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Abstract — A new finite element analysis for the time-
periodic magnetic field calculation is described. An
AC magnetic field calculation involving saturation
characteristics requires many iterations and much
memory region. The combination of FEM and harmonic
balance method enables us to economically calculate

harmonic- magnetic , flux distributions at an AC
magnetization. The method does not need the
calculation concerned with time and the the

calculation algorithm is the same on the nonlinear DC
field FEM. The method is applied to the magnetic field
analysis of 8 reactor and an electromagnet.

Introduction

There have been difficulties in the numerical
calculation of time-periodic magnetic field
incorporating saturation characteristics, because the
treatment requires many iterations and much memory
region.[},2])

The harmonic balance method is of widest utility
for obtaining the approximate periodic solution of a
nonlinear differential equation.[3] Therefore, we
propose the combination of FEM and the harmonic
balance method and applied it tc ‘the harmonic magnetic
field distribution problem with magnetic saturation,
This method is called the Aewmonic ALalance [Linife
efement method (HBFEM).

Formulation of HBFEM

For simplicity, a magnetic field is assumed as
two-dimensional in the (x,y) plane and quasi-
stationary. Therefore, the vector potential A=(0,0,4A)
satisfies in the region of interest surrounded with
some boundary conditions,

8, BAy, 8  BAy__j 4 04 ,
ﬂx(”ax)+ay(”ay) ] 0 i (1)
where Vv and O are magnetic reluctivity and

conductivity.

formulation is made by use of the Galerkin
procedure and the weighting functions are the same as
the shape functions Ni(x,y). Its integral form is,

AN BAy, BN DA i}
[ g aotay (ayt Xy

II(Ja-U%%') Nidxdy (2)

We are only interested in the time-periodic
solution (harmonic problem) when alternating current
is applied. According to the harmonic balance method,
all variables, i.e. vector potentials, flux densities
and applied current, are approximated as harmonic
solutions. For simplicity, the time-periodic soclutions
are given as the sum of the fundamental component and
the third harmonic, that is,

Ai=As'sinwt+Arcicoswi+tAssisindwt+Ase’coswt
B==Bn-_;sinut+B,ucﬂsut+B::=Sin3ut+Bﬂ=cns3ut (3)
Bp=Bv|55iﬂUt+ BylcﬂﬂSHt'*‘By!:Siﬂ:;Mt'{' By!:CDSSh}t
Jo= Jrssinwl+ Jrecoswti+ Jassindwit Jaccos3wt

where w is the fundamental angular frequency.

The magnetizing characteristics of a core can ue
expressed as a power series. The B-H curve is
approximated as a third order power series, that is,

H=aB+pB? (4)

where hysteresis characteristic is neglected. The
reluctivity is written as,

v = a + 3B? (5)

where B=(B:2+B,?) '“?, We substitute Eqs.(3) and (5)
into {(2) and equate the coefficients of sin(nwt) and
cos(nwt)(n=1,3) on both sides. As a result, the matrix
for one element is expressed as,

1 “(bibttcici 3D (bibatcycz)D (h1h3+E1C3)i)
—— | (babytcze1 YD (babztczc2)D (babatczca)D [ {A)

44 | (bibitcaci YD (babztcacz)D (babatcacs)}D
2N N N7
+ 2881 N 2N N (A} - {K) (6)
N N 2N
where

{F‘\} = {P\isl Pu:‘ A!:I Pﬂni P‘LI:E )!"k\'li.':E AHE P\.El:?
P’Ll:a P\lcz aﬁtila Aing} '
{K} =ﬂf3{.]l: JIt: J!: J!r.- Jl: J'Il: JZH J.'in: (?)
Jia Jre Jas Jac }7
bi=yj-Vx, Ci=Xx-Xj, A » cross section, (xi,¥i) : node

The block matrices D(4%4). and N(4%*4) are given as
Fqs.A(1) and A(2) in Appendix (A), The coefficients of
the matrix D are determined by both parameters of B-H
curve and the flux densities of each harmonic.
Compared with the conventional FEM, it acts as a
reluctivity and is called the aefuclivily malrex. The
matrix N is a constant concerned with harmonic orders
and is called the Aawmonic malnix,

The matrix eqguation for the entire region s
obtained by the same procedure as the conventional Fbf
and is also solved by the same iteration procedure as
a nonlinear static field.

As magnetic saturation becomes stronger, it 1s
necessary to approximate characteristic by higher
order power series. The B-H curve 1is expressed as
a fifth order power series as,

H=aB4+p8B?+7B°® (8)
Then, the reluctivity is given as,.
v'=a + BB+ 7B (9)

The matrix for each element is the same as Eq.(0).
Only the block matrix D is changed and 1is given in
Appendix (B). The matrix N is the same in Appendix
(A).

The above method does not require the calculation
concerned with time and can solve the time-periodic
field distributions of AC machines with nonlinear
characteristics. But the system matrix is four times
bigger than the number of vertices when the
fundamental and third harmonic  components  are
considered.

