堆肥発酵熱の抽出・蓄積に関する研究 第2報 循環通水方式による熱抽出・ 蓄熱過程の理論解析

関 平和・小森友明 (金沢大学工学部土木建設工学科)

A Study of Extraction and Accumulation of the Heat Generated in Composting Process
Part 2. A Theoretical Analysis of Heat Extraction and Accumulation Process by Water Circulation

Hirakazu SEKI and Tomoaki KOMORI

(Department of Civil Engineering, Faculty of Technology, Kanazawa University, Kanazawa 920)

1. 緒 言

第1報(関・小森, 1985b)では, 蓄熱そう内に投入さ れた1001の水を, 堆肥そう(積込まれた混合堆肥素材 の容積は0.245m³)内に埋設された円管内に断続的もし くは連続的に循環通水し, 堆肥発酵熱を抽出しつつ蓄熱 する実験を行った。そして, 1)断続実験では, 室温が 10℃以上の場合, 蓄熱そう内の水温を目標温度(30℃と した)に上昇させ得たが, 室温が5℃以下では蓄熱そう壁 からの熱損失が大きくなり不可能であったこと, 2)連 続的な循環通水により定常状態に達した際, 蓄熱そう内 水温は目標温度より低く, かつ堆肥そう内温度も高温菌 生育下限温度(40℃)以下になったこと, 3)発生熱量に 対する抽出熱量の割合は断続実験では17~26%, 定常操 作実験では 27~32% であったことなどの結果を得た。

以上の結果は, 堆肥そう, 蓄熱そうの規模, 埋設管の 配管密度, 気象条件などによって変わり得るもので, 必 ずしも一般的なものとはいえない。従って, 利用目的 (土壌加温など)に要求される諸条件(必要な熱量, 水温, 装置規模の制約など)を満足するように本操作を計画す るには, 伝熱過程のシミュレーションモデルを開発し, 設計・操作条件と堆肥そう内温度, 蓄熱そう内水温の関 係をはあくしておかなければならない。

本報では,最適な設計・操作条件の模索・決定に資す るため,循環通水による熱抽出・蓄熱操作の熱移動過程

昭和60年5月31日 全国大会にて発表 昭和60年9月26日 受理 を理論的に解析し,第1報の実験結果と比較してその妥 当性を検討した。なお,断続的な熱抽出・蓄熱過程の理 論解析は別法(関・小森,1985a)の手法に準じたものだ が,そこでは通水管への流入水温を一定としたのに対し, この場合は循環通水による蓄熱そう内の水温変化に伴い 通水管への流入水温が時間的に変化するため,解析モデ ルがその場合とは幾分異なる。

2. 熱抽出・蓄熱過程の理論解析

既述のごとく,第1報では堆肥そう内平均温度を40℃ 以下に下げないように断続的に循環通水を繰り返す非定 常実験と定常状態に達するまで連続的に循環通水を持続 する二種類の実験結果を報告した。ここでは,各場合に おける熱抽出・蓄熱過程を数学的に解析する。

2.1 断続的熱抽出·蓄熱過程

断続的な非定常熱抽出・蓄熱過程における堆肥そう内 温度, 蓄熱そう内水温の経時的変化は Fig.1のごとく模 式化される。循環通水中は熱抽出が行われている(熱抽 出期間)ので, 堆肥そう内温度は徐々に降下し, 蓄熱そ う内水温は上昇する。通水停止後, そう内温度は徐々に 回復する(温度回復期間)が, 蓄熱そう内水温は壁を通し て外界へ放熱する分だけ低下する。このような熱抽出・ 温度回復のサイクルを蓄熱そう内水温が目標温度に達す るまで繰り返す。

この場合,熱抽出期間と堆肥そう内温度回復期間では 伝熱機構が異なるので別々に解析を行う。

Fig. 1. Illustrative examples of changes in the average temperature in a compost bed and the water temperature in an accumulator with time for the heat extraction and accumulation process by intermittent water-circulation.

2.1.1 熱抽出期間

熱抽出期間とは、循環通水により堆肥そう内平均温度 が上限値*T_u*から下限値*T_a*に低下するまでの期間である。 熱抽出過程の厳密な解析は困難なので、数学的取り扱い の都合上、以下の仮定を設定する。

1) 堆肥そう内に保有される熱量は水との熱交換のみ によって失われるものとし, 堆肥そう側壁及び上・下端 から外界への熱損失は抽出熱量に比して相対的に小さく, 無視できるものとする。

