
A Field Programmable Sequencer and Memory
with Middle Grained Programmability Optimized
for MCU Peripherals

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/2297/46741URL

1

Copyright © 20XX The Institute of Electronics, Information and Communication Engineers

INPUT THE TYPE OF MANUSCRIPT

A Field Programmable Sequencer and Memory with Middle
Grained Programmability Optimized for MCU Peripherals

Yoshifumi KAWAMURA†,††a), member, Naoya OKADA†,†††, member, Yoshio MATSUDA†, non-member,
 Tetsuya MATSUMURA4, member, Hiroshi MAKINO5, member, and Kazutami ARIMOTO6, member

SUMMARY A Field Programmable Sequencer and Memory (FPSM),
which is a programmable unit exclusively optimized for peripherals on a
micro controller unit, is proposed. The FPSM functions as not only the
peripherals but also the standard built-in memory. The FPSM provides
easier programmability with a smaller area overhead, especially when
compared with the FPGA. The FPSM is implemented on the FPGA and
the programmability and performance for basic peripherals such as the 8
bit counter and 8 bit accuracy Pulse Width Modulation are emulated on the
FPGA. Furthermore, the FPSM core with a 4K bit SRAM is fabricated in
0.18 µm 5 metal CMOS process technology. The FPSM is an half the area
of FPGA, its power consumption is less than one-fifth.
key words: FPGA, MCU peripherals, field programmable devices,
sequencer, SRAM.

1. Introduction

Nowadays Micro Controller Units (MCUs), or
microcomputers, are widely used in a variety of different
systems and for various applications. The various needs of
many customers and systems require many types of chips
and MCU vendors provide MCU chips as families for these
requirements. Furthermore, the individual needs of
customers and system requirements generates various chips
even in a family, called products lineup, with different
memory capacities, memory organizations, and/or
peripherals although the chips have the same basic
architecture. Amongst them, requirements for peripherals
are extensive. Usually, standard peripherals are provided as
hard wired logics on the MCU. However, some customers
will require more than one timer or an FIFO memory in

addition to the peripherals provided. Other customers might
need multiple serial interfaces. These customers’
requirements increase products lineup.

Recently, the MCU markets for sensor network
systems and medical applications have been growing
rapidly. These systems will require even a greater variety of
MCU peripherals [1]-[6], so realizing these variations on
one MCU chip is very important. One solution is to embed
programmable devices for MCU peripherals. If MCU
peripherals can be easily configured on programmable
devices, it will drastically reduce the number of products
lineup and greatly improve productivity, cost, and quick
turn around time (QTAT). Thus, programmable peripherals
will be important for future MCUs.

A straightforward solution is to embed a small Field
Programmable Gate Array (FPGA) like core connected to
an internal peripheral bus on the MCU. The FPGA is a fine
grained programmable device, however, great overheads
exist in its areas, cost and performance in compensation for
the fine grained programmability when compared to ASIC
in the same function under the same process technology. In
addition, MCU vendors must develop their original FPGA
like core and dedicated mapping tools. A large number of
metal layers is also necessary for this small core, increasing
a cost. On the other hand, re-configurable coarse grained
processors are proposed. Reconfigurable processors are
programmable devices mainly at the application level [7]-
[10], therefore, allow the flexible execution of various
kinds of applications. However, the coverage area of re-
configurable processors has remained limited. This
programmable architecture is not applicable to our purpose
which realizes various peripherals on one MCU chip. One
other approach is a look–up table cascade architecture
composed of a serial connection of large scale memories
[11].

This paper proposes a Field Programmable Sequencer
and Memory (FPSM), which is an MCU with
programmable parts for MCU peripherals. Since peripheral
functions can be easily configured by users in the field after
shipping [12], the FPSM can be said to provide the “user
structured” MCUs. Peripherals are programmed through an
array of functional memory units, consisting of an SRAM
and a small address control unit. After analyzing the
customer’s requirements, the address control unit is
optimized for the MCU peripherals, realizing middle range

 † The authors are with the College of Science and

Engineering, Kanazawa University, Kanazawa-shi, 920-
1192, Japan.

 †† The author is also with SKY Technology Company
Limited, Saitama-shi, 337-0008, Japan.

 ††† The author is now with the Information Technology R & D
Center, Mitsubishi Electric Corporation, Kamakura-shi,
247-8501, Japan.

 4 The author is with the College of Engineering, Nihon
University, Koriyama-shi, 963-8642, Japan.

 5 The author is with the Faculty of Information Science and
Technology, Osaka Institute of Technology, Hirakata-shi,
573-0196, Japan.

 6 The author is with he Faculty of Computer Science and
Systems Engineering, Okayama Prefectural University,
Soja-shi, 719-1197, Japan.

 a) E-mail: yoshifumi.kawamura.g@gmail.com.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
2

Fig. 1 Block diagram of the Micro Controller Unit (MCU) with the
FPSM.

 grained programmability and precise control. Functional
memory units can also be used as the standard built-in
memory if the units are not configured for peripherals. The
FPSM has the dual functions of programmable peripherals
and standard memory. Thus, the FPSM can provide the
highest gate density and the easiest configuration. Since the
configuration is performed through standard memory write
operations, dedicated mapping tools are unnecessary.

