

半導体レーザを用いた段差を持つ粗面の形状計測*

- 3波長での位相測定を用いる方法-

安達正明** 北川洋一*** 松本哲也*** 稻部勝幸*

Shape Measurement of Rough Step Like Surface using a Laser Diode - The Method with Three-wavelength Phase Shifting -

Masaaki ADACHI, Youichi KITAGAWA, Tetsuya MATSUMOTO and Katsuyuki INABE

The authors propose a new method which can measure a shape of rough step like surface by means of a speckle interferometry with a wavelength-changeable laser. A speckle phase available in the interferometry is usually affected not only by an optical path difference but also by a random component associated with surface roughness. The phase shifting method using two different wavelengths (λ_1 , λ_2) is , therefore, limited to a single phase map about the optical path difference, because of the random component which remains without cancel. The single phase map is available only for the calculation of the shape of a continuous surface. In the proposed method, the authors use three different wavelengths (λ_1 , λ_2 , λ_3) to obtain a double phase map, which is capable of a discontinuous surface shape calculation by means of a fringe-counting two-wavelength method. The validity of the method is experimentally demonstrated and discussion is extended to an accuracy of the measurement and an extent of the measurement range.

Key words: speckle interferometry, rough surface, shape measurement, laser diode, three wavelengths

1. 緒 言

粗面物体の3次元形状の測定法については原理の異なる多く の方法がこれまでに開発されている.その中で光を用いる測定 法は,非接触性,長い作動距離,高密度な測定点など他の方法 では実現しがたい多くの特徴を持つ.今後,大容量のデータも 高速処理できるコンピュータの小型化や,よりコンパクトで高 性能なレーザ光源の出現が期待できることを考えると,光を用 いる3次元形状計測技術は応用分野をさらに大きく広げていく と予想される.故に,この分野における新しい方法の研究開発 や既存技術の改良は現在の重要なテーマと言えよう.

光を用いる3次元形状の測定法はその原理から大きく2つに 分類される.光の直進性すなわち幾何光学的性質を用いるもの と,光の干渉的性質を用いるものである.幾何光学的方法は三 角測量法を基本原理とするが,基本的な1点測定のもの,各種 の異なるパターンを投影するもの¹⁾,モアレ法と呼ばれる周期 的な1種類のパターンを投影する方法²⁾などがある.これらは 一般に測定できる空間範囲が広く大型構造物を得意とするが, 照明方向と観測方向に角度を持たせなければならない(凹凸の 深い物体では陰が生じやすい).一方,光の干渉的性質を用い る方法は照明と観測を同方向に取れ,非常に高精度である反 面,測定範囲が狭かったり,測定対象が光学面に限られる等の 制限があった.

干渉法でのこれらの制限は次の現象等に由来する. すなわち レーザ光など干渉性の高い光を, 光の波長よりも凹凸が粗い面

****** 正 会 員 金沢大学大学院(金沢市小立野 2-40-20)

*** 兵庫県立工業技術センター(神戸市須磨区行平町3-1-12)
+ 金沢大学工学部

に当てると、反射された光は空間にスペックルと呼ばれるコン トラストの強い、空間変化の激しいパターンを作る.そこで粗 面を対象とした干渉測定では、このスペックルの光路差変調 (位相シフト)時に生じる振幅の小さな光強度変化を利用しな ければならない.また、気体レーザ光など単一波長の光を用い て表面形状を測定しようとすると、波長の整数倍の不確定さが 避けられないなどである.

しかし近年,狭い範囲だが波長を容易に変えることのできる 半導体レーザ光源で,高出力な製品が出現するにつれ,粗面で も干渉を用いて精度良く形状計測が行い得る道が開かれた.そ して2波長のレーザ光を用いた粗面(段差のない)の測定法が報 告され始めた³⁾⁴⁾.一方では,スペックル干渉計にレーザ波長 の連続走査を組み合わせた方法⁵⁾⁶⁾も提案され始めた.特に後 者は光学系からの絶対距離の測定も可能で段差も測定でき,そ の精度の高さなどからも将来的に注目すべき方法と思われる.

