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Abstract 

To estimate travel times through road networks, in this study, we assume a stochastic 
demand and formulate a stochastic network equilibrium model whose travel times, 
flows, and demands are stochastic. This model enables us to examine network reliability 
under stochastic circumstances and to evaluate the effect of providing traffic 
information on travel times. For traffic information, we focus on travel time information 
and propose methods to evaluate the effect of providing that information. To examine 
the feasibility and validity of the proposed model and methods, we apply them to a 
simple network and the real road network of Kanazawa, Japan. The results indicate that 
providing ambulance drivers in Kanazawa with travel time information leads to an 
average reduction in travel time of approximately three minutes. 
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1 Introduction 

Numerous studies have been undertaken to model the benefits of traffic information. To 
assess the effect of providing traffic information through systems such as intelligent 
transportation systems (ITS) or advanced traveler information systems (ATIS), it is vital 
to evaluate the uncertainty of traffic networks and to analyze their reliability. This is 
because traffic information is only meaningful when the traffic conditions are uncertain 
or risky. If drivers have a complete knowledge of traffic conditions and can predict 
exact travel times, there is no benefit from ITS, ATIS, or traffic information. Thus, to 
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determine the effect of traffic information, traffic uncertainty should be quantitatively 
analyzed. A network equilibrium model is a theoretical approach to determining traffic 
uncertainty that allows the probability distributions of travel times or traffic flows to be 
estimated. 

To date, many studies have been conducted to model the effect of a traffic 
information provision in the network equilibrium framework (e.g. Arnott et al., 1991; 
Yang, 1998; Jha et al., 1998; Yang & Meng, 2001; Lo & Szeto, 2002; Yin & Yang, 
2003; Yang & Huang, 2004; de Palma & Picard, 2006; Huang & Li, 2007; Huang et al., 
2008 & 2011; Wu et al., 2010; de Palma et al., 2012). User equilibrium (UE), stochastic 
user equilibrium (SUE), and system optimum (SO) are used in most of these studies. 
The total travel cost is minimized at the state of SO, but SO is not necessarily achieved, 
even if the exact traffic information is provided. This is because, in real life, drivers 
typically choose the routes voluntarily. UE is a benchmark when traffic information is 
provided to drivers with voluntary route choice.  

SUE is one of the most important forms of network equilibria. With SUE, the 
(route) utility in the route choice contains an error term, but the interpretation of the 
error term is debated. In most SUE cases, the error term of random utility route choice 
is given exogenously, and it does not seem to reflect the probability distribution of 
travel time, which is determined endogenously through network equilibrium. Therefore, 
the error term in SUE should be interpreted as a “perceptual” error, rather than a travel 
time distribution (e.g. Hazelton, 1998).  

When users with little travel experience are dominant in the network, SUE (with 
given error terms) could be applicable to model the uncertainty of the traffic network. 
This is because the perceptions of naïve users do not necessarily reflect actual traffic 
conditions and may form unilaterally. In this study, we discuss the case with users who 
are familiar with traffic conditions, e.g. commuters. In such a case, the conventional 
SUE is not necessarily appropriate to model the effect of a traffic information provision, 
since the recognition of experienced users is close to the actual travel time distribution. 
It is natural to assume that the drivers know the travel time distribution in this case. 
Thus, a stochastic network equilibrium with stochastic flows is desirable to model the 
stochastic travel time variability with experienced drivers. 

Many groups have studied the network equilibrium with stochastic flows or travel 
times. For example, Mirchandani & Soroush (1987) assumed that free-flow travel time 
is random and proposed a network equilibrium model with probabilistic travel times. 
Arnott et al. (1991) and Chen et al. (2002) introduced random capacity into the network 
equilibrium. Lo and colleagues (Lo & Tung, 2003; Lo et al., 2006) formulated a 
probabilistic user equilibrium model based on capacity reliability. More recently, Nie 
(2011) proposed a percentile user equilibrium with random capacity. The network 
equilibrium models of Yin and colleagues (Yin & Ieda, 2001; Yin et al., 2004) and 
Watling (2006) assumed stochastic, normally distributed travel times, whereas Chen & 
Zhou (2010) assumed log-normally distributed travel times. Watling (2002) considered 
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stochastic route choice, and developed a second-order stochastic network equilibrium 
with stochastic flows.  

