3-D distribution of flux density and an inference
about scalar potential in flux concentration model
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3-D DISTRIBUTION OF FLUX DENSITY AND AN INFERENCE ABOUT
SCALAR POTENTIAL IN A FLUX CONCENTRATION MODEL

T.YOSHIMOTO, S.YAMADA and K.BESSHO
ABSTRACT div B =0 (3)
This paper deals with the three dimensional analy- div D= p (4)
sis of a flux concentration model with two conducting B =R (5)
plates placed in parallel between a pair of a.c,-excit- _ _
ed coila., We have already presented an analysis for - Je =0Eg (6)
the model with a coarse mesh and volumeless plane B =rot A | (7)

coils, as well as newly developed iterative 3-D calcu~-
* lation method. [1] The model analyzed this time has
total nodes and elements of about twice as those of the
model previously calculated.

The flux density distribution is compared with
experimentel data. Distributions of eddy currents and
scalar potentials are also solved. Flux concentration
effect in the air-slit and flux reflection effect over
a8 conducting plate are seen more clearly. An Inference
about the role of scalar potentlal 1s obtained from

our calculation results.
INTRODUCTION

A review of the literature reveals that the FEM
{s the most useful toocl for analyzing magnetic fields.
Two dimensional or axi-symmetrical quasi-3D FEM calcu-
lations have been convenient and popular. However,
{t is also true that the real 3-D analysis 1s necessa-
ry, especially in treating eddy curvrent problems, A
flux concentration apparatus which bas been investi-
gated at Kanazawa University since 1981 [2], requires
a full three dimensional analysis to clarify the func-

tion of the apparatus.
Four component three dimensional FEM formulations,

glven Iin references {3} or [4], intrinsically lead to
large and sparse system matrices, due to four compo- -
nents per node in addition to the 3-D structure.

Our calculation methed 1s devised to avoid this diffi-
culty by dividing the total simultaneous equations into
four groups and using an iterative method, so that the
computer memory for the main system of equations can be
reduced to one sixteenth, This memory saving calcula-
tion method enables one to treat the models with much

Einer division.
As for the controversial theme of the role of the

scalar potential [5][6]{7], we made a conclusien on the

basls of the real calculated distribution of the scalar
potential in our model. This distribution is also made

possible to obtain by the ability of our calculation
method to treat large models.

FIELD EQUATIONS AND ITERATIVE ALGORITHM

" For a three dimensional, quasi-stationary, eddy

current diffusion problem, Maxwell's electromagnetic
field equations together with the definition of the

magnetic vector potential are stated as follows:

rot H =21 +Je (1)

rot Eg =~jwB (2)
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wherE.IjE and 3; are the impressed current and the
induced eddy current densities respectively.

Combining (2) with (7),

Ea =~jwA —grad ¢ (3)
where, ¢ in (B) 1s so~called scalar potential, which
plays an important role for dynamic problems. By
coupling (8) to (6), the eddy current density J, is

Jo =-jwoA -ograd ¢ (9)

Substituting (9} in (1), one fundamental equation for
field analysis follows, assuming constant y in the
X, ¥, and z directions.

Tlf V(UE)-%?IK--UUNE +V¢) +J (10)
The fact that eddy currents do not flow out of conduct-
ing materials yields following equation.

div {o(juwA +grad ¢)} =0 (11)

The above two equations (1Q) *and (l11) are the fileld
analysis equations necessary to determine the vector
potentlal and the scalar potential distributions for
eddy curvent diffusion problems.

Now we introduce, from the standpoint of the
computer memory, one lterative method to avoid treating

the whole system of equations. From (l11), the vector

potential A is replaced as
TA=-V2¢/juw

Using (12), (10) can be decomposed into three axis-
component equations as shown in (13)-(15). Adding
(11}, the following four equations are obtained:

- VAt Juohyg= Jgx - (00)x 4 T 5

1 2 : - |
" T v Ayi*JMUﬂy Jsy (u?¢)y4-jmu 3y
1

= VA + juwohA = T - (0V¢),4 —ie 2 (g2
T zT ] 2™ Jgz = (0V¢), T wn 35 ¢V ¢)(15)

(12)

l,;_l?
( ¢)(13)

g2
( ¢)(lh)

V-(Ujm(Axux+-Ayuy+-Azuz)1-ﬂ?¢}= 0 (16)
The global system matrix obtained by discretiza-
tion of (13)-(16) will be generally not only large due
to the four components, but also sparse due to the
introduction of the scalar potential. The structure of
the global system matrix is shown in Fig.1{a). The
bandwidth is 3N4M (equal nearly to 4N), if the total
number of nodes and the bandwidth are assumed to be
N and M, respectively, per each component of A. To
minimize the band matrix, when we rearrange a column
vector of varlables from

A A} ceo A b .
[ x1 Mx2 Axn}hyl AyZ Ayn;nzl Ay lIII]"zl-*l}lﬂ'i bt ]
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into the new form

_
2 o]

the bandwidth reduces to 4M, so that the number of

A. | .
[xl y 1 hzl ¢1| X2 }?2 RzZ ¢Zi” .M.

elements of the band matrix reduces to 16 NM as shown
in Fig.1l(b). '

The method we propose in this paper is based on
the idea that the four groups of equations, (13)
through (16), could be regarded as respective sub-
systems of equatlons reparding A, , A , A and ¢ , as
sliown in Fig.l({(c}. Though {teration prnceas ls needed

among the four groups, the bandwidth for each system

matrix will be M and the number of elements for each
band matrix will be NM. This memory saving of 1/16 1is
‘very effective in the circumstance that the general
time sharing system of the large-sized computer pro-

vides a certain limited region te an individual user.