しかし後者の方法は、広い範囲にわたって波長を連続的に走 査(数~数+nm)する必要がある.広い範囲にわたって波長を 連続走査でき、出力の大きいレーザ光源は通常、色素レーザや チタンサファイヤレーザ等の特殊な構造を必要とし、まだ半導 体レーザでは開発段階で入手できる物も低出力である.一方、 波長を広範囲に走査しなくても良い半導体レーザ光源は出力も 大きく、入手も容易で価格も安い.そこで我々は種々の光応用 形状計測法の研究開発の重要性を考え、波長が狭い範囲だが変 更可能で高出力の半導体レーザを用いる、段差を持つ粗面の形 状計測法の研究開発を行った.

スペックルを用いた干渉では粗面が関係する位相が未知数と して干渉画像の位相に影響する.このため、2波長を用いた位 相シフト法では1つの位相図しか得られない³⁾⁴⁾.我々は段差 形状も測定するため、3種類の波長を用いて2つの位相図を得 た.さらに2つの位相図から形状を求める過程では、高精度な 形状の計算が可能なしま次数決定型2波長法⁷⁾を用いた.実験

^{*} 原稿受付 平成10年7月6日

Fig.1 Optical arrangement for surface shape measurement. B.S. means beam-splitter

では約3mmの段差を持つ粗面物体の形状計測を行い,提案す る方法の有用性と精度を確かめている.本法は精度的には連続 的で広範囲な波長走査を用いる方法に劣ると考えられるもの の,簡単に形状計測が可能な方法と思われる.

2. 測定原理

広げられた2つの平行平面波で物体の照明波面と参照波面を 作る図1に示すような光学系を考える.ここで物体表面と一部 分で交差し,図中のz方向に法線を持つ仮想面Sを考え,カメ ラレンズはS近傍の点がカメラの受光面に結像するように調整 されているとする.また,参照光路を通った光はS上で反射さ れる光に対して,カメラの受光面上で光路差Bだけ余分に空間 を走っていると仮定する.

まず, 波長 λ_1 のレーザ光を用いて, 物体面上の点O (面Sからのz方向の高さをh(x,y)とする: 図2参照)からの光に関して, 位相シフト法^{a)}により位相 ψ_1 を求めたとする. O 点からの光はS面上の点Pで反射される光に対して光路差がh(x,y)(1+cos θ)だけ短くなるから, ψ_1 は次式となる.

$$\psi_1 = \frac{2\pi}{\lambda_1} \left[h(x, y) (1 + \cos \theta) + B \right] + \phi_1 \tag{1}$$

ここで ϕ_1 は粗面での反射のために生じたランダムな位相の成 分であり、また θ は図2に示すように反射光がz方向となす角 度である. 同様に、波長 λ_2 、 λ_3 を用いて位相 ψ_2 、 ψ_3 を求め ると次式となる.

$$\psi_2 = \frac{2\pi}{\lambda_2} \left[h(x, y) (1 + \cos \theta) + B \right] + \phi_2 \tag{2}$$

$$\psi_3 = \frac{2\pi}{\lambda_3} \left[h(x, y) (1 + \cos \theta) + B \right] + \phi_3 \tag{3}$$

ここで $\lambda_1 = \lambda_2 = \lambda_3$ (実験では $\lambda_1 = 782.31$, $\lambda_2 = 782.36$, $\lambda_3 = 782.39$ nmを使用)として,粗面による位相のランダム成 分を $\phi_1 = \phi_2 = \phi_3$ と仮定⁹⁾すると, $\psi_{1,2} = \psi_1 - \psi_2$, $\psi_{1,3} = \psi_1 - \psi_3$ で与えられる $\psi_{1,2}$ と $\psi_{1,3}$ は次のようになる.

$$\psi_{1,2} = 2\pi \Big[h(x,y)(1+\cos\theta) + B \Big] \cdot \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)$$
(4)

Fig.2 An enlarged geometry about the reflection point O on an object surface

$$\psi_{1,3} = 2\pi \left[h(x,y)(1+\cos\theta) + B \right] \cdot \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_3}\right) \tag{5}$$

