, χlkt, is the quasi-real minimum travel times from node nl,−k to node n, τ nl,−knt.  
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According to equation (4),  
χl(k+1)t = rnl,−(k+1)nl,−kt (cnl,−(k+1)nl,−kt + χlkt) + (1 − rnl,−(k+1)nl,−kt) (cnl,−(k+1)nl,−kt + χlk(t+1)).  (20) 

As assumed above, χlkt = τ nl,−knt , then  
χl(k+1)t = rnl,−(k+1)nl,-kt (cnl,−(k+1)nl,−kt + τnl,−knt) + (1 − rnl,−(k+1)nl,−kt) (cnl,−(k+1)nl,−kt + τ nl,−knt). (21) 
 

The right side of this equation represents the quasi-real minimum travel time from nl,−(k+1) to node n 
as (8) and (9) show. Thus, χl(k+1)t = τ nl,−(k+1)nt. This can be applied to any used route. By mathematical 
induction, we show that used route l has the quasi-real minimum travel time. The above can be 
applied to any used route. Therefore, all routes used by those who depart in a time and travel 
between an OD pair has the quasi-real minimum travel time. 
 
An unused route between an OD pair includes at least one link without flow which departs in the 
time and travels between the OD pair. In the case of the unused route, we assume that χl′kt ≥ τ nl′,−knt on 
route l ′, which is unused. In a manner similar to that for the above mathematical induction, χl′(k+1)t ≥ 
τ nl′,−(k+1)nt is derived, and we find that the quasi-real travel time of their unused routes is greater than or 
equal to the quasi-real minimum travel time. 

 
3.5 Static UE and qDUE 
In this sub-section, we consider the relationship between qDUE and static user equilibrium (UE). 
Consider static UE as describing a single time period, long enough that all routes are completed. 
Under static UE, each user takes the route with minimum travel time, and the equilibrium condition 
can be formulated as 

( ) 01111 =−+ injnijijn ττcx  ∀ij ∈ A−n, n ∈ D (22) 

0,0 1111 ≥−+≥ injnijijn ττcx   ∀ ij ∈ A−n, n ∈ D (23) 
 
Now, consider qDUE under the situation that the length of time period, L, approaches infinity. In this 
case, the set of time periods, T = {1}. Furthermore, yij1 = 0 (∀ij ∈ A) because all inflow traverses the 
link since the length of the time period is infinite. Then, rij1 = 1 in xij1 ≥ 0 by (4), and hence μijn1 = 
τjn1 due to (8). Substituting μijn1 = τjn1 to (11), we obtain  

( ) 01111 =−+ injnijijn ττcx . (24) 
This is the same of the static user equilibrium condition of (22). Thus, qDUE approaches the static 
Wardrop’s user equilibrium as L → ∞. The limit L → 0 is intended for future research. 
 
 
4. THE EXISTENCE AND UNIQUENESS OF NETWORK EQUILIBRIUM, 
AND A SOLUTION ALGORITHM 

 
In this section, the existence and uniqueness of qDUE which is formulated by the complementarity 
problem of (11) through (14) is proven. The proof of the existence and uniqueness of the network 
flow in this study is similar to those in Aashtiani and Magnanti (1981) and Wie et al. (2002). Also, 
an algorithm of qDUE is proposed. 

  
4.1. Existence of qDUE 
A vector x* is the solution of the complementarity problem, x*⋅F(x*) = 0, x* ≥ 0, F(x*) ≥ 0, if and only 
if x* satisfies the fixed point problem, x* = max[0, x* − F(x*)], where max[0, x] = x if x ≥ 0; otherwise, 
0 (Harker and Pang, 1990). A fixed point problem that is equivalent to the complementarity problem 
as described in the previous section is 
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[ ]intijntijtijntijnt τcxx +−−= μ,0max        (25) 
[ ]intintintintint vquττ ++−= ,0max  .       (26) 

The Brouwer’s fixed point problem is employed to prove the existence of equilibrium, but the 
Brouwer’s fixed point problem can be applied to the problem with a finite domain. A finite domain is 
set to apply the Brouwer’s fixed point problem. Define finite K1 and K2 which are satisfied with the 
following inequalities: 

[ ]TtDnNivqK nintint ∈∈∈∀+> − ,,max1       (27) 

[ ]TtDnAijcK nijntijt ∈∈∈∀+> − ,,max2 μ .      (28) 

