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Abstract Cosmological equations were recently derived
by Padmanabhan from the expansion of cosmic space due to
the difference between the degrees of freedom on the surface
and in the bulk in a region of space. In this study, a modi-
fied Rényi entropy is applied to Padmanabhan’s ‘holographic
equipartition law’, by regarding the Bekenstein–Hawking
entropy as a nonextensive Tsallis entropy and using a loga-
rithmic formula of the original Rényi entropy. Consequently,
the acceleration equation including an extra driving term
(such as a time-varying cosmological term) can be derived in
a homogeneous, isotropic, and spatially flat universe. When a
specific condition is mathematically satisfied, the extra driv-
ing term is found to be constant-like as if it is a cosmological
constant. Interestingly, the order of the constant-like term is
naturally consistent with the order of the cosmological con-
stant measured by observations, because the specific condi-
tion constrains the value of the constant-like term.

1 Introduction

To explain the accelerated expansion of the late universe,
�CDM (lambda cold dark matter) models assume a cos-
mological constant � related to an additional energy com-
ponent called dark energy [1–5]. However, � measured by
observations is many orders of magnitude smaller than the
theoretical value estimated by quantum field theory [6–13].
This discrepancy is the so-called cosmological constant prob-
lem. To resolve this theoretical difficulty, numerous cosmo-
logical models have been proposed [14,15], such as CCDM
(creation of CDM) models [16–27] and �(t)CDM models,
which assume a time-varying cosmological term �(t) [28–
53]. In CCDM models, a constant term is obtained from a
dissipation process based on gravitationally induced particle
creation [16–27], while in �(t)CDM models, a constant term
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is obtained from an integral constant of the renormalization
group equation for the vacuum energy density [39].

For these models, thermodynamic scenarios have attracted
attention, in which the Bekenstein–Hawking entropy (which
is proportional to the surface area of the event horizon) [54–
60] and the holographic principle (which refers to the infor-
mation of the bulk stored on the horizon) [61–63] play impor-
tant roles. For example, using the holographic principle it
has been proposed that gravity is itself an entropic force
derived from changes in the Bekenstein–Hawking entropy
[64–67]. Based on this concept, the cosmological equa-
tions have been extensively examined in a homogeneous
and isotropic universe [68–72], although the cosmological
constant has not been discussed. In an alternative treatment,
Easson et al. [73,74] proposed an entropic cosmology that
assumes the usually neglected surface terms on the hori-
zon of the universe [75–90]. In entropic cosmology, an extra
driving term to explain the accelerated expansion is derived
from entropic forces on the horizon of the universe. An
area entropy (the Bekenstein–Hawking entropy), a volume
entropy (the Tsallis–Cirto entropy) [91], a quartic entropy
[84,85], and a general form of entropy [88–90] have been
applied to entropic cosmology. However, the entropic-force
term (related to dark energy and �) is generally considered
to be a tuning parameter, which makes it difficult to include
in discussion of the cosmological constant problem.

Padmanabhan recently provided a new insight into the
origin of spacetime dynamics using another thermodynamic
scenario called the ‘holographic equipartition law’ [92].
Based on the holographic equipartition law with Bekenstein–
Hawking entropy, cosmological equations in a flat universe
can be derived from the expansion of cosmic space due to the
difference between the degrees of freedom on the surface and
in the bulk [92]. The emergence of the cosmological equa-
tions (i.e., the Friedmann and acceleration equations) has
been examined from various viewpoints, such as a non-flat
universe and quantum-corrected entropy [93–108]. However,
dark energy and � have not yet been discussed fundamen-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-017-4800-2&domain=pdf
http://orcid.org/0000-0003-1159-8573
mailto:komatsu@se.kanazawa-u.ac.jp


 229 Page 2 of 12 Eur. Phys. J. C   (2017) 77:229 

tally, though they have been considered in several studies
[105–108]. This is likely because dark energy and � (which
are related to an extra driving term) have been assumed to
explain the accelerating universe. If the extra driving term is
naturally derived from the holographic equipartition law, it
is possible to study various cosmological models based on
holographic equipartition law. However, such a driving term
should not be derived using Bekenstein–Hawking entropy.

Self-gravitating systems exhibit peculiar features due
to long-range interacting potentials. Therefore, the Rényi
entropy [109] and the Tsallis entropy [110] can also be used
for astrophysical problems [91,111–132]. Biró and Czinner
[112] have recently suggested a novel type of Rényi entropy
on a black-hole horizon, in which the Bekenstein–Hawking
entropy is considered to be a nonextensive Tsallis entropy
[112,113].

In this paper, the modified Rényi entropy is applied to the
holographic equipartition law in a homogeneous, isotropic,
and spatially flat universe. It is expected that an extra driving
term can be derived from the holographic equipartition law
with the modified Rényi entropy. Therefore, the present study
should help in developing cosmological models based on the
holographic equipartition law. In addition, the extra driving
term is expected to be constant-like under specific conditions.
The specific condition and constant-like term may provide
new insights into the cosmological constant problem. (The
present study focuses on the derivation of the extra driving
term and the specific condition for the constant-like term.
Accordingly, the inflation of the early universe and density
perturbations related to structure formations are not exam-
ined.)