これらの値は光路差 $L : L=[h(1+\cos \theta)]+Bを波長 \lambda'= 1/(1/\lambda_1-1/\lambda_2), \lambda''= 1/(1/\lambda_1-1/\lambda_3)$ を用いてそれぞれ干 渉測定した時に得られる位相と同じである. 故にこれらの波長 λ', λ'' は合成波長と呼ばれる. 一般にこの波長は λ_i (*i*= 1, 2, 3)に比べると非常に大きく設定することも可能である. しか し,測定面が段差を持つ場合は,段差の部分で波長の整数倍の 不確定さが入ることは避けられず, Lの正しい評価には式(4), (5)のような2つ以上の合成波長での位相情報が必要となる.

2つの波長での位相情報が与えられた時, その結果から段差 を含む形状計測を高精度に行う方法に関しては, 過去に光学面 を対象とする方法が報告されている⁷⁾. このしま次数決定型2 波長法と呼ばれる方法は2つの波長での位相差よりしま次数と 呼ばれる2 π の飛びの次数を決定する. そしてしま次数と1 波 長での位相情報より形状を精度良く計算する方法である. 特に 外乱により位相情報に誤差が混入しやすい条件下では, 用いて いる2つの波長の新たな合成波長を計算し, その位相から形状 を測定する方法より非常に高精度であることが明らかにされて いる(報告されている方法⁷⁾では波長 λ_1 =0.539 μ m, λ_2 =0.593 μ m で段差を含む高さの範囲 3 μ m が高精度に測定 できることが述べられている).

本論文では測定対象面が粗面であり,式(1),(2),(3)は空間 変化が激しいスペックル位相のランダム成分 Φ₁を含むため, 光路差Lの測定にこの方法を直接用いることはできない.しか し,式(4),(5)で計算される位相 Ψ_{1,2} とΨ_{1,3} はΦ₁を含まず空 間的にゆっくり変化し,光学表面間の干渉による位相と似た特 徴を持つため,この方法が有効と考えた.そしてこの方法によ りLを求めることにした.

ところで,式(4),(5)で与えられるψ_{1,2}とψ_{1,3}の測定結果 に大きな誤差を与えるが,まだ考慮されていない現象がある. 測定時に波長を変え,位相シフトした光路差を元に戻す時,光 路差Bが空気じょう乱等のため完全には戻らず,変化してしま う現象である.この変化は式(4),(5)で用いられているBが同 じとは保証されないことを意味する.上に述べたしま次数と位 相情報より形状を高精度に計算する方法では,2つの波長での 位相値の小さな違いを利用して,しま次数を決定している.故 に,光路差Bの変化は小さくても重大な影響をもたらす.しか も,本文で対象とする粗面の形状計測では作動距離が大きく,

Fig.3 Optical setup used in an experiment

Bの変化も大きい.この問題に関しては、測定対象物体と仮想 面Sの交点で式(4),(5)の位相がゼロとなるように位相の全域 に一定値を加えて補正する方法(位相補正法)を採った.この場 合、最終的に得られる光路差LはSに対する相対値となる.こ の補正法と全く同じ手法が、光路差ゼロの面が測定対象物表面 にない時のしま次数決定法として先の論文⁷¹にも記述されてい る.我々は光路差ゼロの面の有無ではなく、長い作動距離での 空気じょう乱による影響の除去のために位相補正法を用いた.

このようにしてLが求められる. ここで粗面形状h(x,y)はL と L=h(x,y)(1+cos θ)で関係づけられている. 式の中の θ は カメラ画像内のピクセルの座標と,カメラからの物体の距離を 元に容易に計算される量である. 故に最終的にLから粗面形状 h(x,y)を簡単に求めることができる.