Let Ω denote the finite closed convex set for which 0 ≤ xijnt ≤ K1 and 0 ≤ τjnt ≤ K2 hold (∀i ∈ N−n, ∀j 
∈ N , ∀n ∈ D, ∀t ∈ T ). The fixed point problem with the finite domain (x, τ) ∈ Ω for which the 
following equations hold is introduced: 

[ ]{ }intijntijtijntijnt τcxKx +−−= μ,0max,min 1       (29) 
[ ]{ }intintintintint vquτKτ ++−= ,0max,min 2       (30) 

 
To examine the existence of the solution of the original complementarity problem of the qDUE 
model given as (11) to (14), the relationship between the original complementarity problem and the 
fixed point problem expressed as (29) and (30) is investigated. As shown above, the original 
complementarity problem and the fixed point problem described by (25) and (26) are equivalent. 
When a fixed point (x, τ) of (29) and (30) does not lie on the boundary of Ω, that is, xijnt ≠ K1 and τint 
≠ K2, solving (29) and (30) is equivalent to solving the original fixed point problem of (25) and (26). 
This is shown below using reductio ad absurdum. 
 
Assume τint = K2. Then by (28), K2 > cijt + μijnt, and so − cijt − μijnt + τint > 0, giving max[0, xijnt − cijt − 

μijnt + τint] > xijnt. This implies xijnt = K1 from (29). Therefore, uint ≥ xijnt = K1 by (15). Since uint > qint + 

vint (−uint + qint + vint < 0) from (27) and uint ≥ xijnt = K1,  
 

τint − uint + qint + vint < τint.  (31) 
 

Then, max[0, τint − uint + qint + vint] < τint. In order that K2 = τint = min{K2, max[0, τint − uint + qint + vint]} 
holds, i.e. (30) holds, it is necessary to show that  K2 ≤ max[0, τint − uint + qint + vint]. However, as 
stated above, max[0, τint − uint + qint + vint] < τint (= K2). Thus, we find the contradiction. The above can 
be applied to any τint. Therefore, τint ≠ K2 (∀i ∈ N-n, ∀n ∈ D, ∀t ∈ T ). 
 
Next, suppose xijnt = K1. As (31) shows, τint − uint + qint + vint < τint. Then, τint must be zero in order that 
(30) holds. Furthermore,  
 

xijnt − cijt − μijnt + τint = xijnt − cijt − μijnt < xijnt  (32) 
 

because cijt > 0 and μijnt ≥ 0 by τint = 0. In order that (29) holds, xijnt must be 0. This contradicts the 
assumption of xijnt = K1. The above can be applied to any xijnt. Therefore, xijnt ≠ K1 (∀i ∈ N-n, ∀j ∈ N, 
∀n ∈ D, ∀t ∈ T ). Thus, the solution of (29) and (30) is equivalent to that of (25) and (26). 

 
Now, we establish the existence of the solution of the fixed point problem of (29) and (30). Let F 
denote the vector-valued function whose component function is (29) or (30). F is the vector-valued 
function of x, τ, c, μ, u, v and q, where μ = {μijnt }, u = {uint}, v = {vint} and q = {qint}. Each of c, μ, u, 
v and q is also the function of x and τ, that is, c(x), μ(x, τ, z(x,y(x))), u(x), v(z(x,y(x))) and q(x, 

z(x,y(x))), where y(x) is the vector-valued function the component function of which is yij(xijt). Due 
to assumption A9, c(x) is continuous. The vector-valued function of residual flows, y(x), is 
continuous as assumption A6 shows, and the vector-valued function of z (= x − y(x)) is continuous. 



 13

Therefore, we find u(x), v(z(x,y(x))) and q(x, z(x,y(x))) are continuous from (15), (16) and (17). 
Furthermore, μ(x, τ, z(x,y(x))) is also continuous because of (4), (5), (8) and lim x→+0 [x − yij(x)]/ x = 
t0,ij /L. Therefore, F is continuous with respect to x and τ. Clearly, F(x, τ) ∈ Ω from (29) and (30).  
 
According to the Brouwer’s fixed point theorem, the existence of the solution of the problem, (x, τ) = 
F(x, τ), is proven. As described above, the solution of (29) and (30) is equivalent to that of the 
complementarity problem of (11) through (14). Therefore, the existence of the solution of the above 
qDUE model is guaranteed.  