2) 混合堆肥素材の熱的物性値は既知かつ一定である。

 3) 通水管は堆肥そう内に等間隔(2r₂)に配置されているが,隣接する通水管から等距離の位置(r=r₂)では 温度勾配が0である。

4) 通水管を取り巻く混合素材の形状は近似的に,内 外半径 r1, r2,長さ lc (通水管全長)の中空円柱とみなす。

5) 熱抽出過程において, 堆肥そう内熱伝導方程式中 の発熱項は他項(蓄熱項, 熱伝導項)に比して小さく, 無 視できる(関・小森, 1985a)。

6) 循環通水開始前のそう内温度は均一とみなす。

7) 通水管内の水の流れは栓流〔ピストン・フロー, 押 出し流れ(例えば, 井本, 1972)〕とみなせる。

8) 管内水温は管長方向に直線的に増加し(通水管の 出入口水温差が小さい(前報の実験では2~3℃)ので,混 合素材から管内水への熱流束は管長方向にほぼ均一とみ なせるため],管内平均水温は管の出入口水温の算術平 均値で近似できる。

9) 堆肥そうと蓄熱そうをつなぐ配管系から外界への

熱損失は無視できる。

以上の仮定の下で,熱抽出期間の熱移動モデル はFig.2のごとく示される。

この場合,別報(関・小森,1985a)で述べたご とく,管長方向に平均化された堆肥そう内熱伝導 方程式は、

$$\frac{\partial \widetilde{T}}{\partial \theta} = \kappa \left(\frac{\partial^2 \widetilde{T}}{\partial r^2} + \frac{1}{r} \frac{\partial \widetilde{T}}{\partial r} \right) \quad (r_1 < r < r_2)$$
(1)

ただし,
$$\widetilde{T} = (1/l_c) \int_0^{l_c} T(r, z, \theta) dz$$
を表す。

通水管外表面では総括伝熱係数をUとして

$$K \frac{\partial \widetilde{T}}{\partial r} = U(\widetilde{T} - \widetilde{T}_l) \quad (r = r_1)$$
(2)

ただし, Uは, 既報[関・小森, 1984]の式(3)で 表される。

仮定3)より
$$r = r_2$$
 では熱移動がないと考えて
 $\frac{\partial \widetilde{T}}{\partial r} = 0$ ($r = r_2$) (3)

そして, 初期条件は,

$$\widetilde{T} = T_u (= \text{const.})$$
 ($\theta = 0$) (4)
一方,管内水の熱収支式は,

$$i \frac{T_{lou} - T_l}{l_c} = \frac{2r_1 U}{C_{pl} \rho_l r_i^2} \left(\widetilde{T} - \widetilde{T}_l \right) \quad (r = r_1) \quad (5)$$

蓄熱そう内の熱収支式は水の出入りによる正味のエン タルピー変化と蓄熱そう壁から外界への熱損失を考慮す れば,

$$\frac{\partial T_l}{\partial \theta} = \frac{\pi r_i^2 u}{V_v} \left(T_{lou} - T_l \right) - \frac{h_v S_v}{C_{pl} \rho_l V_v} \left(T_l - T_a \right)$$
(6)

Fig. 2. Schematic representation of heat transfer for the heat extraction and accumulation process by intermittent water-circulation.

- 338 -

初期条件は,

$$T_l = T_{li} \qquad (\theta = 0) \tag{7}$$

仮定7)より管内平均水温 $T_l \varepsilon (T_l + T_{lou})/2$ と置き, 式(6)に代入して T_l , $T_{lou} \varepsilon T$, T_l で表した後,解析を 容易にするために温度変数 $\Phi(=T - T_u)$, $\Phi_l(=T_l - T_{li})$, 無次元時間 $\Theta[=\kappa \theta/(r_2 - r_1)^2]$, 無次元距離 $\xi[=r/(r_2 - r_1)] \varepsilon$ 導入し,式(1)~(8)を書き換えると書き換 えられた式中には五つの無次元数, $\eta_2(=r_2/r_1)$, $B_i[=$ $U(r_2 - r_1)/K]$, $N[=2\pi r_1 l_c U/(C_{pl} \rho_l \pi r_i^2 u)]$, $\Theta_s[=$ $\kappa \{V_v/(\pi r_i^2 u)\}/(r_2 - r_1)^2]$, $H_v[=h_v S_v/(C_{pl} \rho_l \pi r_i^2 u)]$ が含まれる。これらはそれぞれ配管密度,通水管壁から 水への対流熱伝達による熱抵抗と混合素材内部の熱伝導 による熱抵抗の比(ビオ数),混合素材と管内水の熱交換 の難易度(移動単位数),蓄熱そう内の水の平均滞留時間 の無次元数,蓄熱そう内の水の出入りによる交換熱量と 壁からの損失熱量の比を表すパラメーターである。