In addition, it also enables us to use the direct
calculation method such as Gauss elimination.

The calculation algoritlm is 1 In the first ite-
ration, by glving an arbitracy initial value to OV,
Ay Ay Ay in (13)-(15) are solved aird those values are
put intn (16) for obtaining next values of oV, The
new values are used agaln to calculate (13)~(15) 1in the
second iteration. 1n this way final converged values
of Ay, A, A, and $ can be obtained. Under-relaxation
methnd i; used for correction of ¢ .

FLUX CONCENTRATION MODEL

A [lux concentration apparatus utilizing eddy
currénts 1 now under investigatlion at Kanazawa Univer-
aity for the purpose of producing a state of high flux
density. 1ts fundamental model shown in Fig.2 is
analyzed. The model counfiguration 1s shown in Fig.3.
Two conducting plates are placed in parallel with a
small slit between them. Eddy currents induced in the

two conducting plates by a.c.-excitation strengthen the
flux in the air-slit. The two conducting plates are

assumed to be non-magnetic, Using 3-D symmetry, ouc
eighth of the whole reglon is discretized by usiug
first-order triangular prisms, whose shape functicns
are in the reference [B]. Neumann condition is_impnsvd
on the outer boundary surface with zerxro vector poten-
tial along 2z-axis.

As for the boundary condition of the scalar poten-
tial, zero values are set along the line E-F where eddy
currents flow perpendicularly to, for the purpose of
conforming the calculated eddy currents with the real
Flow of eddy currents. TFrequency of the impressed

current is 60 Hz, the conductivity of the copper plate
B.62x107 S/m, the width of the slit 10 mm, a?d the
ampere turn of the excitation coil 1.2 AT/mm”.
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Fig.2 Basic Model
of Flux Concentration Apparatus

P U LB

( _._____.._.T__.__ e e
M Jll' 0 U LLU. Ay Tex
I | ) li .
N|-- N et -~— ——
4N 0 ”ﬁ. 0 .LL% Ay sy
2H it —‘—-é — ! p—t — — —
0 : 0 | | Ay Jsz
IN - NI - o
™
=) 5 0
_____ ) PN NDs L] L
(2a) Global System Matrix
4N
f:m«l-\\_' T TTTT—— L o
Ne———— SO ] [ Jsi
< N AT st
< \‘\ Afaj | 1s2
N N AP3  Js3
N N . .
TN h — |
AN ‘ .
AN
\“w
0 AN - )
N .
APn Jen
'{GN e i iem i me o aee \2 e e el — P | o . ks _....E._._.

(b) System Matrix with Optimum Band Width
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{c) System Matrix of New Block
Tteration Method
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Fig.l Matrix Structure
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Fig.3 Model Configuration

Calculated distributions of flux density for the
applied current of 60 Hz are shown in Fig.4. The flux
distribution along the air-slit is shown in the figure
(a) for ¥Y-2 plane, while the flux distribution across
the plate is shown in the fipure (b) for X-Z plane.
These figures demonstrate that the flux is concentrated
in the air-slit and reflected on the plate surface.
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ROLE OF SCALAR POTENTIAL

Fig.5 shows the real part distribution of the
scalar potentials calculated on the top surface of the
" right hand copper plate. The iine E-F shows the trans-
verse line in the center, while the line A-E shows the
gide adjacent to the slit. Scalar potentials along
the line A-E appear larger than those along the line
B-F. :
" fTo study the role of the scalar potential, the
expression of the eddy current density 1ls restated as

j;= -jwoA ~ograd ¢

The first term indicates the component by the vector
potential,; while the second term is the component by
the gradient of the scalar potential. 1f we don't

take ¢ into account, the caleulation results show that
eddy currents flow in opposite direction to the route
of the impressed curtents. Because the direction of
the vector pntentialﬂﬁij.decided mainly by the impress-
ed currents. The above fact means there exist eddy
currents perpendicular to the boundary A-E adjacent to
the air-slit in our model, Such flow of eddy currents

is physically impossible. 1In the next place, when we
consider the scalar potential, the results show that
the second component 'of the eddy current cancells the
flow perpendicular to the boundary A-E, so that eddy
currents turn to circulate in the conductor. -
The inference from the above calculated results of our
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model, shows that the scalar potential must be taken
into consideration when we treat a model including
conductors with any discontinuity or any gaps in the
stream-lines similar to the flow of the impressed
currents. In such a model the scalar potential works
to compensste the incomplete expression of the eddy
current density by the vector pntentialii'unly.

CONCLUSION

A fundamental model of our flux concentration

apparatus is analyzed by applying our newly developed
jterative method. The intensification of the magnetic

flux in the air-slit and its reflection on a conductor
plate are sought and confirmed visually. Comparison
of the flux density with the measured values shows
close resemblance. '

Ag for the role of the scalar potential, we have
concluded from the real analysis of our model that
the scalar potential is necessary when we treat such a
model including conductors with any discontinuity or
any gaps in the stream-lines similar to the flow of the

impressed currents.
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