The remainder of the article is organized as follows. In
Sect. 2, �(t)CDM models are briefly reviewed for a typi-
cal formulation of the cosmological equations. In Sect. 3,
entropies on the horizon are discussed. The Bekenstein–
Hawking entropy is reviewed in Sect. 3.1, while a modified
Rényi is introduced in Sect. 3.2. The holographic equiparti-
tion law is discussed in Sect. 4. In Sect. 5, the modified Rényi
entropy is applied to the holographic equipartition law, to
derive the acceleration equation that includes an extra driv-
ing term. The extra driving term is then discussed in Sect. 6,
focusing on the specific condition required for obtaining a
constant-like term. Finally, in Sect. 7, the conclusions of the
study are presented.

2 �(t)CDM models

Cosmological equations derived from the holographic equi-
partition law are expected to be similar to those for �(t)CDM
models [28–53] in a nondissipative universe. Therefore, in
this section, the �(t)CDM model is reviewed, to discuss a
typical formulation of the cosmological equations.

A homogeneous, isotropic, and spatially flat universe is
considered, and the scale factor a(t) is examined at time t in
the Friedmann–Lemaître–Robertson–Walker metric [85,88].
In the �(t)CDM model, the Friedmann equation is given as
(
ȧ(t)

a(t)

)2

= H(t)2 = 8πG

3
ρ(t) + �(t)

3
, (1)

and the acceleration equation is

ä(t)

a(t)
= Ḣ(t) + H(t)2

= −4πG

3

(
ρ(t) + 3p(t)

c2

)
+ �(t)

3
, (2)

where the Hubble parameter H(t) is defined by

H(t) ≡ da/dt

a(t)
= ȧ(t)

a(t)
. (3)

G, c, ρ(t), and p(t) are the gravitational constant, the speed
of light, the mass density of cosmological fluids, and the
pressure of cosmological fluids, respectively [85,88], and
�(t) is a time-varying cosmological term. Based on Eqs. (1)
and (2), the continuity equation [85] is given by

ρ̇(t) + 3
ȧ(t)

a(t)

(
ρ(t) + p(t)

c2

)
= − �̇(t)

8πG
. (4)

The right-hand side of this continuity equation is usually
non-zero, except for the case �(t) = �. Accordingly, the
�(t)CDM model can be interpreted as a kind of energy
exchange cosmology in which the transfer of energy between
two fluids is assumed [133–136]. When �(t) = �, the Fried-
mann, acceleration, and continuity equations are identical to
those for the standard �CDM model. In this paper, cosmo-
logical models based on the holographic equipartition law
are assumed to be a particular case of �(t)CDM models,
although the theoretical backgrounds are different.

3 Entropy on the horizon

In the holographic equipartition law, the horizon of the uni-
verse is assumed to have an associated entropy [92]. The
Bekenstein–Hawking entropy is generally used, replacing
the horizon of a black hole by the horizon of the universe.
In Sect. 3.1, the Bekenstein–Hawking entropy is briefly
reviewed. In Sect. 3.2, a novel type of Rényi entropy pro-
posed by Biró and Czinner [112] is introduced for the entropy
on the horizon of the universe.

3.1 The Bekenstein–Hawking entropy

The Bekenstein–Hawking entropy SBH [54–56] is given as

SBH = kBc3

h̄G

AH

4
, (5)
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where kB and h̄ are the Boltzmann constant and the reduced
Planck constant, respectively [82–84]. The reduced Planck
constant is defined by h̄ ≡ h/(2π), where h is the Planck
constant. AH is the surface area of the sphere with the Hubble
horizon (radius) rH , given by

rH = c

H
. (6)

Substituting AH = 4πr2
H into Eq. (5) and using Eq. (6), we

obtain [82–84]

SBH = kBc3

h̄G

AH

4
=

(
πkBc5

h̄G

)
1

H2 = K

H2 , (7)

or equivalently

SBH = K

H2 = πkBc2

L2
pH

2 , (8)

where K is a positive constant given by

K = πkBc5

h̄G
= πkBc2

L2
p

, (9)

and L p is the Planck length, written as

L p =
√
h̄G

c3 . (10)

As shown in Eqs. (5) and (8), the Bekenstein–Hawking
entropy SBH on the Hubble horizon is proportional to H−2

(and AH ) and is related to the Planck length.
In this paper, a spatially flat universe, k = 0, is con-

sidered, where k is a curvature constant. For a spatially
non-flat universe (k �= 0), the apparent horizon given by
rA = c/

√
H2 + (k/a2) is used instead of the Hubble hori-

zon; see, e.g., Refs. [94–104].

3.2 Modified Rényi entropy

Nonextensive entropies for black-hole thermodynamics have
been extensively investigated [91,112,113,122–126].
Recently, Biró and Czinner [112] suggested a novel type
of Rényi entropy on black-hole horizons, by regarding
the Bekenstein–Hawking entropy as a nonextensive Tsal-
lis entropy and using a logarithmic formula. In the present
study, the modified Rényi entropy is used for the entropy on
the Hubble horizon. Therefore, the modified Rényi entropy
[112,113] is briefly reviewed here.

In nonextensive thermodynamics, the Tsallis entropy ST
for a set of W discrete states is defined as

ST = kB
1 − ∑W

i=1 pqi
q − 1

, (11)

where pi is a probability distribution and q is the so-called
nonextensive parameter [91,111]. In addition, the original
Rényi entropy [91,109] is defined as

Sorg
R = kB

ln
∑W

i=1 pqi
1 − q

= 1

1 − q
ln[1 + (1 − q)ST ]. (12)

When q = 1, both ST and Sorg
R recover the Boltzmann–Gibbs

entropy given by

SBG = −kB

W∑
i=1

pi ln pi . (13)

The original Rényi entropy [91,109] can be written as

Sorg
R = 1

1 − q
ln[1 + (1 − q)ST ] = 1

λ
ln[1 + λST ], (14)

where, for simplicity, 1 − q has been replaced by λ:

λ = 1 − q. (15)

In this paper, λ is considered to be non-negative, as discussed
later.