The rest of the paper is organized as follows. In Sec. 2,
the concept and architecture of the FPSM are described. In
Sec. 3, the functional blocks of the FPSM are explained. In
Sec. 4, the configuration and operations of the FPSM are
described. The implementation of the FPSM on the MCU is
explained in Sec. 5. The configuration flow and operations
of the FPSM are also given in Sec. 5. The FPSM is
implemented on the FPGA and major MCU peripherals
such as the Counter, Timer, Pulse Width Modulation
(PWM), and First In First Out (FIFO) memory are
emulated on the FPSM in the FPGA. The implementation
and emulation results are described in Sec. 6. The LSI
implementation of the FPSM and the measurement results
of the test chip are described in Sec. 7. A comparison of the
FPSM and the FPGA is given as well. Finally, the
conclusion is given in Sec. 8.

2. Concept and Architecture of the FPSM

The major components of the MCU are the Central
Processing Unit (CPU), the memory including RAM, ROM
and non-volatile RAM, and peripherals such as the Timer,
Pulse Width Modulation (PWM), and Universal
Asynchronous Receiver Transmitter (UART). The proposed
Field Programmable Sequencer and Memory (FPSM) is a
programmable device optimized exclusively for MCU
peripherals.

The FPSM is embedded on the MCU. A conceptual
block diagram of an MCU with the FPSM is shown in Fig.
1. The FPSM is connected to the Memory Bus or the

Peripheral Bus through the MCU Interface. Data are
written to the memory through the MCU Interface by the
CPU. The CPU writes the configuration data for the desired
peripheral to the memory in the FPSM only once when
booting up the MCU, and after that, the FPSM operates
autonomously with the clock signal CLK. The FPSM
usually does not access the CPU, so the operations of the
configured peripherals add no load to the CPU.

The FPSM consists of a programmable array, called a
Programmable Memory Unit (PMU), as shown in Fig. 1.
The detailed structure is given in Fig. 2. The FPSM
comprises MCU Interface, multiple PMUs and Switch
Boxes (SB). The MCU Interface includes the PMU array
decoder, which designates a coordinate of the PMU by a
global address. This is a part of the address sent from the
CPU. Multiple PMUs can be connected in parallel and/or
cascade connections through SBs. The SB connects
neighboring PMUs by local wires and multiple PMUs by
global wires. PMU connections are controlled by
information stored at the registers in the SBs.

When a PMU operates as a peripheral, data are
transmitted to or received from the CPU through the
Peripheral Bus. On the other hand, unconfigured memory
for the peripherals can be accessed through the Memory
Bus. Even if some of the PMUs are operating as peripherals,
the remaining PMUs can operate at the same time as the
standard built-in memory. That is, the PMU functions as
both the memory and the peripherals.

3. Functional Blocks of the FPSM

In this section, we describe the functional blocks of the
PMUs; the MCU Interface, PMU, and SB.

Fig. 2 The FPSM is the two dimensional array of the Programmable
Memory Units (PMU) and Switch Boxes (SB).

PMUSB SBPMUSB PMUSB PMUSB

PMUSB SBPMUSB PMUSB PMUSB

PMUSB SBPMUSB PMUSB PMUSB

M
C

U
 In

te
rf

ac
e

CLK
RST

EN

Address
Data In

Data Out

Interrupt

Data Out
Data In
Address

Global
Wiring

Local
Wiring

(1,1) (2,1) (3,1) (4,1)

X(1 to 4)

Y(
1

to
 n

)

(1,2) (2,2) (3,2) (4,2)

(1,n) (2,n) (3,n) (4,n)

IEICE TRANS. ELEC A Field Programmable Sequencer and Memory with Middle Grained Programmability Optimized for MCU Peripherals TRON., VOL.XX-X, NO.X
XXXX XXXX

3

3.1 MCU Interface

The main role of the MCU Interface is to maintain signal
and timing compatibility between PMUs and an equipped
MCU. The MCU Interface translates an address from the
MCU to a global address and a local address and distributes
them to PMUs through the address bus as shown in Fig. 2.
The global address selects one PMU and the local address
is taken into the selected PMU as an external address.

Cycle timing adjustment and synchronization between
the signals of the MCU and PMUs are also done at this
interface depending on the MCU. For example, the number
of write cycles and read cycles for the MCU are controlled
to meet memory (SRAM) cycles in the PMU. The number
of the cycles is adjusted at a register in the MCU Interface.
In addition, signals from the MCU are translated to signals
for the PMU and vice versa. For example, one Data Out
bus is selected from multiple Data Out buses for the PMU
array and the data are sent to the MCU after cycle
adjustment.

3.2 Programmable Memory Unit (PMU)

The PMU contains a memory unit (Memory) and a small
logic unit (Add/Flag Control) that controls the memory
address. Various sequencers and combinational logics can

be configured by storing truth table data in the Memory.
Fig. 3(a) shows a standard sequential circuit model, the
Moore-Machine model [13]-[15], including the feedback
loop from the memory to the Add/Flag Control unit. The
basic concept of the PMU is the Moore-Machine. The PMU
is a clock synchronized memory with an autonomous
address control, which also operates as a state machine [14],
[15].