 
4.2. Uniqueness of qDUE 
In this section, the uniqueness of the solution of the qDUE model expressed as (11) through (14) is 
proven using reductio ad absurdum. Assume that the model has two different solutions, (x*, τ* ) and 
(x°,τ° ), where x* = }{ *

ijntx ,τ* = }{ *
intτ , x° = }{ o

ijntx  and τ° = }{ o
intτ . From (11), the following equations 

hold: 
 ( ) 0**** =−+ intijntijtijnt cx τμ   (33) 

 ( ) 0=−+ oooo
intijntijtijnt cx τμ  ,  (34) 

where *
ijtc and o

ijtc  are the travel time on link ij in time period t at x = x* and x = x°, respectively, and 
*
ijntμ  and o

ijntμ  are the weighted average minimum travel times at (x*,τ* ) and (x°, τ° ), respectively. 
Summing the above two equations yields 

 
( )( ) ( )

( ) 0*

*******

=−++

−+++−−+−−
ooo

ooooo

intijntijtijnt

intijntijtijntintintijntijntijtijtijntijnt

cx

cxccxx

τμ

τμττμμ
. (35) 

 
From (11) and (12) we see that  

0* ≥ijntx ， 0≥o
ijntx ， 0*** ≥−+ intijntijtc τμ ， 0≥−+ ooo

intijntijtc τμ . 

The second and third terms on the left-had side of (35) are not negative. Let ot
ijntijntijnt xxx −= * , 

ot
ijtijtijt ccc −= * , ot

ijntijntijnt μμμ −= * , ot
intintint τττ −= * , and ot

ijntijntijnt qqq −= * . Using ijntxt , ijtct , ijntμt  and intτt , 
the equation can be rewritten as 

 ( ) 0≤−+ intijntijtijnt cx τμ tttt
 .  (36) 

Similarly,  
 ( ) 0≤−− intintintint vqu ttttτ   (37) 

can also be derived. We sum (36) with respect to out
iNj∈ , and add it to (37). Obtaining 

 ( ) 0≤−−+ ∑∑
∈∈ in

i
out
i Nk

kintintintintijntijt
Nj

ijnt zqcx ttttttt ττμ .  (38) 

Note that we used (15) and (16).  
 
Substituting (8) for (38) yields  

 ( )[ ] 0)1( ≤−−−+ ∑∑
∈∈

+
in
i

out
i Nk

kintintintint
Nj

ijntijnttjnijntjnt zqzxz ttttttttt ττττ .  (39) 

Then, summing (39) over i (∈ N ), we obtain 
 ( ) 01 ≤−−+ ∑∑∑

∈∈
+

∈
int

Ni
int

Aij
ijntijntjntijt

Aij
ijnt qzxcx ttttttt ττ ,  (40) 
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where 0, =nkntnknt zx tt
 ( out

nNk ∈∀ ), which means that no flow exits from the destination, because Σi 

Σj xijnt μijnt = Σi Σjτjnt zijnt + Σi Σjτjnt+1 (xijnt − zijnt), and Σi Σjτjnt zijnt = Σi τint Σk zkint. Summing (40) 
with respect to ∀n ∈ D, ∀t ∈ T gives 

 ( ) 01 ≤−−+ ∑∑∑∑∑∑∑∑
∈ ∈ ∈∈ ∈ ∈

+
∈ ∈ Ni Dn Tt

intint
Aij Dn Tt

ijntijntjnt
Aij

ijt
Tt

ijt qzxxc ttttttt ττ ,  (41) 

where ∑∑
∈∈

==−=
Dn

ijntijt
Dn

ijntijtijtijtijt xxxxxxx ooot ,, *** .  

 
OD demands are constant, and 0)( * =−= o

t
intintint ddd . By (15), ∑ −− −= k kintkintint zxq )( 11

ttt . Substituting 
this for (41) gives  

 ( )( ) 0** ≤−−∑∑
∈ ∈Aij Tt

ijtijtijtijt xxcc oo  .  (42) 

This contradicts the convexity of the travel time functions as mentioned in assumption A9. Thus, the 
link inflows in each period are unique. Note that {xijt ⎪ ∀ij ∈ A, t ∈ T } is unique, but xijnt is not 
necessarily unique.  