A novel type of Rényi entropy has been proposed and
examined in Refs. [112,113], in which not only is the log-
arithmic formula of the original Rényi entropy used but
the Bekenstein–Hawking entropy SBH is considered to be a
nonextensive Tsallis entropy ST . Using Eq. (14) and replac-
ing ST by SBH, we obtain a modified Rényi entropy SR [113]
given by

SR = 1

λ
ln[1 + λSBH]. (16)

When λ = 0 (i.e., q = 1), SR becomes SBH. We call SR the
modified Rényi entropy. In the present study, the modified
Rényi entropy is applied to the holographic equipartition law.
To this end, the holographic equipartition law is reviewed in
the next section.

Note that the physical origin of the modified Rényi entropy
is likely unclear at the present time. However, it is worthwhile
to examine cosmological models based on the holographic
equipartition law from various viewpoints. Therefore, in this
paper, the modified Rényi entropy is applied to the holo-
graphic equipartition law.

4 Holographic equipartition law

Padmanabhan [92] derived the Friedmann and acceleration
equations in a flat universe from the expansion of cosmic
space due to the difference between the degrees of freedom on
the surface and in the bulk in a region of space. In this section,
the Padmanabhan idea called the ‘holographic equipartition
law’ is reviewed, based on his work [92] and related work
[93–108]. (The surface terms assumed in entropic cosmology
[73,74] are not considered in the holographic equipartition
law. In Ref. [108], the holographic equipartition law is exam-
ined, including the surface terms.)
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In an infinitesimal interval dt of cosmic time, the increase
dV of the cosmic volume can be expressed as

dV

dt
= L2

p(Nsur − εNbulk) × c, (17)

where Nsur is the number of degrees of freedom on the spher-
ical surface of Hubble radius rH and Nbulk is the number
of degrees of freedom in the bulk [92]. L p is the Planck
length given by Eq. (10) and ε is a parameter discussed later.
Equation (17) represents the so-called holographic equipar-
tition law. Note that the right-hand side of Eq. (17) includes
c, because c is not set to be 1 in the present paper. Using
rH = c/H given by Eq. (6), the Hubble volume V can be
written as

V = 4π

3
r3
H = 4π

3

( c

H

)3
. (18)

The number of degrees of freedom in the bulk is assumed to
obey the equipartition law of energy [92]:

Nbulk = |E |
1
2kBT

, (19)

where the Komar energy |E | contained inside the Hubble
volume V is given by

|E | = |(ρc2 + 3p)|V = −ε(ρc2 + 3p)V, (20)

and ε is a parameter defined as [92,93]

ε ≡
{

+1 (ρc2 + 3p < 0),

−1 (ρc2 + 3p > 0).
(21)

From this definition, |E | is confirmed to be non-negative.
Note that ρc2 + 3p < 0 corresponds to an accelerat-
ing universe (e.g., dark energy dominated universe), while
ρc2 + 3p > 0 corresponds to a decelerating universe (e.g.,
matter and radiation dominated universe). The temperature
T on the horizon is written as

T = h̄H

2πkB
. (22)

This temperature is used for calculating Nbulk from Eq. (19)
[137]. In contrast, the number of degrees of freedom on the
spherical surface is given by

Nsur = 4SH
kB

, (23)

where SH is the entropy on the Hubble horizon. When SH =
SBH, Eq. (23) is equivalent to that in Ref. [92]. In the next
section, SH is replaced by the modified Rényi entropy SR
given by Eq. (16).

We now derive the cosmological equations from the holo-
graphic equipartition law. To this end, we first calculate the
left-hand side of Eq. (17). Substituting Eq. (18) into Eq. (17),
the left-hand side of Eq. (17) is given by

dV

dt
= d

dt

(
4π

3

( c

H

)3
)

= −4πc3
(

Ḣ

H4

)
. (24)

In this calculation, r has been set to be rH before the
time derivative is calculated [92]. Next, we calculate Nbulk

included in the right-hand side of Eq. (17). According to Ref.
[92], ρc2 + 3p < 0 is selected and, therefore, ε = +1 from
Eq. (21). Note that the following discussion is not affected
even if ρc2 + 3p > 0 is selected [93]. Substituting Eqs. (20)
and (22) into Eq. (19), using Eq. (18), and rearranging, we
obtain

Nbulk = |E |
1
2kBT

= −(ρc2 + 3p)V
1
2kB

(
h̄H

2πkB

) = −(ρc2 + 3p) 4π
3

( c
H

)3

1
2kB

(
h̄H

2πkB

)

= − (4π)2c5

3h̄

(
ρ + 3p

c2

)
1

H4 . (25)

In addition, substituting ε = +1 and Eqs. (10), (23), (24),
and (25) into Eq. (17) gives