Fig. 3(b) shows a block diagram of the PMU. One
PMU has a 4 Kbit SRAM of 256 words by 16 bits. A word
of 16 bits is segmented into two fields, the 8 bit Flag Field
and the 8 bit Data Field. The Flag Field and the Data Field
correspond to the operation code and the operand of a
microcode, respectively. Thus, the Flag Field stores
information for controlling the Selector through the State
Transition Decoder. The bit assignment of the Flag Field is
shown in Fig. 4. The first two bits CF[1:0] are assigned to
the Carry Flag (CF). The second three bits SCC[2:0] are the
Selector Control Code and are mainly used for controlling
the Selector. The last three bits SEQ[2:0] are used to
control the other PMUs in the case of multiple PMU
connections. Addresses of the next state are stored in the
Data Field when the PMU is used as a sequencer. When the
PMU is used as a combinational logic circuit, the truth
table data are stored in this field. The details will be
explained later using examples.

The condition signal (CND), external data (Ext. Data),
and external addresses (Ext. Address) are inputted to the
PMU. The Selector chooses one of the four addresses; the
external address, the internal address read out from the
Data Field, the current address, or the incremented address
of the current address, depending on the CND and the SCC
bits read out from the Flag Field. The selector control
scheme of the State Transition Decoder and the address
paths are shown in Fig. 5. The address paths are controlled
by the SCC bits inputted to the State Transition Decoder.
The State Transition Decoder chooses a switch at the
selector and controls the on/off of the switch using two out
of three SCC bits. The one remaining bit is reserved for

(a)

(b)

Fig. 3 (a) The Moore Machine of sequential circuits and a (b) block
diagram of the PMU in the FPSM.

Memory

In Out
Moore Machine Model

Add/
Flag

Control

Fig. 4 Flag Field format.

CF[1:0] SCC[2:0] SEQ[2:0]

CF : Carry Flag
SCC : Selector Control Code
SEQ : SEQuential connection code

Fig. 5 Four kinds of address paths.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
4

future extension. The four kinds of address transitions are a
result of analyzing the MCU peripherals and cover almost
every peripheral frequently required in the field. This
limitation simplifies the Address/Flag Control unit and
keeps its area as small as possible.

The selected address is sent to the memory, and the
data stored in the Flag Field and Data Field are read out
from the memory. The read out data (Fout) from the Flag
Field are sent to the State Transition Decoder and used for
selecting the next address. The read out data (Dout) from
the Data Field are used as the internal address in the next
cycle. Some or all of the Dout are also sent to the
subsequent PMU and are used for the address of the PMU
when there are multiple connections.

3.3 Switch Box (SB)

Fig. 6 shows a block diagram of the SB. Signals between
PMUs are exchanged through four 4-bit width global wires.
Signal connection to the PMUs is controlled by the Bus
Switch for global wires and by the Input and Output
selector for the local wires. The local wiring is
unidirectional, while the global wiring is bi-directional.
PMU input and output signals are also treated in units of 4
bits. Three signals (IN1, IN2, and IN3) having 4 bit width
from the left PMU and one signal having 4 bit width from
the upper SB (north SB) are input to the SB. These signals
are selected at the Input Selector and outputted to the
global wires and to the Output Selector. One global wire is
connected to the lower SB (south SB). The two signals
(IN1 and IN2) are directly input to the Output Selector for
the appropriate PMU in a cascade connection. The Output
Selector sends five signals to the right PMU by choosing
five signals among the two signals from the Input Selector
and the four signals on the global wires.

4. Configuration

In this section, the configuration of the FPSM is explained

by using examples. The first example is the 3 bit down
counter. Fig. 7 shows the configuration data in the Flag
Field and Data Field. Irrelevant bits are omitted. The first
column is the address chosen out of the four address paths
at the Selector. The second column is the address of the
Memory in the PMU and the third column is the first bit
CF[1] out of CF[1:0]. CF=1 for only the address “000”.
Finally, the fourth column is the value of the Data Field,
which is the decrement value of the memory address.

When the signal EN is asserted by the CPU as the
trigger, the count operation automatically starts with the

Fig. 7 Configuration data of the 3 bit down counter and its address
selections.

CF[1]
1

Address[2:0]
000 111

Data[2:0]

0001 000

0011 010
0100 011

0010 001

0110 101
0111 110

0101 100

Flag Field Data FieldAddress

Ext. Add [Reg]
Internal Add

Address

Internal Add
Internal Add
Internal Add
Internal Add
Internal Add
Internal Add

selection

(a)

(b)

Fig. 8 (a) State transitions on the N-ary counter and (b) operation flow
of the N-ary counter.

CF=0

[Reg=001]

CF=0

CF=0

CF=0

CF=0

CF=0

CF=0

CF=0
111

110

101

100 011

010

001

[Reg=010]

[Reg=011][Reg=100]

[Reg=101]

[Reg=110]

[Reg=111]

000

CF=1

A111: CF = 0;
goto A110;

A110: CF = 0;
goto A101;

A101: CF = 0;
goto A100;

A100: CF = 0;
goto A011;

A011: CF = 0;
goto A010;

A010: CF = 0;
goto A001;

A001: CF = 0;
goto A000;

A000: CF = 1;
goto [reg] ;

Yes

No
CF=1

N [REG]

N-1N

CND=1

Fig. 6 Block diagram of Switch Box (SB) on FPSM.