 
4.3. Algorithm 
There are various ways of solving the qDUE complementarity problem formulated in (11) through 
(14); we choose a simple approach, reformulating the CP (complementarity problem) using quadratic 
Fischer-Burmeister functions.  
 
The Fischer-Burmeister function (Fischer, 1992), φ(x,y), is x + y − 22 yx + . The function is 
(always) non-negative, φ(x,y) ≥ 0, and φ(x,y) = 0 is identical to x ≥ 0, y ≥ 0 and x y = 0. Therefore, 
the complementarity problem of solving x f(x) = 0 s.t. x ≥ 0 and f(x) ≥ 0 is re-formulated as 
minimizing φ(x, f(x)). The solution of minimizing φ(x, f(x)) without constraints is identical to that of 
the original complementarity problem. However, the Fischer-Burmeister function, φ(x,y), is not 
differential at (x, y) = (0, 0). In this study, the quadratic Fischer-Burmeister function, φ(x,y)2, which 
is differential, is used. 

 
Now, the following Fischer-Burmeister-type functions are defined: 

( )22),( intijntijtijntintijntijtijntijnt τcxτcx −++−−++= μμφ τx  (43) 

( )22),( intintintintintintintintint vquτvquτ −−+−−−+=τxϕ  (44) 
Eqation (43) is the Fischer-Burmeister function for the CP of (11) and (12) while equation (44) is for 
(13) and (14). As described above, we use the quadratic Fischer-Burmeister functions, and these FB 
functions allow us to define 

∑ ∑ ∑ ∑
−∈ ∈ ∈ ∈

⎥
⎦

⎤
⎢
⎣

⎡
+=

n
out
iNi Dn Tt Nj

ijntintL 22

2
1),( φϕτx  (45) 

Clearly, L(x, τ) ≥ 0. The optimization problem to minimize L(x, τ) is then 

∑ ∑ ∑ ∑
−∈ ∈ ∈ ∈

⎥
⎦

⎤
⎢
⎣

⎡
+=

n
out
iNi Dn Tt Nj

ijntintL 22

2
1),(.min φϕτx  (46) 

This minimization problem is unconstrained. A solution of (46) is identical to that of the 
complementarity problem (11) through (14). Many algorithms for unconstrained optimization 
problems have been developed. In this study we use a conjugate gradient method with the Polak-
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Ribiere formula to solve the above optimization problem. Convergence of the Polak-Ribiere  
conjugate gradient method is guaranteed (Grippo & Lucidi, 1997). 

 
 

5. EXAMPLE 
 

5.1. Simple network example 
In this section, the model is applied to a simple network at a simple setting, and we examine how the 
model works and whether or not the solution is unique. To reduce the number of variables for 
simplicity, two time periods of 60-min length (L = 60) are considered. The network has 6 nodes and 
6 links as shown in Figure 4. Each link consists of a road part and a bottleneck part as shown in 
Figure 5. The link travel time function is 
 )()()( ijt

b
ijijt

r
ijijtij xcxcxc +=  (47) 

where )(⋅r
ijc  is the road part travel time function and )(⋅b

ijc  is the bottleneck part travel time function. 

The travel time of the road part, r
ijtc , is given by the following standard BPR-type function: 

 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

4

,0 25.01)(
ij

ijt
ijijt

r
ij C

x
txc   (48) 

where r
ijtc is the travel time of the road part, ijt ,0  is the free-flow travel time, and r

ijC is the capacity of 

the road part of the link. The travel time of the bottleneck part, b
ijtc , is expressed as 

 
[ ]

b
ij

b
ijijt

ijt
b
ij C

Cx
xc

0,max
)(

−
=   (49) 

where b
ijC is the capacity of the bottleneck part of link ij. )( ijt

b
ij xc  is a non-decreasing function, but is 

not necessarily strictly increasing. However, )( ijt
r
ij xc  is strictly increasing, and the link travel time, 

cij(xijt), is also strictly increasing. For simplicity, b
ij

r
ij CC =  in this example. The capacity and free-

flow travel times are given in Table 1. The residual flow is given as 
 ]0,max[)( b

ijijtijtijijt Cxxyy −==  .  (50) 
The travel demands given are illustrated in Table 2. The OD pairs are nodes 1 and 6, nodes 2 and 6, 
and nodes 3 and 6. The flow from node 2 has a route choice, but the others do not. 