−4πc3 Ḣ

H4 = h̄G

c3

[
4SH
kB

+ (4π)2c5

3h̄

(
ρ + 3p

c2

)
1

H4

]
× c,

(26)

and solving this with regard to Ḣ , we have

Ḣ = − H4

4πc3

h̄G

c3

[
4SH
kB

+ (4π)2c5

3h̄

(
ρ + 3p

c2

)
1

H4

]
× c

= −4πG

3

(
ρ + 3p

c2

)
−

(
h̄G

πkBc5

)
SH H4

= −4πG

3

(
ρ + 3p

c2

)
− SH H4

K
, (27)

where K is given by Eq. (9). As shown in Eq. (2), ä/a is
written as ä/a = Ḣ + H2. Substituting Eq. (27) into this
equation, we obtain

ä

a
= Ḣ + H2

= −4πG

3

(
ρ + 3p

c2

)
− SH H4

K
+ H2

= −4πG

3

(
ρ + 3p

c2

)
+ H2

(
1 − SH H2

K

)
. (28)

The above equation is the acceleration equation derived from
the holographic equipartition law, where SH is the entropy
on the Hubble horizon. Interestingly, the second term on the
right-hand side, i.e., H2(1 − SH H2/K ), appears to be an
extra driving term.

When the Bekenstein–Hawking entropy is used, i.e.,
SH = SBH, the second term H2(1 − SH H2/K ) is zero
because SBH = K/H2 given by Eq. (7). Consequently, the
acceleration equation can be written as
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ä

a
= −4πG

3

(
ρ + 3p

c2

)
. (29)

The obtained cosmological equation is considered to be a
particular case of �(t)CDM models, as mentioned in Sect. 2.
Accordingly, Eq. (29) indicates that �(t) in Eq. (2) is zero.
Substituting �(t) = 0 into Eqs. (1) and (4), we have the
Friedmann and continuity equations, given by

H2 = 8πG

3
ρ, (30)

ρ̇ + 3
ȧ

a

(
ρ + p

c2

)
= 0. (31)

The three equations (i.e., the Friedmann, acceleration, and
continuity equations) agree with those in Ref. [92].

In the above, the second term on the right-hand side of
Eq. (28) is zero because the Bekenstein–Hawking entropy
SBH is used for the entropy SH on the horizon. However, if a
different SH is assumed, the second term (corresponding to
an extra driving term) is expected to be non-zero. In the next
section, we examine this expectation, applying the modified
Rényi entropy SR to the holographic equipartition law. Note
that a similar driving term has been studied, e.g., in Ref.
[108], using quantum-corrected entropy.

5 Acceleration equation from the holographic
equipartition law with a modified Rényi entropy

In this section, the modified Rényi entropy SR is applied to
the holographic equipartition law, instead of the Bekenstein–
Hawking entropy. The modified Rényi entropy given by
Eq. (16) can be written as

SR = 1

λ
ln[1 + λSBH], (32)

where SR becomes SBH when λ = 0. The acceleration equa-
tion derived from the holographic equipartition law given by
Eq. (28) is

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ H2

(
1 − SH H2

K

)
, (33)

where SH is the entropy on the Hubble horizon and K given
by Eq. (9) is written as

K = πkBc5

h̄G
= πkBc2

L2
p

. (34)

Regarding SR as SH and substituting Eq. (32) into
Eq. (33), we have

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ H2

(
1 −

1
λ

ln[1 + λSBH]H2

K

)

= −4πG

3

(
ρ + 3p

c2

)
+ f (H), (35)

2

KX
H

≡

( )H
K

1
2

21 H
X K

=

1 ln[1 ]1 X
X X

+

10410310210110010-110-210-3

10-4

103

102

101

100

10-1

10-2

10-3

10-5

Fig. 1 Properties of the normalized extra driving term f (H)/(λK ).
The horizontal axis is X ≡ λK/H2. The logarithmic formula given
by Eq. (39) is plotted. The two approximation curves for 1/2 and 1/X
given by Eq. (42) are also shown

where, using SBH = K/H2 given by Eq. (7), the extra driving
term f (H) is written as

f (H) = H2
(

1 − ln[1 + (λK/H2)]
λK/H2

)
, (36)

and λ is a non-negative constant, i.e., λ ≥ 0. The accelera-
tion equation given by Eq. (35) can be derived from the holo-
graphic equipartition law with the modified Rényi entropy.
When λ = 0 (i.e., SR = SBH), f (H) is zero, as discussed in
the previous section. However, f (H) is expected to be non-
zero when λ > 0. Consequently, f (H) given by Eq. (36) is
not a simple power series of H but a logarithmic formula.

From Eq. (36), f (H) can be written as

f (H) = H2
(

1 − ln[1 + (λK/H2)]
λK/H2

)

= λK

λK/H2

(
1 − ln[1 + (λK/H2)]

λK/H2

)
. (37)

The positive dimensionless parameter X is defined as

X ≡ λK

H2 (>0), (38)

where λ is considered to be positive, i.e., λ > 0. Dividing
Eq. (37) by λK , and applying Eq. (38), we have the normal-
ized extra driving term given by

f (H)

λK
= 1

X

(
1 − ln[1 + X ]

X

)
. (39)

To observe the properties of f (H), the normalized term
is plotted in Fig. 1. Consequently, f (H)/(λK ) gradually
approaches 1/2 with decreasing X , while it approaches a
common curve with increasing X . Therefore, we focus on
two specific conditions, X ≤ 1 and X � 1. Under the two
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conditions, the approximate formulas are given mathemati-
cally by

ln[1 + X ] ≈ X − X2

2
+ · · · (X ≤ 1), (40)

ln[1 + X ]
X

≈ 0 (X � 1). (41)

High-order terms have been neglected in Eq. (40). Substitut-
ing Eqs. (40) and (41), respectively, into Eq. (39), we have

f (H)

λK
≈

{
1
2 (X ≤ 1),
1
X (X � 1).