ラプラス変換法(Carslaw・Jaeger, 1959)により, 書き換えられた境界条件,初期条件を満たす $\boldsymbol{\phi}, \boldsymbol{\sigma}_l$ の解 は次のごとく導かれる。

$$\Phi = B^* \sum_{n=1}^{\infty} f(\alpha_n, \xi) \left(\Theta_s(T_u - T_{li}) e^{-\alpha_n^2 \Theta} + H_v(T_u - T_a) \right) \cdot \frac{1 - e^{-\alpha_n^2 \Theta}}{\alpha_n^2} \right)$$
(8)

$$\Phi_{l} = \frac{N^{*}}{\Theta_{s}} \int_{0}^{\Theta} \Phi(\nu, \tau) e^{-\frac{\Theta - \tau}{\Theta_{s}}(N^{*} + H_{v})} d\tau
+ (N^{*}(T_{u} - T_{li}) - H_{v}(T_{li} - T_{a})) \frac{1 - e^{-\frac{\Theta}{\Theta_{s}}(N^{*} + H_{v})}}{N^{*} + H_{v}}$$
(9)

ただし、 $\nu = 1/(\eta_2 - 1)$ 、 $N^* = N/(1 + N/2)$ 、 $B^* = B_i/(1 + N/2)$ を表し、 $f(\alpha_n, \xi)$ は付録に示す通りである。 式(8)より、堆肥そう内平均温度は次式で与えられる。

$$\begin{split} \boldsymbol{\varphi}_{av} &= \int_{\nu}^{\nu \eta_2} 2\pi \xi \, \boldsymbol{\Phi} \, \mathrm{d} \xi / \int_{\nu}^{\nu \eta_2} 2\pi \xi \, \mathrm{d} \xi \\ &= B^* \sum_{n=1}^{\infty} g\left(\alpha_n\right) \left(\boldsymbol{\Theta}_s\left(T_u - T_{li}\right) e^{-\alpha_n^2 \boldsymbol{\Theta}} + H_v\left(T_u - T_a\right) \right. \\ &\left. \cdot \left(1 - e^{-\alpha_n^2 \boldsymbol{\Theta}}\right) / \alpha_n^2 \right) \end{split} \tag{10}$$

$$\end{split}$$

$$g(\alpha_{n}) = \frac{-4Z_{1}(\alpha_{n}\nu)/\{\nu(\eta_{2}^{2}-1)\}}{\left(\alpha_{n}\{\nu(N^{*}+H_{v}-\alpha_{n}^{2}\Theta_{S})-2B^{*}\Theta_{S}\}Z_{0}(\alpha_{n}\nu)\right)-\{2\Theta_{s}\alpha_{n}^{2}+\nu B^{*}(H_{v}-\alpha_{n}^{2}\Theta_{S})\}Z_{1}(\alpha_{n}\nu)+\nu\eta_{2}\alpha_{n}(N^{*}+H_{v}-\alpha_{n}^{2}\Theta_{S})B_{1}(\alpha_{n}\nu)+\nu\eta_{2}B^{*}(H_{v}-\alpha_{n}^{2}\Theta_{S})B_{0}(\alpha_{n}\nu)\right)}$$
(11)

又, 堆肥そう内平均温度が T_d (= const.)に達するまで の所要時間を Θ_e (無次元)とすれば, Θ_e は次式を満たす 根として計算される。

$$T_d - T_u = B^* \sum_{n=1}^{\infty} g(\alpha_n) \left(\Theta_s \left(T_u - T_{li} \right) e^{-\alpha_n^2 \theta_e} + H_v \left(T_u - T_a \right) \left(1 - e^{-\alpha_n^2 \theta_e} \right) / \alpha_n^2 \right)$$
(12)

2.1.2 堆肥そう内温度回復期間

通水停止時点では、堆肥そう内でr方向に大きな温度 こう配が生じている。しかし、ある程度時間が経過する と、堆肥そう内温度は半径方向にほぼ均一化し、次回の 熱抽出が可能な状態までほぼ均一に温度が回復する。そ こでここでは、温度回復に要する期間を、通水停止後そ う内温度が管半径方向にほぼ均一化するまでの期間(そ う内温度不均一期間)と、その後更にそう内温度が均一 に上昇する期間(そう内温度均一期間)の二つの期間に分 けてそう内温度の解析を行うことにする(Fig. 3)。

a)そう内温度不均一期間

この期間は比較的短い(実験的に約5hrと思われた)の で、堆肥そう内の熱移動(熱伝導)は主としてそう内温度 の均一化に寄与するのみで、外界への熱損失が無視でき るものと仮定すると、そう内温度変化の模式図はFig.4 のごとく示され、堆肥そう内熱伝導方程式は、

$$\frac{\partial \widetilde{T}}{\partial \theta} = \kappa \left(\frac{\partial^2 \widetilde{T}}{\partial r^2} + \frac{1}{r} \frac{\partial \widetilde{T}}{\partial r} \right) + \frac{G_0}{C_p \rho} \quad (r_1 < r < r_2) (13)$$