3. 実 験

3.1 実験装置

実験に用いた測定光学系(上方から見た配置図)を図3に示 す.半導体レーザ光源は電流注入により波長をスムーズに可変 できるファブリーペロー型(日立製HL7851G:出力50mW) を用い, レーザからのビーム光を対物レンズで広げ, 再びレン ズで平行光にして,測定対象面にカメラ方向から照明光として 当てている.測定対象物体を載せる台をカメラレンズの前方約 50cm に配置した.カメラレンズはAF ズームニッコール35-105 を用い,台上での 25mm × 25mm の領域を CCD カメラ の画素488×488 に取り込めるように調整した.参照光路に は位相シフトのためのミラーを置き,光路差制御はミラーを後 方から圧電素子で移動して行った.参照光ビームは物体光と同 様の方法で広げ,平面波にしてからカメラ受光面に正面から入 射させた、コンピュータに装着される画像取込みボードは 64Mbyteメモリを搭載しており、圧電素子で移動し続けた時 の画像を30枚/秒の速度で連続して128枚コンピュータへ取 り込めるようになっている.取り込んだ画像からそれぞれπ/ 2の位相変化を持つ画像を4枚抜き出し、4画面位相シフト法 を用いて位相を評価した.

半導体レーザ光源の発振波長は、物体照明光の一部を25cm 焦点の分光器に導き、もう1つのコンピュータで自動測定した.以下に述べる段差形状を有する粗面の測定で用いた波長は λ_1 =782.31, λ_2 =782.36, λ_3 =782.39nm であり、最大でも波長変化は0.1nm 前後となっている. なお、波長の測定精度

Fig.4 3D expression of a measured step-height specimen which has a step height of 3mm

Fig.5 Phase values calculated by Eqs. (4),(5) and a the measured profile of the step-height specimen along the y-axis

はスペクトルのフィッティング処理を用いており0.005nmで ある.

3.2 測定結果

本実験で測定したのは、1cm×1cmの断面を持つ四角柱を 2個接触させて固定し、それに酸化マグネシウムの粉を吹き付 けて作製した段差粗面である. 材料は黄銅であり切削加工で作 製している. 段差が視野の中心付近に来るようにして, 形状を 測定した結果を図4に示す.この測定では式(4),(5)で与えられ る位相の情報からしま次数を決定する時に誤りを生じさせやす い雑音成分をなるべく除去するために,測定点の画素を中心と する5画素×5画素の領域で位相データを空間平均している. 具体的には各画素での位相をφ,とするとき、平均領域内でΣ $\cos \phi_{1} \ge \Sigma \sin \phi_{1} \varepsilon$ 求め、この2つの値から平均位相 ϕ を複 素数 $\Sigma \cos \phi_{,+i} \Sigma \sin \phi_{,0}$ の位相として計算した. その後, し ま次数決定型2波長法"によりしま次数と式(5)の位相を用いて 形状を計算している. 平均処理後の式(4),(5)で与えられる位相 のy方向の変化とそのデータから得られた形状の変化を図5に 示す. 粗面の段差は3mmに設定しているが,図5からもその 段差がほぼ正しく測定されていることが分かる. ただし, ここ

Fig.6 Averaged area dependence of standard deviation about the measured profile

では図1に示す θ は最大でも θ =2.5/50=0.05 であった. 故 に1+cos θ =1.9988 と計算されるので, 画面内の全領域で θ =0 と近似した.

3.3 測定精度

まず,縦と横方向の測定精度について考える.図4,5に示 したデータでは光学系により,25×25mmの領域がカメラの 488×488画素に結像され,ソフトウェアで5×5画素の平均 がとられている.故に,横分解能は(25/488)×5=0.26mmと 計算される.この時,縦方向の測定精度は図5の高さデータの 変動値より,標準偏差が約0.1mmと計算された(λ"での位 相値の標準偏差/2πは0.023).ここで平均画素数を変えた時 のそれぞれのデータの標準偏差値の変化を,図4,5に使用し たものと同じデータを用いて調べた.結果を図6に示す.平均 画素数を小さくし横分解能を上げていくと標準偏差値が急速に 大きくなることが分かる.

以上の横分解能に対する高さ方向の良い測定精度は, 位相補 正法の使用によるところが大きい. 位相補正法を用いて外乱に よるBの変動を取り除いているからである. 位相補正法を用い ない状態ではしま次数決定型2波長法が正しく動作せず形状は ほとんど測定できなかった. すなわち本法では通常雰囲気でも 干渉じまがほとんど乱れない共通光路干渉計の性質を位相補正 法 (ソフトウェア)で持たせることができ, 高精度測定が可能 になっていると見なせる.