(42)

From Eqs. (38) and (42), f (H) can be written as

f (H) ≈
⎧⎨
⎩

λK
2

(
λK
H2 ≤ 1

)
,

H2
(

λK
H2 � 1

)
.

(43)

The constant-like and H2-like terms are, respectively,
obtained from each condition, as shown in Eq. (43). The
constant-like term, λK/2, can be interpreted as a kind
of cosmological constant, although the specific condition
λK/H2 ≤ 1 is required. In the next section, we discuss
the constant-like term and the specific condition.

As a matter of fact, the extra driving term (which behaves
like effective dark energy) can be derived even if dark energy
is not assumed, i.e., even when p = 0. Alternatively, the
modified Rényi entropy is assumed in the present paper. In
this sense, the original holographic equipartition law is mod-
ified. This modification is expected to provide new insights
into cosmological models based on the holographic equipar-
tition law.

As shown in Eq. (43), H2-like terms are derived under
a specific condition. However, the driving term is not likely
to be related to the inflation of the early universe, because
higher exponents terms such as H4 terms should be required
for the inflation [88]. In �(t)CDM models, the higher
exponents terms have been closely examined in Refs. [40–
42]. In entropic cosmology, a quantum-corrected entropy is
introduced for the higher exponents terms; see, e.g., Refs.
[74,108].

6 Constant-like term under a specific condition

The acceleration equation can be derived from the holo-
graphic equipartition law with the modified Rényi entropy,
as examined in the previous section. Interestingly, an extra
driving term included in the equation is found to be constant-
like under a specific condition. In this section, we discuss
the constant-like term under the specific condition. To this
end, the present cosmological model is reviewed, assuming
that it is a particular case of �(t)CDM models. Substituting

�(t)/3 = f (H) into Eqs. (1), (2), and (4), we obtain the
Friedmann, acceleration, and continuity equations written as

H2 = 8πG

3
ρ + f (H), (44)

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ f (H), (45)

ρ̇ + 3
ȧ

a

(
ρ + p

c2

)
= −3 ḟ (H)

8πG
, (46)

where the extra driving term f (H) is given by

f (H) = H2
(

1 − ln[1 + (λK/H2)]
λK/H2

)
, (47)

and K is

K = πkBc5

h̄G
= πkBc2

L2
p

. (48)

As shown in Eq. (46), the right-hand side of the continuity
equation is not zero generally. This non-zero right-hand side
may be interpreted as the interchange of energy between the
bulk (the universe) and the surface (the horizon of the uni-
verse) [79,88]. (The previous work of Solà et al. [43,44]
imply that the value of the non-zero right-hand side of the
continuity equation should be small in �(t)CDM models
[88].) In the following, the right-hand side of the continuity
equation is zero, because f (H) is considered to be constant
under a specific condition. General solutions for the present
model, which includes a logarithmic term, are separately dis-
cussed in Appendix A.

This paper focuses on the constant-like term under a spe-
cific condition. From Eq. (43), the constant-like term and the
specific condition can be written as

f (H) ≈ λK

2
=

(
λK

2H2
0

)
H2

0

(
λK

H2 ≤ 1

)
, (49)

where H0 is the Hubble parameter at the present time and
λK/(2H2

0 ) is a dimensionless constant (corresponding to α4

in Ref. [85]). Hereafter, we call the constant-like term the
constant term. Under the specific condition given by Eq. (49),
the Friedmann, acceleration, and continuity equations are
written as

H2 = 8πG

3
ρ +

(
λK

2H2
0

)
H2

0 , (50)

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+

(
λK

2H2
0

)
H2

0 , (51)

ρ̇ + 3
ȧ

a

(
ρ + p

c2

)
= 0. (52)

The three equations are essentially the same as those in the
standard �CDM model. Setting p = 0 for non-relativistic
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matter, the background evolution of the universe is analyti-
cally given by

(
H

H0

)2

=
(

1 − λK

2H2
0

)(
a

a0

)−3

+ λK

2H2
0

= (1 − �h)

(
a

a0

)−3

+ �h, (53)

where a0 represents the scale factor at the present time and
�h is a holographic parameter defined by

�h ≡ λK

2H2
0

. (54)

Using Eq. (54) and H̃ ≡ H/H0, Eq. (38) can be written as

X ≡ λK

H2 =
2λK
2H2

0

H2/H2
0

= 2�h

H̃2
(>0). (55)

In the present model, the constant term λK/2 and the holo-
graphic parameter �h have been restricted by the inequality
given in Eq. (49). Accordingly, the constraint on both λK/2
and �h can be discussed, without tuning.