IEICE TRANS. ELEC A Field Programmable Sequencer and Memory with Middle Grained Programmability Optimized for MCU Peripherals TRON., VOL.XX-X, NO.X
XXXX XXXX

5

clock signal CLK. For example, if “111” is inputted to the
PMU from the external register, the value “111” is taken in
the Memory of the PMU as the external address and the
data stored in the Flag Field and Data Field are read out
from the Memory. In the next cycle, the read out data “110”
from the Data Field are used as the internal address of the
Memory. The State Transition Decoder controls the
Selector to adopt these data as the internal address,
referring to CF[1] and the SCC bits. Since CF=0 except for
the address “000”, the same operation is repeated until the
address reaches “000”. At the address “000”, the count
operation stops because CF=1. If necessary, the CPU can
obtain the current counted value by reading the Dout. In
our design, a counter of up to 32 bits can be constructed
using four cascaded PMUs.

If N (N≤8=23) is set at the external register, the N-ary
counter is realized. The state transitions and operation flow
are shown in Figs. 8(a) and (b), respectively. For example,
if “101” is inputted from the external register, the PMU
counts down automatically and stops in six cycles, giving
CF=1 in the Flag Field and the address “000” in the Data
Field. The MCU Interface generates the interrupt signal
INT, referring to CF=1 and notices the completion of the
count operation to the CPU with the interruption signal INT.

The capture function, which gets the cycle when an
event occurs, is realized using two connected PMUs, as
shown in Fig. 9. The configurations are shown in Fig. 10.
The 8 bit up counter is configured on PMU (1). On PMU
(2), the address itself is stored at an address of PMU (2).
The signal Ext. Event represents an event and becomes “1”
when the event occurs. This signal is connected to the

enable signal EN port of PMU (2). The Dout of PMU (1) is
connected to the address port of PMU (2). This address is
selected as the external address for PMU (2). When the Ext.
Event becomes “1”, the address of PMU (1) at that time is
taken in PMU (2) because the EN of PMU (2) becomes “1”.
This address is recognized after a one cycle delay by
receiving the Dout of PMU (2).

Combinational logic circuits are also available by
configuring the truth table data on the PMU. Various
functions can be configured by combining the
configuration data and the multiple parallel and/or cascade
connections of the PMU. Users can configure the
calculation unit if they wish to. Examples of configurable
basic functions are summarized in Table 1. Thus, the FPSM

Fig. 9 Capture of a single event using the PMU.

Fig. 10 Configuration data of the PMUs for the single event capture
function shown in Fig. 9.

Data[7:0]

1000 0111

Address

1000 0110
1000 0111 1000 1000

1000 10011000 1000
1000 1001 1000 1010

Data[7:0]

1000 0110

Address

1000 0110
1000 0111 1000 0111

1000 10001000 1000
1000 1001 1000 1001

PMU (1) PMU (2)

Dout
Dout

Fig. 11 Bus architecture of the FPSM; The connection to the internal
Memory Bus for the unconfigured FPSM and the connection to the
Peripheral Bus for the configured FPSM.

Table 1 The PMU resources for the MCU peripheral examples.

Note; Check marks represent the required number of PMUs.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
6

covers almost all MCU peripherals.

5. Implementation of the FPSM on the MCU

In this Section, the implementation and configuration flow
of the FPSM on an MCU are described. As stated in Sec. 2,
the FPSM is connected to the Memory Bus or the
Peripheral Bus through the MCU Interface. The bus
connections are shown in Fig. 11 (see also Fig. 1). The
PMUs that are not configured for peripherals are used as
the standard build-in memory. The PMUs are connected to
the internal Memory Bus through the MCU Interface in the
FPSM. If the PMUs are configured as peripherals, they are
connected to the Peripheral Bus in the MCU through the
MCU Interface. The Peripheral Bus is connected to the
internal Memory Bus by the Bus State Controller, a kind of
Bridge. The connection is managed by the Bus State
Controller. The connections of the FPSM to the Memory
and Peripheral Buses are activated by the signal CME and
CPE, respectively.

The FPSM is managed in the common address space
of the MCU. The MCU Interface manages the addresses of
the memory and peripherals on the FPSM in the I/O
mapped method. This memory address mapping is shown
in Fig. 12. The FPSM is mapped on a part of the MCU
address space. The address space of the FPSM is controlled
by the Memory Access Enable (MAE) signal. Furthermore,
the address space of the FPSM is managed by the Memory
Window Enable signal (CME) and the Peripheral Window
Enable signal (CPE), whether the PMUs are configured or
not. An unconfigured PMU is mapped as the 256 word
standard memory because the PMU has 256 words. If the
PMU is configured as a peripheral, the PMU is mapped on
the address space as a one word memory, of which address
is the first address of the 256 words, because the PMU

functions as one peripheral. The mapped address of the
PMU is equivalent to the register address that specifies the
standard peripheral in the memory mapped I/O method.

When the CPU accesses the memory, the controller
(not shown in Fig. 12) generates the signal MAE if the
virtual address from the CPU is in the address space of the
FPSM. After receiving the MAE and the address, the Bus
State Controller generates the CME or the CPE according
to the address in the memory address space or in the
peripheral address space, as shown in Fig. 13. The MCU
Interface connects the PMU to the Memory Bus with the
CME or to the Peripheral Bus with the CPE. Finally, the
address is translated to the physical address of the PMU,
thus keeping the compatibility between the various MCUs
and the FPSM. This means that the MCU Interface circuit
has to be slightly modified for every MCU, because the
MCU Interface is depend on the MCU.

The FPSM is configured on an MCU in the following
sequence. The configuration flow is shown in Fig. 14.
1) The PMU to be configured and its associated registers

in the SBs are reset. The PMUs operate as the standard
built-in memory in the default at the initial state.