一方,本方法では波長を可変できる光源を用いるが,この波 長測定精度も形状の測定精度に大きく影響すると予想される. そこで次に波長測定精度の影響を評価した.2つの位相図から の形状計算ではしま次数決定型2波長法ⁿを用いるが,しま次 数決定に波長の測定精度が影響しないと仮定すると,形状計測 値への影響は位相計算で用いた式(5)で評価できる.今,位相 補正法でS仮想面ではB=0とし,その点からの高さをh(x,y) と計算するから,式(5)より

$$\psi_{1,3} = 2\pi \cdot h(x,y) (1 + \cos \theta) \cdot \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_3}\right)$$
(6)

$$\left| dh(x,y) \right| = \frac{\psi_{1,3}}{2\pi(1+\cos\theta)} \left\{ \frac{\left| \frac{d\lambda_1}{\lambda_1^2} + \frac{|\frac{d\lambda_3}{\lambda_3^2}}{\lambda_3^2} \right|}{\left(\frac{1}{\lambda_1} - \frac{1}{\lambda_3} \right)^2} \right\}$$
(7)

これと式(6)を用いて

$$\frac{\left|\frac{dh(x,y)}{h(x,y)}\right|}{h(x,y)} = \frac{\frac{\left|\frac{d\lambda_{1}}{\lambda_{1}}\right|}{\lambda_{1}^{2}} + \frac{\left|\frac{d\lambda_{3}}{\lambda_{3}}\right|}{\lambda_{3}^{2}}}{\frac{1}{\lambda_{1}} - \frac{1}{\lambda_{3}}}$$
(8)

と評価される. このように形状の測定精度は波長の測定精度だ けでなく、 $\lambda_1 や \lambda_3$ の値にも影響される. ここで波長の測定精 度 を 0.005nm、 $\lambda_1 = 782.31$ 、 $\lambda_3 = 782.39$ nm とすると |dh(x,y)|/h(x,y)は11%となった(この精度はz軸の縮尺 にのみ影響する). このことから、図4と5の縦軸の高精度な 評価には、 λ_1 、 λ_3 に大きな差を有するものを用いるか、よ り高精度な波長測定をすることが必要と分かる. もし λ_1 、 λ_3 に 1nmの波長差を与えれば波長の測定精度が 0.005 nm でも 縦軸の精度は 1% となる.

ところで粗さによるスペックル位相のランダム成分やスペッ クルの形状はレーザ波長により変わることがこれまでに知られ ている⁹⁾. 故に波長を広範囲に走査する場合,スペックル位相 のランダム成分は波長走査の初期と後期では違うと見なさなけ ればいけない. この点において本方法は波長走査域が広くな く,波長を変えた時の位相への影響は無視できる.一方,広域 での波長走査を行う場合は,この効果を打ち消す何らかの統計 的方法が必要であろう.

3.4 測定範囲

この方法の測定範囲はしま次数決定型2波長法⁷⁾の次数決定 精度による.次数が正確に決定できれば先に述べた測定精度が 保証される.では次数決定はどれくらいの2方向測定範囲を許 容するだろうか.条件の1つは合成波長 λ 'と λ "での測定位 相の差が2πを越えないことである.この場合,広い範囲の測 定を可能にするには λ 'と λ "にあまり差を与えない方が良い. もう1つの条件は,測定された位相は通常誤差を伴うが,この 誤差が次数決定に影響しないことである.しま次数決定型2波 長法では各波長 λ 'と λ "での位相 $\psi_{1,2}$, $\psi_{1,3}$ の関数である次 数識別量 $D(\psi_{1,2},\psi_{1,3})$ を用いる.そして2つの波長でのしま 次数をn, m(共に整数)として, $n\lambda$ '/2 – $m\lambda$ "/2のどの n, mでDが与えられるかを調べている.故に誤差が一定の場 合, λ 'と λ "はなるべく大きな差を持つ方が良い.この両者 の条件から位相測定誤差の関数として,最適な λ 'と λ "の比 ならびに測定範囲が決められる.