H

Verification and Applications of the Method

Reactor

In order to verify HNHBFEM, the procedure is
applied to a reactor with a saturated core as shown in
Fig.1(a). The domain for calculation is subdivided as
shown in Fig.l(b). Eddy currents in the core are
neglected and the B-H curve of the core is given as a
third order vpower series in Fig.2., When  the
fundamental and third harmonic components of the
applied current density are given, each component of
flux density in the middle leg is obtained in Fig.3.
When the third harmonic of flux density attains the
minimum, the magnetic flux density is sinusoidal.
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| The waveforms of flux density in the middle leg
are drawn in Fig.4(a) and (b) when each of the applied
current and flux density is sinusoidal. In this
problem, it " is possible to calculate the flux
distribution by wusing the ordinary technique of
nonlinear static FEM as the current density is given
at a particular instant.[4] The points illustrated as
circles indicate the results., The agreement of the two

;esults verifies ‘the procedure of harmonic balance
H’I ] 1
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Fig.3 Magnetic flux density in the middle leg when the
fundamental and third harmonic currents are

applied.

Magnet with Shading Coil
The HBFEM is applied to the field calculation of

the electromagnet in Fig.5. The middle leg has an air-
g3p and shading c¢oils. In this case, the magnetizing
characteristics of an iron core are expressed as a
tifth order power harmonic. The parameters for

calculation are given as,

6 2
J, =1.0%10° a/m?, J, =J. =J. =0.0,
5= 110, o B =085 3R 3y Zaio,
o = 3.55%10 S/m, £ = 60 Hz.

The distributions of each component in Fig.6 are
drawn at a particular phase. The HBFEM directly gives
the component of each harmonic.
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Fig.4 Comparisons with results calculated by HBFEM and
nonlinear static FEM

- 180 =

Core /l\

L o .l ~ 4 e M o
30 l Gay R ﬂ 30
(1. 0)
= 1 3.2 I =
= “2§;Fr'£§ —
Shading coil
| [ﬂ”ﬂl: \/

Fig.3 Electromagnet with shading coils
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Fig.6 Flux distribution

Conclusions

A new FEM technique for time-periodic field
distribution with magnetic saturation characteristics
is proposed. The procedure of the calculation is the
same as the static nonlinear FEM and does not include
the calculation of the time component,
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Appendix A

The block matrices D and N are given as,

—H+H(Brﬂz¢32) HBE:;”E B(BEE'BI#)J’Z ﬂ(Bl:'BE#)f?
ot B(Bo#B2c/2) PB(BastBas)/2 B(BactBac)/2

D = .
ﬂ‘l‘ﬂ(BB'BE:fz) BBE:J’Z
i symneiry a+ 0 (BotBec/2)
A(l)
M= 0 ~1 0 07
1 O 0 0 A(2)
O 0 0 -3
. 0 0 +3 o0 _
The coefficients in the matrix D are expressed as a

function of Flux densities #nd described as,

BE =(Bi|!E+BIIEE*BI]!2*313¢2);2 t (Bvl!E+Byl¢2*Byﬂsz+B93tz)f2

B2a= Bxt1aBx1ctBxi1cBxaa-Bx1sBrze + Byl5BvI=+BpI:Byis'But=Bu3¢

Bzﬁ(ﬂ:tce'Bn:2)12*'3:1:3;3:*5:1:3;3:
+(By1c2-By1a2)/24By1sByastByreByac

BI;:- BtllBI]¢+BI|E313! + B-,IISBUEI:"'BFIchE: A(a)
BIII::' BtltBlﬂ:'BIlle!! 4+ Bychvlc*'BpI!Bpﬂl
Bss= B:asBzae + ByasByae
BE-.‘.= (BtacE"BIE:E)J‘{Z + (BQEEE-BPSSE)IZ
Appendix B
The reluctivity matrix D is expressed as,
D = Dx+Dxy+ Dy B(1)
where Dx, Dxy, and Dy are given as,
Tt B(Bra-Buze/2)t 7 (Bug” Bz /2) DBBe2:/24 7 Br2s" /2