2) Next, the configuration data, the Flag Field data, and
the Data Field data are written into the memory in the
PMU memory using standard memory write operations.

Fig. 14 Configuration flow of the FPSM on the MCU.

RESET

Data/Flag Load

SB Register / Condition Set

Enable = 1

Yes

No

Start

Fig. 12 Accesses to FPSMs in the standard built-in memory and
peripherals.

Fig. 13 Memory Bus and Peripheral Bus access control scheme of the
FPSM at the MCU Interface.

Memory Bus
“On”

Peripheral Bus
”On”

CME=Yes CPE=Yes

Memory Access (MAE)

Address translation

Address
Window
Select

at Bus State Controller

at MCU Interface

at controller

IEICE TRANS. ELEC A Field Programmable Sequencer and Memory with Middle Grained Programmability Optimized for MCU Peripherals TRON., VOL.XX-X, NO.X
XXXX XXXX

7

3) The routing data and the mode selection (memory or
peripheral) data are loaded onto the associated registers.

After the configuration, the configured PMUs
operate autonomously with the clock CLK and the
external event signal (Ext. Event). The configuration data
and register data are stored in a built-in non-volatile
memory such as the flash memory, and loaded to the PMU
and the registers, respectively when the MCU is booted up.

6. Emulation of the FPSM on the FPGA

The FPSM is modeled and simulated using SystemC
language. The simulation results of the 16-ary counter are
shown in Fig. 15. During the first 256 memory write cycles,
the PMU is configured. In order to verify that the
configuration data is written correctly, the 256 memory
read cycles are used (this step is not necessary for normal
operations). After the reset cycles, the Carry Flag is
outputted in 16 cycles. The onetime 16 count operation is
performed correctly. The reset cycles are also not necessary
for normal operations. The FPSM can operates immediately
after the configuration.

As a more complex example, we show the simulation
results of the 8 bit accuracy PWM function. The 8 bits
accuracy PWM is configured on three cascaded PMUs, as

shown in Fig. 16. The configurations of these three PMUs
are essentially the 8 bit down counter. The first PMU is the
Divider, which determines the resolution. The second
controls the period and the third controls the pulse width.

The frequency fCLK of the system clock (CLK) given
to the first PMU is divided to C times of the CLK period
corresponding to the pre-set value of C at the C register.
The resolution a is

a = (1/fCLK)*C.
This value determines the pulse of CFLAG1. Since the
value “5” is set at the C register, CFLAG1 appears after
every 5 cycles of the CLK. The second PMU determines
the period of a total pulse in the unit of resolution a. The
pulse period t is given as

t= a*T.

The value T at the T register determines the period of the
total pulse width. In Fig. 16, CFLAG 2, the period of the
total pulse, appears after every 10 cycles of CFLAG1,
because the value of T is “10”. Finally, the pulse width w is
determined by the third PMU.
The pulse width w is

w=a*X,
where X at the X register is related to the pulse width ratio.
X determines CFLAG3 which then defines the “low period”

Fig. 15 Simulation results of the onetime 16 count operation on the 8 bit up counter.

Reset
Memory Write Memory Read Counts

Reset 16 Counts Carry Flag

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
8

of the pulse. The ratio of the low period is given by X/T.
CFLAG3 appears after every 5 cycles of CFLAG1 because
of the value of “5” at the X register. Finally, a PWM pulse
with the duty ratio of 50 % is generated, as shown in Fig.
16.

The FPSM is also implemented on the FPGA and
emulated. The FPSM is coded in the Verilog HDL and
mapped on the FPGA. A photograph of the FPGA board
with an ALTERA Stratix II is shown in Fig. 17. The 8 bit
accuracy PWM is emulated on the three cascaded PMUs
mapped on the FPGA. The mapped circuit is not a hard

wired 8 bit accuracy PWM but three connected PMUs
directly connected to each other without SBs. The mapping
results are shown in Table 2. The 345 LEs (Logic Element)
and three 4 Kbit SRAM are used.

In addition to verifying the architecture design, the
purpose of mapping the FPSM on the FPGA is also to
estimate electrical performance to be implemented on an
LSI. The global wires limit the operation speed of the
FPSM. Although the lengths of the global wires can be
controlled using a P&R tool in an LSI implementation, it
is difficult to control the global wires on the FPGA. If
the global wires are also mapped onto the FPGA through
the SBs, we cannot obtain useful information about
operation speed. Therefore, we directly connected PMUs
in the FPGA implementation.

Fig. 18 shows the observed PWM waveforms. The

Fig. 17 Photograph of the FPGA board used for emulating the FPSM.

Table 2 Mapping results of the FPSM on FPGA.

4 K bits x 3Memory

345Number of LEs
3 µs @ T=10256 Step/Cycle

300 ns @ C=158 bit Accuracy

PWM
Func.

50 MHzSystem Clock
ALTERA Quartus II 6.1Logic Synthesis

ALTERA EP1S40F780C5FPGA

Fig. 16 Simulation results of the 8 bit PWM using three cascaded PMUs.