In the history of an expanding universe, H0 is expected to
be the minimum value of H , because rH increases with time
and H is given by H = c/rH from Eq. (6). Therefore, when
H = H0, the most severe constraint on λK can be obtained
from the inequality of Eq. (49). The constraint is written as

λK � H2
0 . (56)

In the present model, Eq. (56) is mathematically required
to obtain the constant term. From Eq. (56), the order of the
constant term, λK/2, is approximately given by

O

(
λK

2

)
� O(H2

0 ), (57)

or equivalently, from Eqs. (54) and (56), the order of �h can
be approximately written as

O(�h) = O

(
λK

2H2
0

)
� O(1). (58)

We now compare the constant term λK/2 in the present
model and the cosmological constant term �/3 in the stan-
dard �CDM model. In the �CDM model, the density param-
eter �� for the cosmological constant � is given by

�� ≡ �

3H2
0

. (59)

Numerous cosmological observations indicate that the order
of �� is expected to be 1, e.g., �� = 0.692 from the Planck
2015 results [5]. Accordingly, the order of �� can be approx-
imately written as

O(��) ≈ O(1). (60)

Using Eqs. (59) and (60), we have

O

(
�

3

)
= O(��H2

0 ) ≈ O(H2
0 ). (61)

Equations (57) and (61) imply that the order of the con-
stant term λK/2 is consistent with the order of �/3. That
is, interestingly, the constant term in the present model is
naturally consistent with the order of � measured by cosmo-
logical observations as if it is �. Similarly, from Eqs. (58)
and (60), the order of �h is likely consistent with the order of
��. Of course, in the present model, λK � H2

0 is required
to obtain the constant term, assuming the modified Rényi
entropy instead of the Bekenstein–Hawking entropy. This
extension may be beyond the original holographic equipar-
tition law. However, the constant term and the specific con-
dition considered here may provide new insights into the
cosmological constant problem.

Equation (56) can be written as λ � L2
p/(πkBr2

H0)

using Eq. (48) and H0 = c/rH0, where rH0 is the Hub-
ble horizon at the present time. This constraint indicates
that λ is an extremely small positive value. In other words,
the modified Rényi entropy is approximately equivalent to
the Bekenstein–Hawking entropy although it slightly devi-
ates from the Bekenstein–Hawking entropy. Accordingly, the
present model may imply that the cosmological constant is
related to a small deviation from the Bekenstein–Hawking
entropy. As time passes, the constraint is expected to be
more severe because rH0 increases with time. Consequently,
the extra driving term in the present model should gradually
deviate from the constant value, even if the severe condition
is satisfied at the present time. That is, the present model
can be distinguished from the �CDM model, as discussed in
Appendix A.

In this paper, we have focused on the derivation of an
extra driving term from the holographic equipartition law
with the modified Rényi entropy. The obtained term f (H)

given by Eq. (47) is a logarithmic formula. However, under
two specific conditions, it can be systematically written as
f (H) = C0H2

0 + C1H2, where C0 and C1 are dimension-
less constants. In the �(t)CDM model, the above formula
has been examined in detail [44–48,80,81]. For example,
Gómez-Valent et al. [45–47] and Basilakos et al. [80,81] have
shown that it is not the H2, Ḣ , and H terms, but rather the
constant term that plays an important role in cosmological
fluctuations related to structure formations [88]. In addition,
recently, �(t)CDM models, which include power series of
H , have been found to be more suitable than the standard
�CDM model [43]. In particular, the simple combination of
the constant and H2 terms, f (H) = C0H2

0 +C1H2, is likely
favored; see, e.g., the work of Solà et al. [44], Gómez-Valent
et al. [45–47], and Lima et al. [48], which indicate that C0 is
dominant and C1 is expected to be small [43,44]. The small-
ness of C1 has not yet been explained by the holographic
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approach [88], though it may be explained by a deeper under-
standing of the present model. For example, the logarithmic
formula discussed in the present model slightly deviates from
the constant value when λK/H2 ≈ 1, as shown in Fig. 1. Of
course, this small deviation is not proportional to H2. How-
ever, the small deviation may be related to the smallness of
C1, if the smallness can be interpreted as a deviation from a
constant term. This task is left for future research.

We keep in mind that the present result depends on the
choice of entropy. In this paper, the modified Rényi entropy
[112,113] is employed, in which the Bekenstein–Hawking
entropy is considered to be a nonextensive Tsallis entropy.
That is, the Bekenstein–Hawking entropy is assumed to sat-
isfy the Tsallis composition rule. In addition, a logarithmic
formula of the original Rényi entropy is used for the modi-
fied Rényi entropy [112,113], where the logarithmic formula
is obtained from the Tsallis composition rule. For details of
the modified Rényi entropy, see Refs. [112,113]. The phys-
ical origin of the modified Rényi entropy is likely unclear
at the present time. However, it is worthwhile to examine
cosmological models based on the holographic equipartition
law from various viewpoints. Note that the choice of tem-
perature does not affect main results in the present study,
because the extra driving term discussed here is related to
Nsur = 4SH/kB from Eq. (23) and is independent of the
temperature [137].

7 Conclusions

Recently, a novel type of Rényi entropy on a black-hole hori-
zon was proposed by Biró and Czinner [112], in which a log-
arithmic formula of the original Rényi entropy was used and
the Bekenstein–Hawking entropy was regarded as a nonex-
tensive Tsallis entropy. In this study, the modified Rényi
entropy has been applied to the holographic equipartition law
proposed by Padmanabhan [92], to investigate cosmological
models based on the holographic equipartition law. Conse-
quently, the acceleration equation, which includes an extra
driving term, can be derived in a homogeneous, isotropic, and
spatially flat universe. The extra driving term is a logarithmic
formula which can explain the accelerated expansion of the
late universe, as for effective dark energy.