 

1

2

3

4

5

6

Origin nodes

Destination
node

 
Figure 4:  Example network 
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bottleneck

road travel time waiting time
(queuing time)

bottleneck

road travel time waiting time
(queuing time) 

Figure 5:  Link structure in the example 
 

Table 1:  Free-flow times and capacities in the example 
 

free-flow time capacity
Link 14 10 150
Link 24 10 175
Link 25 10 125
Link 35 10 150
Link 46 10 200
Link 56 10 200  

 
 

Table 2:  Travel demands in the example 
 

Time 1 Time 2

1→6 70 60

2→6 350 300

3→6 70 60  
 
 
Table 3 shows the results of the qDUE assignment for the above example. Part of the flow which 
departs at node 2 chooses link 24. This inflow to link 24 does not necessarily exit link 24 within time 
period 1. The amount of residual flow on link 24 in time period 1 is 14.8. They travel on link 46 in 
time period 2. The quasi-real travel time which takes link 24 in time period 1 is: 16.46 + 
(175.0/189.8)*26.88 + (14.8/189.8)*24.46 = 43.84. Similarly, the travel time of the flow which takes 
link 25 is 31.98 + (125.0/160.2)*11.36 + (35.2/160.2)*18.87 = 43.84. Thus, the qDUE is reached.  
 

Table 3:  The results of inflows, travel times and residual flows 
 

Link 24 Link 25 Link 46 Link 56 Link 24 Link 25 Link 46 Link 56
inflow 189.8 160.2 245.0 195.0 163.0 137.0 237.8 220.2
travel time 16.46 31.98 26.88 11.36 11.19 16.77 24.46 18.87
residual flow 14.8 35.2 45.0 0.0 0.0 12.0 37.8 20.2

Time 1 Time 2

 
 
To examine the uniqueness of the solution of the qDUE, the function, h, is introduced: h(x241, x242) = 
(c241 + μ4661 − c251 − μ5661)2 + (c242 + μ4662 − c252 − μ5662)2. The function, h, is non-negative, and (x241 , 
x242) is at qDUE iff h = 0. Figures 6a and 6b show the function, h. In the figures, the x axis is x241, the 
y axis is x242, and the z axis is h. These figures illustrate the uniqueness of the solution. 
 
The quasi-real route travel time is equilibrated in the model. The outflow from link 24 in time period 
1 traverses link 46 in this time period, while the residual flow travels in time period 2. The former 
takes the travel time of c241 + c461 = c24(x241) + c46[x462(x241)] as real (or actual) travel time, thus, the 
function solely of x241 in time period 1. On the other hand, the latter costs that of c241 + c462 = 
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c24(x241) + c46[x462(x241, x242)], thus, the function of x241 and x242. Figure 7 shows the two real travel 
times and quasi-real travel time on the route which consists of link 24 and link 46 in time period 1 
when x242 = 150.  The x axis is the flow of x241, and the y axis is the travel time. Thus, the quasi-real 
travel time locates between the real travel times of the outflow and residual flow. 
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Figure 6: The shape of function h from the two different views 
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Figure 7: The two real travel times and quasi-real travel time 

 
 
5.2. Application to Kanazawa Road Network 
In this section, the model is applied to the Kanazawa road network. Figure 8 shows the Kanazawa 
road network, comprising 272 nodes and 964 links. Kanazawa is a local city and has a population of 
450,000. The central business district is located at the city center, the destination for many 
commuters. The duration of a time period is set at 60 min, to be consistent with the available 
resolution of the OD demand data. Four periods during the morning peak are considered: period 1 is 
6:00–7:00 AM, period 2 is 7:00–8:00 AM, period 3 is 8:00–9:00 AM, and period 4 is 9:00–10:00. 
The OD matrix in each period is derived from a previously conducted personal trip survey within the 
Kanazawa urban area. OD flow is assigned in the period of departure; flow departing at 6:50 that 
reaches the destination at 7:25 is included in the OD demand in period 1 (6:00–7:00). The travel 
times are given by standard BPR-type functions. The computation time for reaching convergence on 
an ordinary personal computer (CPU: Intel Core i7 2.80 GHz) is 24 min 30 sec. This suggests the 
model is practically applicable. 
 