以上の条件から測定範囲を解析的に予測することは我々には 困難であった.そこでここでは数値計算を用いた.結果を図7 に示す.x座標は位相測定誤差の標準偏差を2πで割ったもの であり,y座標はλ'とλ"の比である.また,z座標値は次数 が正しく測定できる範囲が短波長の何倍に当たるかを示す.た だし,z座標値の10以上を省略した.10以上を与えるために は位相測定誤差は非常に小さい必要があり,ここで述べたス ペックル干渉では測定が難しいからである.図7のz値は測定

Fig.7 Numerical simulation result for measurable range. X axis means the standard deviation of phase measurement divided by 2π . Y axis means long wavelength divided by short wavelength. Z axis means measurable range divided by short wavelength.

範囲を少しずつ大きくしていく時, 次数が正しく測定され続け た時の範囲である. 故にこの条件は測定が非常に高い確率で保 証される測定範囲と言える. 図より λ'/λ "は1.3, 1.7, 2.3, 2.7 倍前後が良く, (位相測定での誤差の標準偏差)/2 π が 0.023 の場合(図5 の位相データの変動値はほぼこの値とな る), 測定できる範囲は短波長の5倍前後であることが分かる. ここで, $\lambda' と\lambda$ "は半導体レーザのそれぞれの波長 $\lambda_1, \lambda_2, \lambda_3$ から合成波長として計算されるので, λ'/λ "は広い範囲 で可変であり1~10とした.

短波長λ "を大きくすれば測定範囲は広がると予想される が、3.3 節で述べたように、測定精度は少なくとも短波長λ " に比例するため悪くなる.

4. 結 論

本論文で提案した方法は次の特徴を持つと結論できる.

(1) 段差を持つ粗面の形状を精度良く自動測定できる(横分 解能0.26 mm,縦の測定精度は標準偏差で0.1mm.ただし、波長の測定精度の影響を除く).

- (2) 波長走査域の狭い半導体レーザ(走査域0.1nm以下)が 使用可能である(実験では λ₁ = 782.31, λ₂=782.36, λ₃=782.39nm を使用).
- (3) 照明光を物体に対して正面からあてることができるため、 段差のある粗面でも陰のない測定ができる、
- (4) 位相補正法を用いており、空気じょう乱等の外乱の影響 をあまり受けない。
- (5) (位相測定での測定誤差の標準偏差)/2 π が 0.023 の場
 合,測定できる範囲は短波長の5倍前後である.

- K.Sato and S.Inokuchi: Three-dimensional Surface Measurement by Space-encoding Range Imaging, J. Robotic Syst., 2, 1, (1985) 27.
- K. J. Gasvik: Optical Metrology, 2nd Ed., John Wiley & Sons Ltd., Chichester, (1995) 161.
- T.Maack, G. Notni and W. Schreiber: Three-coordinate Measurement of an Object Surface with a Combined Two- wavelength and Two- source Phaseshifting Speckle Interferometer, Opt. Com., 115, (1995) 576.
- 4)Y. Zou, G. Pedrini and H.Tiziani: Surface Contouring in a Video Frame by Changing the Wavelength of a Diode Laser, Opt. Eng., 35, 4, (1996) 1074.
- 5)S. Kuwamura and I. Yamaguchi: Wavelength Scanning Profilometry for Real-time Surface Shape Measurement, Appl. Opt., **36**, 19, (1997) 4473.
- 6) H. J. Tiziani, B. Franze and P. Haible: Wavelength-Shift Speckle Interferometry for Absolute Profilometry using a Mode-hop Free External Cavity Diode Laser, J. Mod. Opt., 44, 8, (1997) 1485.
- 7)西川尚之,高安拓朗,岩田耕一:2波長位相シフト法による 微細表面形状計測,精密工学会誌,57,9(1991)1633.
- 8) J. E. Greivenkamp and J. H. Bruning: Phase Shifting Interferometers, in *Optical Shop Testing*, 2nd Ed.,
- D.Malacara ed., John Wiley & Sons Ltd., New York, (1992) 532.
- G.Parry: Some Effects of Surface Roughness on the Appearance of Speckle in Polychromatic Light, Opt. Com., 12, (1974) 78.