管壁での境界条件は、総括伝熱係数をUbとすれば、

$$K \frac{\partial T}{\partial r} = U_b \left(\widetilde{T} - \widetilde{T}_l \right) \qquad (r = r_1) \qquad (14)$$

ただし,温度回復時には管内水が静止しているので,そ の場合の伝熱係数 U_b は式(2)のUとは明らかに異なるは ずだが, U_b を 5~40 kcal/m² hr \mathbb{C} の範囲で変えて試行 計算を行った結果, U_b の変動が堆肥そう内平均温度に及 ぼす影響がほとんどなかったので,後述の 3.1 の計算で は U_b はUと同一の値を用いた。

2.1.1 と同様, $r = r_2$ で熱移動がないと仮定すれば,

Fig. 3. Concept of temperature recovering pattern in a compost bed.

Fig. 4. Illustrative examples of change in the temperature profile in a compost bed with time.

$$\frac{\partial \widetilde{T}}{\partial r} = 0 \qquad (r = r_2) \tag{15}$$

初期条件は, 通水停止時の値に等しいから,

$$\widetilde{T} = \boldsymbol{\phi}(\boldsymbol{\Theta}_{e}, \boldsymbol{\xi}) + T_{u}$$
 ($\boldsymbol{\theta} = 0$) (16)
一方、静止している管内水の熱収支式は,

$$\pi r_1^2 C_{pl} \rho_l \frac{\mathrm{d}\widetilde{T}_l}{\mathrm{d}\theta} = 2\pi r_1 U_b (\widetilde{T} - \widetilde{T}_l) \qquad (r = r_1)$$
(17)

初期条件は,

$$\widetilde{T}_{l} = (N^{*}/2) \{ \boldsymbol{\Phi}(\boldsymbol{\Theta}_{e}, \nu) + T_{u} \}$$

+ $(N^{*}/N) \{ \boldsymbol{\Phi}_{l}(\boldsymbol{\Theta}_{e}) + T_{li} \}$ (18)

初期条件式(16)が複雑なので、この問題の解析解を得る のは困難だが、差分解法により数値解を求めることがで きる。

b)そう内温度均一上昇期間

そう内温度がほぼ均一化した後,そう内の発熱と外界 への熱放散の影響を考えて堆肥そう内の熱収支式を組み 立てると,

$$C_p \rho V \frac{\mathrm{d}T_{av}}{\mathrm{d}\theta} = G_0 V - hA(T_{av} - T_a)$$
(19)

初期条件は,

$$T_{av} = T_{ri} \qquad (\theta = 0) \qquad (20)$$

ただし, *T_{ri}* は不均一期間終了時のそう内平均温度を表 す。解は,

$$T_{av} = \left(T_{ri} - T_a - \frac{G_0 V}{hA}\right) \exp\left(-\frac{hA}{C_p \rho V}\theta\right) + \frac{G_0 V}{hA} + T_a$$
(21)

c) 蓄熱そう内水温

通水停止時から次回の通水開始時までの蓄熱そう内水 温変化を支配する熱収支式は,壁から外界への熱損失を 考慮すれば,

$$C_{pl} \rho_l V_v \frac{\mathrm{d}T_l}{\mathrm{d}\theta} = -h_v S_v (T_l - T_a)$$
(22)

初期条件は通水停止時の値であり、式(9)より

 $T_l = \boldsymbol{\Phi}_l (\boldsymbol{\Theta}_e) + T_{li} = T_{lir} \qquad (\theta = 0) \qquad (23)$
 fight,

$$T_l = (T_{lir} - T_a) \exp\left(-\frac{h_v S_v}{C_{pl} \rho_l V_v}\theta\right) + T_a \quad (24)$$

2.2 連続的熱抽出·蓄熱過程

次に,連続的通水により定常状態に達した場合を考え る。定常状態では、堆肥そう内で発生する熱量が外界へ の放熱量と水による抽出熱量の和と釣り合う(Fig.5)の で、

$$G_0 V = hA(T_{av} - T_a) + Q_e \tag{25}$$

ここで、熱抽出に有効な部分 $[\pi r_1^2 (\eta_2^2 - 1) l_c]$ のみに着目し、その中の等価見掛け発熱量を G_1 とすれば、抽出熱量は次式で表される。

$$Q_e = G_1 \pi r_1^2 (\eta_2^2 - 1) l_c$$
(26)
式 (25), (26)より, G_1 は,

$$G_1 = \frac{G_0 V - hA(T_{av} - T_a)}{\pi r_1^2 (\eta_2^2 - 1) l_c}$$
(27)