Under two specific conditions, the extra driving term is
found to be the constant-like and H2-like terms, respectively.
In particular, when a specific condition is satisfied, the extra
driving term is found to be constant-like, i.e.,λK/2, as if it is a
cosmological constant �. In the present model, λK � H2

0 is
required to obtain the constant-like term from the most severe
constraint. In other words, the constant-like term must be
extremely small when the extra driving term behaves as if it is
constant. The present model may imply that the cosmological
constant is related to a small deviation from the Bekenstein–

Hawking entropy. In addition, interestingly, the order of the
constant-like term is naturally consistent with the order of the
cosmological constant measured by observations, because
the specific condition constrains the value of the constant-
like term. The present model may provide new insights into
the cosmological constant problem.

This paper focuses on the derivation of the extra driving
term and the specific condition for the constant-like term.
Accordingly, general solutions for the present model that
includes a logarithmic driving term have been separately
studied in Appendix A. To solve the cosmological equa-
tions, the present model is assumed to be a particular case
of �(t)CDM models. From the obtained solution, the back-
ground evolutions of the universe in the present model are
found to agree well with those in the standard �CDM model
when both 2�h/H̃2 and 2�h are small. For lower redshift,
the present model gradually deviates from the �CDM model,
due to the logarithmic term. Therefore, the present model can
be distinguished from the standard �CDM model.
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Appendix A: General solutions for the present model
and background evolutions of the late universe

So far, a constant term under a specific condition in the
present model has been focused on, without tuning �h given
by Eq. (54). However, in general, the present model has a
logarithmic driving term. Accordingly, in this appendix, gen-
eral solutions for the present model are examined, assum-
ing that it is a particular case of �(t)CDM models. Using
the solution, background evolutions of the late universe are
briefly observed. In the following, p is set to be zero for
non-relativistic matter. In addition, �h is considered to be
a free constant parameter (i.e., a kind of density parameter
for effective dark energy), as for �� in the standard �CDM
model.

1. General solutions for the present model

In this subsection, the general solution for the present model
is examined. To this end, the present model is assumed to be a
particular case of �(t)CDM models, as shown in Eqs. (44)–
(46). From Eq. (47), the extra driving term f (H) is written
as
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f (H) = H2
(

1 − ln[1 + (λK/H2)]
λK/H2

)
. (A1)

When f (H) = λK/2, the solution is given by Eq. (53). The
solution method for the present model is partially based on
Refs. [82–85]. (When f (H) is a power series of H and Ḣ ;
see, e.g., the recent work of Gómez-Valent et al. [45–47] and
Basilakos et al. [80,81].)

Using ä/a = Ḣ + H2, coupling Eq. (44) with Eq. (45)
×2, and setting p = 0, we obtain

Ḣ + 3

2
H2 − 3

2
f (H) = 0, (A2)

or, equivalently,

Ḣ = −3

2
H2

(
1 − f (H)

H2

)
. (A3)

From Eq. (A3), we have (dH/da)a given by
(

dH

da

)
a =

(
dH

dt

)
dt

da
a = −3

2
H2

(
1 − f (H)

H2

)
a

ȧ

= −3

2
H2

(
1 − f (H)

H2

)
1

H

= −3

2
H

(
1 − f (H)

H2

)
. (A4)

Substituting Eq. (A1) into Eq. (A4) gives

(
dH

da

)
a = −3

2
H

⎛
⎝1 −

H2
(

1 − ln[1+(λK/H2)]
λK/H2

)
H2

⎞
⎠

= −3

2
H

(
ln[1 + (λK/H2)]

λK/H2

)

= −3

2
H

(
ln[1 + (2�h/H̃2)]

2�h/H̃2

)
, (A5)

where the following equation, given by Eq. (55), has also
been used:

λK

H2 = 2�h

H̃2
. (A6)

Note that, from Eq. (54), �h is defined by

�h ≡ λK

2H2
0

, (A7)

and the normalized Hubble parameter H̃ is defined as

H̃ ≡ H

H0
. (A8)

Similarly, the normalized scale factor ã is defined as

ã ≡ a

a0
. (A9)

Substituting H = H̃ H0 and a = ãa0 into Eq. (A5), and
arranging the resultant equation, we have(

dH̃

dã

)
ã = −3

2
H̃

(
ln[1 + (2�h/H̃2)]

2�h/H̃2

)
. (A10)

In addition, a parameter N is defined by

N ≡ ln ã, and therefore dN = dã

ã
. (A11)

Using Eq. (A11), Eq. (A10) can be written as(
dH̃

dN

)
= −3

2
H̃

(
ln[1 + (2�h/H̃2)]

2�h/H̃2

)
. (A12)

When �h is constant, Eq. (A12) can be integrated as
∫

dH̃
3
2 H̃

(
ln[1+(2�h/H̃2)]

2�h/H̃2

) = −
∫

dN . (A13)

This solution is given by

− 1

3
li

(
1 + 2�h

H̃2

)
= −N + C = − ln ã + C, (A14)

where C is an integral constant and ‘li’ represents the loga-
rithmic integral [138,139] defined as

li(x) ≡
∫ x

0

dt

ln t
. (A15)

From Eqs. (A8) and (A9), the present values of H̃ and ã are
1. Substituting H̃ = 1 and ã = 1 into Eq. (A14), the integral
constant C can be written as

C = −1

3
li(1 + 2�h). (A16)

Substituting Eq. (A16) into Eq. (A14), and solving the resul-
tant equation with respect to ã, we obtain

ã =
{

exp

[
li

(
1 + 2�h

H̃2

)
− li(1 + 2�h)

]} 1
3

. (A17)

This equation is the general solution for the present model.
The relationship between ã and H̃ for each �h can be calcu-
lated from Eq. (A17). Equations (A17) and (53) approach
the same approximate equation, respectively, when both
2�h/H̃2 � 1 and 2�h � 1 and when both ��/H̃2 � 1
and �� � 1. The two conditions, 2�h � 1 and �� � 1,
are related to the integral constants.