Bxﬂ

= (31152*31l¢E+B13!z¥HIE:2)f2

B:Ea= B:1:Bxl=¢B:Icﬂlia-B:Ilelc
B:Eu= (B:IcE-B:l:z)f2+B:Iﬂﬂlﬁl*BxIcﬁtﬂc

Biaaz Ber1aBi3ctBereBrss g
Brac= Bc1cBi3e-Bx19Buas o)
B:ﬁs= B:BsB:BE
Broc= (B:!ung:E:E)fz
By = (Bpt:2+BuI:E+BFEIE+BF3:2)I2
Bp2== B?l:Bylc+Bu|=Byis'Bul:BHJ:
By2c= (By1c?-By192)/24By15By354By1cBy3e
Byas= By1sByactByreByas B(0)
Byl¢= Bylcﬂyi:'BulaﬂyE:
ByE:= Bpi:By!: :
Bysc= (Buacz'ﬂuasz)fz
Bya® = (2Bye®+By2s?4By2c2#Byas?4Byac? 4B, 82248, 5c2)/2
By25.= 23?5392!'By213v1n+BvE=BpI:'BulsByE=+Bvchv!:
BuEG': EBPHszc+Bv2=Bpl:+BpEnBylt*Byl:BvE:*BylﬂByﬂ:
Byl:‘= ZByHBylgfﬁyE:ByEE'ByE:Byﬂc+BHE:By$: . B(?)
Byln'= (Buicz'Bu2=2)f2+2595Byln*ByE:ByE=+ByE:Bp5¢
Byes'= ZBHEByE:+ByE:Byl=*BuE¢Byls
BuE¢.= EBvHBvEc'BUE:B?I:+ByE=Bvl¢
B!H. - (ZBIBE+BIEEE+B!EGE+BIIIE+BII¢E+BIEi?+BIE¢z);2
Brzs'= QBIHBIZS'BEZSBII¢+B!2¢BI‘5-B!IQBIE¢+BhItBlﬂl
Bx?c‘= 2BxlBrEc+BrE:ﬂ:Is+B:E¢B:In*B:l:B:u;+B:icB:u¢
Braa“= ZB:IB:4:+B:E:B:Zﬁ'B:E:B:Ec+B:2¢B:Es H(B)
B;1¢'= (B:Enz'B:E:E)f2+ZB:lBtlc+B:E:B:E:+sztBtE:
B:E=.= 28:53:55+B:25B:lc+B:2¢B:Il
Bige™= 2BxBB:E:‘BxEsB:l:+B:2¢B:I=
B:yﬂi - 2BIBBHB+BI?=Byél+B!2GBH2¢+Bll!BUI!+B!I¢B?1ﬂ
+ B:E:BuE=+B:E=By$¢
BHHE!'= 23:!3v25'B:E:BF¢E+B:E¢BpI:'Brl:ByEc*B:l:BvE:
4 23953125'BpE:Bxlu+By2¢B:I:‘BplaB:E#*BpI:Brﬁs
B:u3¢'= 23:!BvEc*B:E:Byl!+B:2¢BHI¢+B:I:Buﬂa*B:chuE:
+ 2393B:Ec*Bv!sB:la*BHE:Bxlc+BylsB:ﬁs*Byl:B:E;
B:gng'= QBIEByfu+BIE!BvE¢'B:E!Bvﬂc+BIE¢BvEI B(Q)
t 2ByoBxsstBy2sBxzo-By2sBusctBy2cBugs
B:yl:.= (BxEchzc'Bx?:ByE:)f2+2B:!Bylc*B:?:m?ﬁs+Btithﬁc
+ (BHE¢B:E:'By?:B:E:)fz*ZBv!B:Ic*ByE!B:H:+EuE:BnE:
B:yi:'= ZB:BByﬁs*BtESByl:+B:Echl:
+ 23?53155*3921314:+By2¢31ls
Bipec™= ZB:EByEc‘B:E:Bul:+B:2cBulc

ﬂ{Buh*B.u)f?*Y{Ezae"ﬂue')f?
ﬂ*ﬁ(ﬂ.l‘!auz:J’Z}*T(B:I'*Bu!':'fz) ﬂ(B.z.*Bu,}IE*r(E.ag'i'B.u').r"E

+ 2ByEB:Ec‘By!sB:l:+392:Bulc

H(B:J:‘B:h)fz*T(B-u.‘B-h'}IE n
B(B;E:*Blh‘- )le' r(BIi":."Bt T )1"2

D.=
symmetry ﬂ+,ﬂ(3:r3:u=!2)+T-(3.|'-B.u'1’2) BBeas/24 7 Bray/2
- ﬂ"'ﬂ(B:l*B:!:l"z}"T(Bll‘*ﬂr'ﬂcia‘r:) -
B(2)
i ?'(E-pl'*ﬂru!:.fz) 7 Biy2s" /2 ?'(Brv?:"ﬂtylt'}fz ?'(B:vls"B:u!l')fz 7
D'v= T(B:y!.i’arpl‘:.fz) r(Bly?l'{'E:yl:.)fz T{E.H3¢'+B,“.¢')f2
symmetry T‘(Blvl.'ﬂtyn:'IZ) ?'E:yﬁ:‘fz [}(3)
iy r(B:vI‘*E:yﬂc'fz) -
i ﬁ(Bpl'Bi?tr‘(Z)‘bT(Byl"BpE:‘IZ) ﬂEv?ﬂQ*rBuE:-fZ ﬂ(Bvit'Bvlc}fm'TtBﬂl‘t"Bvlc.)i’Q .ﬂ(B-.ru*Byz:)fZi*r(Eu.'*ﬂgz.')ﬂ ]
D.= A(ByatByzc/2)b 7 (Bya  48y2:°/2) ﬂ(BvE:*Buli)fz*T(Byzt'*ﬂpl;'){z ﬂ(Bpgg‘l‘B,u}IZi'r(B,,h"l-ﬂ,“')f'z
symmetry _ B (Bya-Bysc/224r (Bya"-Buee”/2) BBuas/2t 7 B,8:"72
I B(ByatBysc/2)4 7 (Bya"4B,6c772)
B(4)

The coefficients in Eqs.B(2), B(3) and B(4)
described as,

dare