Duty=50%

CFLAG1 = C/CLK CFLAG2 = CFLAG1*T CFLAG3 = CFLAG1*X

IEICE TRANS. ELEC A Field Programmable Sequencer and Memory with Middle Grained Programmability Optimized for MCU Peripherals TRON., VOL.XX-X, NO.X
XXXX XXXX

9

register values are C=15, T=10, and X=3. When the trigger
signal is inputted, the PWM starts and the pulse width
control operates, as shown in Fig. 16. The pulse of
CFLAG1 appears after every 15 cycles of the CLK and
CFLAG2 after every 10 cycles of CFLAG1. Finally, a
pulse PWM with a duty ratio of 30 % (=X/T) is generated
according to the register values “C”, “T”, and “X”. The
expected waveforms are observed.

7. Test Chip

To verify our proposed architecture, an experimental FPSM
core, meaning one PMU, was designed and fabricated in
0.18 µm process technology with 5 metal layers. A
photomicrograph of the core is shown in Fig. 19. The
characteristics are listed in Table 3. The SRAM unit is 380
µm x 215 µm and the Add/Flag Control unit is 380 µm x 45
µm. In total, the core size is 380 µm x 260 µm. The SRAM
organization is 256 words x 16 bits. The fabricated core
does not include the SB or the MCU Interface. The added

Add/Flag Control unit for the PMU is 1.4 kgates in two
input NAND gate, occupying 17.3 % of the core area.

In our design, the SB is 0.98 kgates, which is
estimated to be 0.012 mm2 assuming that the area is
proportional to the gate count. Roughly speaking, one SB is
provided for one PMU; thus, the area overhead of the
added circuits to the memory in the FPSM is 26.3%. This
value is slightly high, and overhead reduction is a future
issue. The gate counts and area of the MCU Interface are
estimated to 4.8 kgates and 0.061 mm2 respectively. Since
the MCU Interface is provided for the FPSM, its overhead
is negligible compared to that of an MCU chip.

Fig. 20 shows the measurement waveforms of the 16-
ary counter configured on the PMU core for the FPSM. The

(a)

(b)

Fig. 18 Observed waveforms of the 8 bit accuracy PWM emulated on
the FPGA board; (a) the CFLAG1 and CFLAG2 and (b) the generated

PWM pulse.

15

CFLAG1

CFLAG2

CLK

CFLAG1

CFLAG2

PWM

3

10

Fig. 19 Photomicrograph of the fabricated FPSM core.

Fig. 20 Count operation waveforms of the 16-ary counter on the
fabricated FPSM core.

16 counts

CLK

Count
Pulse

Table 3 Characteristics of the FPSM core.

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
10

core operates at a maximum frequency of 62 MHz with a
1.8 V power supply voltage. The power consumption is 1.0
mW at our target frequency of 50 MHz.

The area and power of the FPSM are compared with
those of the FPGA using typical peripheral functions, a 16
bit counter (free run timer) and a 256 word x 8 bit FIFO.
Table 4 shows a comparison of area and power
consumption between FPSM and FPGA. In Table 4, two
circuits are selected as the peripheral functions. All
functions configured on the FPSM listed up in Table 1,
with the exception of calculation units, can be configured
using serially connected FFs. Upon increasing the bit width
of each function, the number of FFs increases
proportionally. This means that fundamentally, the number
of PMUs increases in proportion with the bit width.
Therefore, if a basic function with a certain bit width can
be mapped to the PMUs, the other functions can be
deduced. Although the benchmark circuits are not
adequately thorough, their results include essential points.

The hard wired logics of the 16 bit counter and 256
words by 16 bits FIFO memory are experimentally mapped
on the FPGA, the ALTERA-Stratix II. In Table 4, the
number of the ALM, Adaptive Logic module, is our
experimental data and is converted to the number of Xilinx
CLBs assuming CLB = 2 slices = 2 ALMs, because a
Vertex slice is approximately equal to a Stratix II ALM [16],
[17]. Under this assumption, the area and the power of
ALM are converted from the Xilinx’s Vertex data [11] (see
the right part of Table II in Ref. [11]).

The number of the used ALMs are 9 and 19,
respectively, for the 16 bit counter and the 256 word x 8 bit
FIFO. Since the area of the ALM are not known explicitly,
we convert the 0. 22 µm data on Ref. [11] to 0.18 µm ones
based on the relation mentioned above and the scaling law.
According to Ref. [11], the average area and average power
consumption per CLB (Xilinx’s Configurable Logic Block)
are 0.0780 mm2 and 0.587 mW (Standard deviation is
0.022 mW) at 20 MHz with a power supply voltage of 2.5
V, respectively, in 0.22 µm process technology. Here, we
assumed that the density of the ALM is half to the one of
the CLB mentioned above. The area of the ALM in 0.18

µm process technology is estimated by multiplying (0.18
µm/0.22 µm)2 to the average area of the CLB on Ref. [11].
Thus, the hard wired 16 bit counter with 9 ALMs has an
area of 0.31 mm2.

Considering fCV2 of the power consumption, the 0.22
µm data can be converted to the 0.18 µm data by
multiplying (0.18 µm/0.22 µm), and (1.8 V/2.5 V)2 to 0.22
µm data. The converted data are summarized in Table 4
together with the fabricated FPSM data. In our design, the
SB is 0.98 kgates, which is estimated to 0.012 mm2,
assuming that the area is proportional to the gate counts.
The fabricated core does not include the SB, while the area
of the FPSM in Table 4 includes the area of the one SB per
PMU. The FPSM has half the area of the FPGA, and it
consumes one-fifth to one digit order less power than the
FPGA.