この場合、 Q_e は通水管を通し混合素材から水へ伝達 される熱量 $2\pi r_1 U I_c \{ \widetilde{T}_s - (T_{lou} + T_l)/2 \}$,水が管内を 通過する間に得る熱量 $C_{pl} \rho_l u \pi r_i^2 (T_{lou} - T_l)$,蓄熱そう 壁から外界へ失われる熱量 $h_v S_v (T_l - T_a)$ に等しいはず である。すなわち,

$$G_{1}\pi r_{1}^{2}(\eta_{2}^{2}-1) l_{c} = C_{pl} \rho_{l} u \pi r_{i}^{2}(T_{lou}-T_{l})$$

= $2\pi r_{1} l_{c} U\{\widetilde{T_{s}}-(T_{lou}+T_{l})/2\}$
= $h_{v}S_{v}(T_{l}-T_{c})$ (28)

ただし、 \widetilde{T}_s は混合素材内の温度を管壁まで外挿して得られる温度のz方向平均値で、式(28)から T_l 、 T_{lou} を消去し、次式のごとく得られる。

Fig. 5. Schematic representation of heat transfer for the heat extraction and accumulation process by continuous water-circulation.

$$\widetilde{T}_{s} = G_{1} \pi r_{1}^{2} (\eta_{2}^{2} - 1) l_{c} \left[\frac{1}{2 \pi r_{1} U l_{c}} + \frac{1}{2 C_{pl} \rho_{l} \pi r_{i}^{2} u} + \frac{1}{h_{v} S_{v}} \right] + T_{a}$$
(29)

この場合, 堆肥そう内熱伝導方程式, 境界条件は次の ように与えられる。

$$\frac{\mathrm{d}^{2}\widetilde{T}}{\mathrm{d}r^{2}} + \frac{1}{r}\frac{\mathrm{d}\widetilde{T}}{\mathrm{d}r} + \frac{G_{1}}{K} = 0 \qquad (r_{1} < r < r_{2}) \quad (30)$$
$$\widetilde{T} = \widetilde{T} \qquad (r = r_{1}) \quad (31)$$

$$\frac{\mathrm{d}\widetilde{T}}{\mathrm{d}r} = 0 \qquad (r = r_2) \qquad (32)$$

式(31),(32)を満たす式(30)の解は,

$$\widetilde{T} = \widetilde{T}_{s} + \frac{G_{1}r_{1}^{2}\eta_{2}^{2}}{2K}\ln\xi - \frac{G_{1}r_{1}^{2}}{4K}(\xi^{2} - 1)$$
(33)

従って, 堆肥そう内平均温度は,

$$T_{av} = \int_{r_1}^{r_2} \widetilde{T} \cdot 2\pi r \, \mathrm{d}r / \int_{r_1}^{r_2} 2\pi r \, \mathrm{d}r$$
$$= \widetilde{T}_s + \frac{G_1 r_1^2 \, \eta_2^2}{4K} \left(\frac{2 \, \eta_2^2 \ln \eta_2^2}{\eta_2^2 - 1} - 1 \right)$$
$$- \frac{G_1 r_1^2}{8K} \left(\eta_2^2 - 1 \right) \tag{34}$$

一方, 蓄熱そう内水温は式(28)より次式のごとく導か れる。

$$T_{l} = \frac{G_{1}\pi r_{1}^{2} (\eta_{2}^{2} - 1) l_{c}}{h_{v}S_{v}} + T_{a}$$
(35)

3. 結果と考察

3.1 断続的熱抽出·蓄熱操作

Fig. 6 に,前報(関・小森,1985b)で述べた第1回目 及び第3回目の断続実験について,堆肥そう内平均温 度,蓄熱そう内水温の実験結果を実線で,2.で述べた解 による計算結果を破線で示す。なお,計算に使用した物 性値,操作条件はTable1に示す通りである。この内, KはKrischerの並列モデルに準拠した推算式(小森・関, 1981), C_p は含水率との相関実験式(関・小森,1983) から求めた。又, Uは通水終了時のそう内温度分布を擬 定常温度分布であるとみなして推算された通水管外壁近 傍の境膜伝熱係数,管壁の熱伝導率, Colburnの式(内 田,1972)から求められた h_i を既報(関・小森,1984)の 式(3)に代入して算出した。又, h, h_v はグラスウール, スチロフォーム板の熱伝導率とその厚さから算出した。

Table 2 に、各サイクルにおける通水所要時間, 堆肥 そう内温度回復所要時間の平均値, 並びに蓄熱そう内温 度がほぼ目標温度(30℃)に到達するまでの全所要時間の 実験結果と計算結果を対比して示す。

Fig. 6 及びTable 2 によれば、第1回目の断続実験で

Fig. 6. Comparisons of the calculated results with the experimental results on the average temperature in a compost bed and the water temperature in an accumulator for the intermittent water-circulation [(a) for the 1st experiment, (b) for the 3rd experiment].