2. Background evolutions of the late universe

In this subsection, the background evolutions of the late uni-
verse in the present model are briefly examined. For this
purpose, �h is considered to be a free parameter. Note that,
when Eq. (A17) for �h = 0 is calculated numerically, �h is
set to be 10−4.
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Observed data points

h

Fig. 2 Dependence of the luminosity distance dL on redshift z. The
solid lines represent dL for the present model. The open diamonds with
error bars are supernova data points taken from Refs. [3,4]. For the
supernova data points, H0 is set to 67.8 km/s/Mpc from the Planck
2015 results [5]

To observe the properties of the present model, the lumi-
nosity distance is examined. The luminosity distance [140]
is generally given by
(
H0

c

)
dL = (1 + z)

∫ 1+z

1

dy

F(y)
, (A18)

where the integrating variable y, the function F(y), and the
redshift z are given by

y = ã−1, F(y) = H̃ , z ≡ ã−1 − 1. (A19)

The relationship between ã and H̃ for each �h is obtained
from Eq. (A17). Using this relationship, the luminosity dis-
tance is calculated from Eqs. (A18) and (A19).

For typical results, the luminosity distances for �h = 0,
0.4, and 0.8 are plotted in Fig. 2. The luminosity distance for
the present model tends to be more consistent with supernova
data points with increasing �h . This result indicates that the
present model can describe an accelerated expansion of the
late universe. However, the influence of the increase in �h

on dL is likely to be smaller than the influence of the increase
in �� in the �CDM model on dL (the result for the �CDM
model is not shown). To compare the two models, a temporal
deceleration parameter is examined.

The temporal deceleration parameter q is defined by

q ≡ −
(

ä

aH2

)
, (A20)

where positive q represents deceleration and negative q rep-
resents acceleration. It should be noted that the q examined
here is not the nonextensive parameter discussed in previous
sections. Substituting Eq. (A3) into ä/a = Ḣ+H2, dividing
the resultant equation by −H2, and applying Eq. (A20), we
have

-1.0

-0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0
z

q

0  0.2  0.4  0.6  0.8

0
0.2
0.4
0.6
0.8

Ωh

ΩΛ

0
0.2
0.4
0.6
0.8

Ωh

Fig. 3 Dependence of the temporal deceleration parameter q on red-
shift z. The solid lines represent q for the present model, while the
symbols represent q for the �CDM model. Note that positive q repre-
sents deceleration and negative q represents acceleration

q = 1

2
− 3

2

f (H)

H2 . (A21)

In addition, substituting Eq. (A1) into Eq. (A21), and apply-
ing Eq. (A6), we obtain

q = 1

2
− 3

2

f (H)

H2 = 1

2
− 3

2

H2
(

1 − ln[1+(λK/H2)]
λK/H2

)
H2

= 1

2
− 3

2

(
1 − ln[1 + (λK/H2)]

λK/H2

)

= −1 + 3

2

(
ln[1 + (2�h/H̃2)]

2�h/H̃2

)
. (A22)

The temporal deceleration parameter q for the present model
can be calculated from Eq. (A22). Note that the relationship
between ã and H̃ is obtained from Eq. (A17).

For the �CDM model, substituting f (H) = �/3 into
Eq. (A21), and using �� = �/(3H2

0 ) and H̃ = H/H0, we
have

q = 1

2
− 3

2

��

H̃2
, (A23)

where H̃2 is given by H̃2 = (1 − ��)ã−3 + ��. In a flat
universe, the density parameter �m for matter is given by
�m = 1 − ��, neglecting the density parameter for the
radiation.

Figure 3 shows the dependence of the temporal decel-
eration parameter q on the redshift z. As expected, q for
�h = 0 and 0.2 is consistent with that for �� = 0 and
0.2, respectively. However, q for the present model gradu-
ally deviates from that for the �CDM model, with increasing
�h , especially for low redshift. In fact, even for �h = 0.2,
q gradually deviates from that for �� = 0.2 with decreas-
ing z, although the two results agree well for high redshift.
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Fig. 4 Dependence of the parameter 2�h/H̃2 on redshift z. Note that
2�h/H̃2 is equivalent to X ≡ λK/H2 shown in Fig. 1

As shown in Fig. 4, 2�h/H̃2 increases with decreasing z,
because H̃ decreases with decreasing z. That is, the deviation
from the �CDM model for low redshift (shown in Fig. 3) is
related to the increase in 2�h/H̃2. In addition, for �h = 0.6
and 0.8, q varies from positive to negative with decreasing z,
as shown in Fig. 3. Therefore, the present model can describe
a decelerated and accelerated expansion of the late universe.

In this appendix, the general solution for the present model
has been examined, assuming that the present model is a
particular case of �(t)CDM models. In addition, background
evolutions of the late universe in the present model have
been discussed. Consequently, the present model is found
to agree well with the standard �CDM model, when both
2�h/H̃2 and 2�h are small. For lower redshift, the present
model gradually deviates from the �CDM model, due to the
properties of the logarithmic driving term. Accordingly, the
present model examined here can be distinguished from the
�CDM model.
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