The power consumption does not depend on the
number of PMUs, because only one SRAM operates during
most of the cycles in the 16 bit counter and FIFO memory,
resulting in less power consumption. In the case of the 16
bit counter, when the lower 8 bit counter counts 256 cycles,
the upper counter counts one. This means that one PMU
operates 256 times, and the other one PMU operates one
time during 256 cycles. Thus, power consumption of the
upper counter is 1/256 times that of the lower counter, and
it is negligible. In the FIFO on the FPSM, one PMU each is
assigned to the write address pointer, read address pointer,
and data memory. When the FIFO receives the write (read)
control signal, the PMU for the write (read) address pointer
operates and the write (read) address is outputted in the
first cycle. In the next cycle, the PMU for the data memory
stores (read out) the data; after which the write (read)
operation is completed. This FIFO does not execute write
and read operations simultaneously, so one PMU operates
during one cycle.

8. Conclusion

We proposed the Field Programmable Sequencer and
Memory (FPSM), which is a programmable unit optimized
exclusively for MCU peripherals. The FPSM consists of

Table 4 Comparison of the FPSM and FPGA.

1) Power is independent of the number of PMUs, because only one PMU operates over most cycles.
2) Experimental results on the ALTERA Stratix II.
3) Converted data from the 0.22 µm data on Ref. [11].
4) Data memory is not included.

IEICE TRANS. ELEC A Field Programmable Sequencer and Memory with Middle Grained Programmability Optimized for MCU Peripherals TRON., VOL.XX-X, NO.X
XXXX XXXX

11
the Programmable Memory Unit (PMU) array of memory
units (Memory) with a small logic unit (Add/Flag Control)
controlling the memory address transition cycle by cycle.
Four kinds of address transitions are allowed in the
Add/Flag Control unit. These address transitions cover
almost every peripheral normally required in the field. This
limitation simplifies the Address/Flag Control unit and
suppresses its area increase. The PMUs not configured for
peripherals are used as the standard built-in memory, that is,
the FPSM functions both as the memory and as the
peripherals. The FPSM is implemented on the FPGA and
the programmability is emulated on the FPGA.
Furthermore, the FPSM core, one PMU with a 4K bit
SRAM, is fabricated in 0.18 µm CMOS process technology
with 5 metal layers. The added Add/Flag Control unit is
17.3% of the total area. The FPSM has half the area of the
FPGA and it consumes one-fifth to one digit order less
power than FPGA. The proposed FPSM could be very
useful for future MCU platforms.

References

 [1] E. D. Kyriakis-Bitzaros, N. A. Stathopoulos, S. Pavlos, D.
Goustouridis, and S. Chatzandroulis, “A reconfigurable
multichannel capacitive sensor array interface,” IEEE Trans.
Instrumentation and Measurement, vol. 60, no. 9, pp. 3214-3221,
Sept. 2011.

 [2] I. Adly, H. F. Ragai, A. El-Hennawy, and K. A. Shehata, “Over-the-
air programming of PSoC sensor interface in wireless sensor
networks,” in Proc. IEEE MELECON, 2010, pp. 997-1002.

 [3] F. Hu, S. Lakdawala, Q. Hao, and M. Qiu, “Low-power, intelligent
sensor hardware interface for medical data preprocessing,” IEEE
Trans. Information Technology in Biomedicine, vol. 13, no. 4, pp.
656-663, July 2009.

 [4] J. Xi, C. Yang, A. Mason, and P. Zhong, “Adaptive multi-sensor
interface system-on-chip,” in Proc. IEEE Conf. Sensors, 2006,
pp.50-53.

 [5] N. Aibe and M. Yasunaga, “Reconfigurable I/O interface for mobile
equipments,” in Proc. Int. Conf. on Field-Programmable Technology,
2004, pp.359-362.

 [6] S. Tanaka, N. Fujita, Y. Yanagisawa, T. Terada, and M. Tsukamoto,
“Reconfigurable hardware architecture for saving power
consumption on a sensor node,” in Proc. Int. Conf. Intelligent
Sensors, Sensor Networks and Information Processing, 2008, pp.
405-410.

 [7] A. Doboli, P. Kane, and D. Van Ess, “Dynamic reconfiguration in a
PSoC device,” in Proc. Int. Conf. Field-Programmable Technology,
2009, pp. 361-363.

 [8] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M.
Weinhardt, “PACT XPP - A self-reconfigurable data processing
architecture,” The Journal of Supercomputing, vol. 26, issue 2, Sept.,
pp. 167-184, 2003.

 [9] T. Sato, H. Watanabe, and K. Shiba, “Implementation of
dynamically reconfigurable processor DAPDNA-2,” in Proc. IEEE
VLSI-TSA International Symposium on VLSI Design, Automation
and Test, 2005, pp. 323-324.

 [10] H. Amano, S. Abe, Y. Hasegawa, K. Deguchi, and M. Suzuki,
“Performance and cost analysis of time-multiplexed execution on
the dynamically reconfigurable processor,” in Proc. IEEE
Symposium on Field-Programmable Custom Computing Machines,
2005, pp. 315-316.

 [11] K. Nakamura, T. Sasao, M. Matsuura, K. Tanaka, K. Yoshizumi, H.

Nakahara, and Y. Iguchi, “A memory-based programmable logic
device using look-up table cascade with synchronous static random
access memories,” Japanese Journal of Applied Physics, vol.45,
no.4B, pp.3295-3300, Apr. 2006.