は、各サイクルの所要時間は実験値よりも計算値の方が 若干大きく、全所要時間は約5%大きい。一方、第3回 目の実験では、全所要時間は両者でほぼ一致しているが、 各サイクルの熱抽出所要時間は計算値の方が実測値より も約1hr小さい。前報の実験では、堆肥そう内の環境条 件がそう内の位置によって相当異なり、通水開始時に上、 中、下部で5~10℃の温度差があった。又、通水の開始 及び停止は自動記録計に記録されたr方向任意位置の温 度実測値を読みつつ感覚的に制御したので、その際そう 内平均温度を必ずしも的確にはあくできたとはいえない。 従って、実測値と計算値の間のこの程度の差異は避けら れないものと思われる。

又,温度回復期において,堆肥そう内温度の経時変化の傾向は実験値と計算値とで異なっている。すなわち,実験では上に凸の経時変化を示すのに反し、計算ではほ

	Thermal con- ductivity of the compost	Heat Capacity of the compost bed	Apparent den- sity of the compost bed	Heat capacity of water	Density of water	Moisture con- tent in the compost bed	Volume of t compost bed	Heat transfer coefficient
Experiment	bed K	C _p	φ	Cpl	ρ	ω	v	h
	[kcal/mhr°C]	[kcal/kg°C]	[kg/m ³]	[kcal/kg°C]	[kg/m³]	[kg/kg]	[m³]	[kcal/m ² hr°C]
lst	0.66	0.65	690	1.0	1000	0.495	0.245	0.2
3rd	0.62	0.63	617	1.0	1000	0.465	0.243	0.2
Experiment	Surface area of the con- tainer for the compost	Volume of water in the accumulator	Heat transfer coefficient	Surface area of the accu- mulator	Inner radius of the buri- ed pipe	Outer radius of the buri- ed pipe	Effective radius of th buried pipe	Overall heat he transfer co- efficient
	Α	v _v	h _v	s _v	r_i	r ₁	r ₂	U
	[m ²]	[m ³]	[kcal/m ² hr°C]	[m ²]	[m]	(m)	[m]	[kcal/m ² hr°C]
lst	2.38	0.1	0.35	1.3	0.004	0.005	0.075	40
3rd	2.38	0.1	0.35	1.3	0.004	0.005 0.075		40
Experiment	Total length of the buri- ed pipes	Velocity of water in the buried pipe	Apparent rate of heat generation	Initial temp- erature of water in the	Atmospheric temperature	Temperature in the bed at time starting to supply water to supply		rature in the t time stopping upply water
	l _c	и	Go	T _{li}	T_{a}	T _u		T_d
	[m]	[m/hr]	[kcal/m ³ hr]	[°C]	(°C)	[°C]		[°C]
lst	4.9	1057	252	14.7	12.5	52.0		43.0
3rd	4.9	1057	293	14.2	11.5	52.0		40.5

Table 1. Physical properties and operating conditions used for calculation.

Table 2. Comparisons of the calculated results with the experimental results on the average of the heat extraction period, the average of the temperature recovering period and the total period of the heat extraction and accumulation process.

Experiment	Average of the extraction performance of the formation of the extraction of the formation of the extraction of the extra	he h eat eriod]	Average of the recovering per [html]	ne temperature eriod]	Total period of the heat extraction and accumulation process [hr]		
	Experimental	Calculated	Experimental	Calculated	Experimental	Calculated	
lst	4.5	4.1	20.0	21.7	152	159	
3rd	5.7	4.6	17.8	20.0	99	102	

ぼ直線的に増大する。これは、この期間中に見掛け発熱 量が時間的、場所的に変化した可能性があること、外界 への熱損失を表す伝熱係数 h が小さ目に見積られたこと などが原因と考えられる。

しかし,全体的に計算値は実験値と比較的よく一致し ており,理論的取り扱いはほぼ妥当であると思われる。

3.2 連続的熱抽出·蓄熱操作

Table 3 に前報で述べた連続的熱抽出・蓄熱実験にお いて定常状態に達したときの堆肥そう内平均温度*Tav*, 蓄 熱そう内水温*Ti*を, 2.で述べた式(34), (35) による計 算結果と対比して示した。ところで,式(27)から計算さ れた G_1 は G_0 の約 1.2 倍になり、当初この値をそのまま 式(34)、(35)に代入して T_{av} , T_l を算出したが実測値よ りも 8~12℃程度高い値になった。これは 3.1 で指摘さ れたごとく、hが幾分過小に見積られたことにより G_1 が 若干大きく算出されたためと思われる。このように、実 際の G_1 は式(27)から計算された値よりも小さいと思わ れたので、Table 3 に示した結果は G_1 を G_0 と同一値と みなし T_{av} , T_l を再計算したものである。