Figure 9 shows scatter plots comparing observed and computed link flows in each period. The 
observed link flows are the observed link flows which travel within the period. The correlation 
coefficients between observed and computed flows are between 0.83 and 0.88; the goodness-of-fit of 
the model to the Kanazawa road network is reasonable. The period of 6:00–7:00 is before the 
morning peak. The link flows in period 1 are fewer than those in period 2 and 3, and the link travel 
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times in period 1 are close to free-flow travel times. There are not substantial residual flows from 
period 1 to period 2. Most drivers depart in period 2, 7:00–8:00, to travel to their workplace and 
traffic is most congested during this period. Figure 10(a) shows the residual flows on the links from 
period 2, 7:00–8:00, to period 3, 8:00–9:00 while Figure 10(b) those from period 3, 8:00–9:00, to 

period 4, 8:00–9:00. Most drivers are headed toward the city center (central business district), and 
the arrows in Figure 10(a) predominantly point toward the city center. Compared with Figure 10(b), 
Figure 9(a) shows that the residual flows from period 2 to period 3 are larger than those from period 
3 to period 4. This is because the morning peak is heaviest during period 2. The morning peak still 
continues until period 3, 8:00–9:00. The starting time of work is commonly at or before 9:00, and the 
morning peak is over in period 4, 9:00–10:00. The link flows in period 4 are much less than those in 
period 3 as Figure 9(c) and (d).  
 
The correlation coefficients between observed and computed flows in each period are more than 0.8, 
and the validity of the model is reasonable. However, Figure 9(c) implies that the link flows 
computed for period 3 (AM 8:00–9:00) underestimate observed flows. This is partially because of 
the inconsistency between OD matrix and observed link flows. In this paper, as described above, 
demand is assigned to the departure period regardless of when it reaches the destination. How to 
construct a semi-dynamic OD matrix, i.e. how to divide total demand into periods for this model, 
requires further examination. This underestimation may also result from the calculation of residual 
flows. In this application to Kanazawa road network, the residual flows, yjt, is xijt cijt/L as Figure 1 
illustrates. However, this is not the only possible way to calculate residual flows. The residual flow 
of the simple network case in the previous section is determined using the bottleneck capacity. As 
assumption A6 states, we just assume that the residual flow is a continuous and increasing function 
of the inflow on a link. There remains some need to calibrate residual flows, which is left for future 
work.  

: rivers
：national roads
: rivers
：national roads

 
Figure 8:  Kanazawa road network 
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a) 6:00-7:00 b) 7:00-8:00

c) 8:00-9:00 d) 9:00-10:00
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Figure 9:  Scatter plots between the observed and calculated link flows in each period 
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a) From period 2 to 3 b) From period 3 to 4 
Figure 10:  Residual flows between the periods 
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6. CONCLUSIONS 
 
Although continuous-time DTA is a theoretically preferable model, there are practical cases where 
discrete-time DTA (or semi-dynamic traffic assignment) is both a useful and reasonable approach.  
 
However, discrete-time DTA has theoretical issues that need to be investigated. The link inflow in 
one discrete time period does not necessarily exit that link within the same time period. Therefore, on 
the next link the inflow may experience different travel times, despite having started as a contiguous 
‘block’ of demand. In this way, the travel time (and minimum travel time) is disputable in discrete-
time DTA. In this paper, the quasi-real minimum travel time is defined based on an assumption that 
inflow exits a link within two discrete time periods. 
 
Based on this quasi-real travel time, a user equilibrium model for discrete-time dynamic network 
traffic assignment is proposed. For each OD pair, the quasi-dynamic user equilibrium condition is 
that all routes used by those who depart in one time period have the quasi-real minimum travel time 
while all of their unused routes have greater or equal time. This condition is modeled as a 
complementarity problem, having a link-based formulation using the quasi-minimum travel time. We 
confirm that the solution of this complementarity problem formulation satisfies the stated UE 
condition. Furthermore, the existence and uniqueness of a solution to the proposed model are proven. 
 
An algorithm for the complementarity problem of the model is proposed based on the re-formulation 
approach. The non-constraint optimization problem is re-formulated using the quadratic Fischer-
Burmeister function. The optimization problem is solved by the conjugate gradient method. The 
model is applied to a simple network and Kanazawa road network. As a result, the goodness-of-fit of 
the model to observed link flow data is found to be satisfactory, and the validity and applicability are 
confirmed for at least a medium sized network such as Kanazawa. In future work, a method of 
constitute a semi-dynamic OD data and an approach to calibrate the residual flows should be 
developed. 
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