 [12] Y. Kawamura, “A reconfigurable microcomputer system with PA3
(Programmable autonomous address-control-memory architecture),”
in Proc. IEEE Asian Solid-State Circuits Conference, 2007, pp. 388-
391.

 [13] S. V. Kartalopoulos, “Linear dynamic feedback sequential machines
with matrix memory implementation,” in Proc. Decision and
Control, 1982, pp.1233-1241.

 [14] L. D. Coraor, P. T. Hulina, and O. A. Morean, “A general model for
memory-based finite-state machines,” IEEE Trans. Computers,
vol.C-36, no.2, pp.175-184, Feb. 1987.

 [15] L. Gerbaux, and G. Saucier, “Automatic synthesis of large Moore
sequencers,” in Proc. European Conf. Design Automation, 1992, pp.
237-244.

 [16] https://www.altera.com/content/dam/alterawww/global/en_US/pdfs/
literature/hb/stx2/stratix2_handbook.pdf, “Stratix II Device
Handbook, Volume 1,” p. 2-7.

 [17] http://www.xilinx.com/support/documentation/data_sheets/
ds003.pdf, “Virtex 2.5V Field Programmable Gate Arrays, Product
Specification,” p. 5.

Yoshifumi Kawamura was born in 1960 in
Miyagi, Japan. He graduated from the
Electrical Engineering of Miyagi Technical
College. In 1981, He joined the
Semiconductor & Integrated Circuit
Division on Hitachi Ltd. and was engaged in
the development of telecommunication
devices. In 1993, he was transferred
Graphics Communication Laboratories and
was engaged in the research and
development of MPEG2 multimedia
communication systems for four years.In

1997, he was engaged in development of LSI’s for GSM Cell phone. In
2003, He was transferred Renesas Technology Corporation, next Renesas
Electronics Corporation, and was engaged in the research and
development of programmable and reconfigurable IPs. He is now with
SKY technology Co., Ltd.

Naoya Okada was born in Fukui, Japan. He
received the B.S. degree in electrical and
electronic engineering and the M.S. degree in
electronic information engineering from
Kanazaw University. He is now with the
Information Technology R & D Center,
Mitsubishi Electric Corporation.

Yoshio Matsuda was born in Ehime, Japan,
on October 26, 1954. He received the B.S.
degree in physics and the M.S. and Ph.D.
degree in applied physics from Osaka
University, Osaka, Japan, in 1977, 1979,
and 1983, respectively.
He joined the LSI Laboratory, Mitsubishi
Electric Corporation, Itami, Japan, in 1985.
He was engaged in development of
DRAM, advance CMOS logic, and high
frequency devices and circuits of

IEICE TRANS. ELECTRON., VOL.XX-X, NO.X XXXX XXXX
12

compound semiconductors. Since 2005, he has been a professor at the
College of Science and Engineering, Kanazawa University, Japan. His
research is in the fields of integrated circuits design where his interests
include multimedia systems, low power SoCs, and image processing LSIs.

Tetsuya Matsumura received the B.E. and
Ph.D. degrees from Kyushu Institute of
Technology, Fukuoka, Japan in 1984 and
2001, respectively. He joined Mitsubishi
Electric Corporation in 1984. He was
transferred to Renesas Technology
Corporation, Renesas Electronics
Corporation, in 2003 and 2010, respectively.
Since 2013, he has been a professor of
department of computer science, college of
engineering at Nihon University, Fukushima,
Japan. His research is in the fields of next

generation multimedia system.

Hiroshi Makino was born in Osaka, Japan,
in 1959. He received the B.S. degree in
physics from Kyoto University, Kyoto,
Japan, in 1983 and the Ph.D. degree in
electrical engineering from the University
of Tokyo, Tokyo, Japan, in 1997. In 1983
he joined the LSI R&D Laboratory,
Mitsubishi Electric Corporation, Itami,
Japan, where he worked on the research
and development of GaAs digital LSIs until
1990. From 1991 to 2002, he was engaged
in the research and development of Si

CMOS high-speed and low-power digital circuits in System LSI
Laboratory and System LSI Development Center. From 2003 to 2007, he
continued the same study at Advanced Design Framework Development
Department of Renesas Technology Corporation, Itami, Japan. In 2008, he
has become a professor at Osaka Institute of Technology, Osaka, Japan,
and is working on the research and education of system LSI design.

Kazutami Arimoto received the B.S., M.S.,
and Ph.D. degrees in electric engineering
from Osaka university, Osaka, Japan, in
1979, 1981, and 1993, respectively. He
joined the LSI Laboratory, Mitsubishi
Electric Corporation, Itami, Hyogo, Japan,
in 1981.Since then, he has been engaged in
the design and development of DRAMs
and IPs for System LSI. He transferred to
Renesas Technology Corporation, Renesas
Electronics, and Okayama Prefectural
University, in 2003 in 2010 and 2012,
respectively. Currently, he focused on

image processing IPs, communication IPs, sensor interface, memory based
IPs and re-configurable IPs for multimedia, security, auto mobile, network,
sensor network, energy management, and future intelligent embedded
systems.

Prof. Arimoto has 192 U.S. patents and 69 Japanese patents issued.
He is a senior member of the Institute of Electronics, Information and
Communication Engineering (IEICE) of Japan. He is also a TPC member
of ISSCC and A-SSCC.