このようにして得られた T_{av} の計算値は実験値よりも 0.7~2.4℃高いもののほぼそれに近い値である。一方、 T_l の計算値は実験値よりも 3.1~7℃高く、両者の差が比

Table 3. Comparisons of the calculated results with the experimental results on the average temperature in a compost bed and the water temperature in an accumulator at the steady state in the continuous water-circulation.

	Average temper compost bed	rature in a	Water temperature in an accumulator		
Experiment	T_{av}	[*0]			
	Experimental	Calculated	Experimental	Calculated	
lst	32.7	35.1	24.4	31.4	
2nd	26.6	27.6	19.0	24.8	
3rd	20.7	21.4	16.2	19.4	

較的大きい。この原因の一つは、連続実験を行った際、 外気温が 5℃以下と低く、堆肥そうと蓄熱そうをつなぐ 配管系からの熱損失が無視できなかったためと思われる。 すなわち、堆肥そう内で抽出された熱量がすべて蓄熱そ うへ運ばれたわけではなく、配管系を通過する間にその 一部が放散したためと考えられる。このことは、計算で 得られた T_{av} と T_{l} の差が 2~3.7℃ であるのに対し、実験 による両者の差が 4.5~8.3℃と2 倍以上にもなっている ことから示唆される。

4. 結 言

循環通水による堆肥発酵熱の抽出・蓄熱操作の理論解 析を行い,以前に行った実験結果と比較し,以下の結果 を得た。

1)断続的な熱抽出・蓄熱操作の理論解析による計算 結果は、通水停止後の堆肥そう内温度回復の傾向におい て実測値と若干の差異が認められたものの、そう内温度、 蓄熱そう内水温は実験結果と比較的よく一致し、理論的 取り扱いの妥当性が示された。

2)連続的熱抽出・蓄熱操作の理論解析では,堆肥そう内平均温度は実測値とほぼ一致したが,蓄熱そう内水 温の計算値は堆肥そうと蓄熱そうをつなぐ配管系からの 熱損失を考慮に入れなかったため,実測値よりも幾分高 めの値となった。その影響を考慮し,理論的取り扱いを 若干修正する必要があると思われる。

付 録

式(8)中の $f(\alpha_n, \xi)$ は,

 $f(\alpha_n, \xi)$ $2 \alpha_n \{ J_0(\alpha_n \xi) Y_1(\alpha_n \nu \eta_2)$ $- Y_0(\alpha_n \xi) J_1(\alpha_n \nu \eta_2) \}$

$$= \frac{\left[\frac{\alpha_{n} \{\nu (N^{*} + H_{v} - \alpha_{n}^{2} \Theta_{s}) - 2B^{*} \Theta_{s}\} Z_{0} (\alpha_{n} \nu) - \{2\Theta_{s} \alpha_{n}^{2} + \nu B^{*} (H_{v} - \alpha_{n}^{2} \Theta_{s})\} Z_{1} (\alpha_{n} \nu) + \nu \eta_{2} \alpha_{n} (N^{*} + H_{v} - \alpha_{n}^{2} \Theta_{s}) B_{1} (\alpha_{n} \nu) + \nu \eta_{2} B^{*} (H_{v} - \alpha_{n}^{2} \Theta_{s}) B_{0} (\alpha_{n} \nu) \right]}$$
(A-1)

ただし、上式中の $Z_m(x)$, $B_m(x)$ はそれぞれ次式で表され、

 $Z_m(x) = J_m(x) Y_1(x\eta_2) - Y_m(x) J_1(x\eta_2)$ (A-2) $B_m(x) = J_m(x) Y_0(x\eta_2) - Y_m(x) J_0(x\eta_2)$ (A-3) これらは中空円柱の熱伝導問題にしばしば現れる関数 (例えば、川下, 1971; 城塚ら, 1966)である。

又, α_n は次式を満たす n 番目の正根である。

 $\alpha_n (N^* + H_v - \alpha_n^2 \Theta_s) Z_1(\alpha_n \nu)$

+ $B^*(H_v - \alpha_n^2 \Theta_s) Z_0(\alpha_n \nu) = 0$ (A-4) (使用記号)

- A 堆肥そうの壁表面積(m²)
- *B_i* ビオ数(-)
- *C*_p 混合堆肥素材の比熱(kcal/kg℃)
- *C*_{pl} 水の比熱(kcal/kg℃)
- G₀ 堆肥そう内見掛け発熱量(kcal/m⁸hr)
- G₁ 堆肥そう内有効見掛け発熱量(kcal/m³hr)
- H_v 無次元数(-)
- h 堆肥そう壁からの熱損失を表す伝熱係数

(kcal∕m²hr℃)

- h_i 通水管内境膜伝熱係数(kcal/m² hr ℃)
- h_s 通水管外境膜伝熱係数(kcal/m² hr ℃)
- h_v 蓄熱そうからの熱損失を表す伝熱係数

(kcal∕m² hr℃)

- K 混合堆肥素材の有効熱伝導率(kcal/m²hr^C)
- *lc* 通水管全長(m)
- N 移動単位数(-)

- 水による熱抽出速度(kcal/hr) Q_e 通水管半径方向距離(m) r 通水管内半径(m) ri 通水管外半径(m) r_1 混合堆肥素材の有効半径(m) r_2 蓄熱そうの壁表面積(m²) S T_a 室 温(℃) T_{av} 堆肥そう内平均温度(℃) T_d 堆肥そう内の下限温度(℃) T_l 蓄熱そう内水温(℃) 蓄熱そう内初期水温(℃) T_{li} 通水管出口水温(℃) Tlou 通水停止時点の蓄熱そう内水温(℃) Tlir 不均一上昇期間終了時の堆肥そう内平均温度 Tri (°C) T_u 堆肥そう内の上限温度(℃) \widetilde{T} 堆肥そう内温度の管長方向平均値(℃) \widetilde{T}_l 管内水温の管長方向平均値(℃) U 管外径基準の総括伝熱係数(kcal/m²hr℃) 管内水静止時のU(kcal/m²hr℃) U_{h} 管内水の流速(m/hr) u V 混合堆肥素材の容積(m³) V_{n} 蓄熱そう容積(m³) 通水管長方向距離(m) 2
- Ø 温度変数(℃)

- *Θ* 熱抽出時間の無次元数(−)

- ●
 ☆ 蓄熱そう内の平均滞留時間の無次元数(-)
- θ 時 間(hr)
- κ 混合堆肥素材の有効熱拡散率(m²/hr)
- ρ_l 水密度(kg/m³)
- η₂ 配管密度を表す無次元数(-)
 - 無次元距離(-)

ξ

引用文献

- Carslaw, H. S. and Jaeger, J. C., 1959: Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford, 327-352.
- 井本立也, 1972:反応工学, 日刊工業新聞社, 69.
- 川下研介, 1971:熱伝導論(第2版),オーム社, 251.
- 小森友明・関 平和, 1981:混合有機質資材の有効熱伝 導率,第15回化学工学秋季大会講演要旨集Ⅱ, 193-194.
- 関 平和・小森友明, 1983: 堆肥化過程における熱移動, 農業気象, 39(3), 173-179.
- 関 平和・小森友明, 1984: 埋設管内通水方式による堆 肥発酵熱抽出の試み, 農業気象, 40(3), 219-228.
- 関 平和・小森友明,1985a: 埋設管内通水方式による 堆肥発酵熱抽出の試み(第2報 近似解法と操作条件 の検討), 農業気象,41(1),57-61.
- 関 平和・小森友明,1985b: 堆肥発酵熱の抽出・蓄積
 に関する研究(第1報 循環通水方式による熱抽出・
 蓄熱実験),41(3),257-264.
- 城塚 正・平田 彰・村上昭彦, 1966: 化学技術者のた めの移動速度論, オーム社, 77-78.
- 内田秀雄, 1972:大学演習伝熱工学, 裳華房, 95-146.

Summary

A theoretical analysis of an operation of extraction and accumulation of the heat generated in composting process by water circulation was made. The calculated results of the average temperature in a compost bed and the water temperature in an accumulator were compared with the experimental results obtained previously.

1) For the case of the intermittent water-circulation, there were slight differences between the calculated results and the experimental results of the average temperature in the bed during temperature recovering periods after the end of water-circulation. However, the calculated results of the water temperature in the accumulator, the available time for heat extraction and the recovery time of temperature in the bed agreed relatively well with the experimental results. The theoretical model was fairly fit for this case.

2) For the case of the continuous water-circulation, the calculated results of the average temperature in the bed were in fair agreement with the experimental results. The calculated results of the water temperature in the accumulator were however 3 to 7 degrees higher than the experimental results. It could be due to the heat loss through the pipes connecting the container for the compost with the accumulator, which was not allowed for in the theoretical model. It is necessary to modify the analytical model by taking account of this kind of heat loss.