A main cause of network uncertainty is variation in travel demand; thus, stochastic 
demand should be incorporated into network equilibrium models. Shao et al. (2006) and 
Siu & Lo (2008) introduced stochastic demands into network equilibrium models and 
explicitly considered stochastic flows. Lam et al. (2008) and Sumalee et al. (2010) 
considered network flow under stochastic supply and demand, and examined the 
impacts of adverse weather conditions. Zhang et al. (2011), who similarly considered 
stochastic supply and demand, introduced the expected residual minimization into 
stochastic-flow network equilibrium. Nakayama & Watling (2014) proposed stochastic 
network equilibrium models with stochastic flows, in which stochastic travel time, 
network flow, and demand are treated consistently. However, they assumed that the 
stochastic travel demands are independent among origin-destination (OD) pairs. 

In this study, we improve upon the model of Nakayama & Watling (2014), 
alleviating the independent demand and other assumptions, and formulate a stochastic 
network equilibrium model under stochastic demands. Using the proposed stochastic 
network equilibrium model, we develop methods to evaluate the effect of providing 
travel time information. Then, we apply the model and methods to a simple network and 
the real road network of Kanazawa, Japan, and examine their applicability and validity.  

 
 

2. Assumptions for Drivers and Notation 

The notation used in this study is as follows: 
I = the number of OD pairs 
A = the total number of links 
Ji = the number of routes between OD pair i 
J = the total number of all routes (= J1 + J2 +⋅⋅⋅+ JI) 
K = the total number of latent drivers  
δa,ij  = link route incidence variable (δa,ij = 1 if link a is part of route j between OD 

pair i; 0 otherwise) 
Δ  = the link route incidence matrix whose components are δa,ij 

Γ  = the OD route incidence matrix whose components are binary variables of 
indicating which OD pair connects the route  

Nik = the random variable that determines whether driver k travels between OD pair i 
(Nik = 1 if driver k takes OD pair i; 0 otherwise) 

Qi = the random variable of travel demand between OD pair i 
Q = the random vector of travel demands = (Q0, Q1, Q2,…, QI)T, (Q0 = the number of 

drivers who make no trip) 
ql = the actual demand vector on day l 
μi = the mean of demand between OD pair i  
μ  = the mean vector of travel demands 
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σi
2 = the variance of demand between OD pair i 

σii′ = the covariance of Qi and Qi′  
Σ  = the variance-covariance matrix of travel demands 
Xa = the random variable of flow on link a 
X = the random vector of all link flows = (X1, X2,…, XA)T 

fXa(·) = the probability density function of flow on link a 
Yij = the random variable of flow on route j between OD pair i 
Y = the random vector of all route flows = (Y11, Y12,…, YIJI)

T 
ma = the mean flow on link a 

2
as  = the variance of flow on link a 

sa,a′ = the covariance of flows on links a and a′ 
mij = the mean flow on route j between OD pair i 

2
ijs  = the variance of flow on route j between OD pair i 

sij,i′j′ = the covariance of flows on route j between OD pair i and route j′ between OD 
pair i′ 

m = the mean vector of route flows 
S = the variance-covariance matrix of route flows 
ta(⋅)  = the (deterministic or standard) travel time function on link a 
t(⋅) = the vector function for travel times = (t1(·), t2(·),…, tA(·))T 

tij = the travel time on route j between OD pair i 
ijt  = the mean travel time on route j between OD pair i 

Ta = the random variable of travel time on link a  
Tij = the random variable of travel time on route j between OD pair i  
tijl = the (realized) travel time on route j between OD pair i for day l 
τa  = the free-flow travel time on link a 
γa = the capacity on link a 
α, β = travel time function parameters 
cij = efficient travel time on route j between OD pair i 
c(·) = the vector function for efficient travel times = (c11(·), c12(·),…, cIJI(·))

T 
ωij = standard deviation (SD) of travel time on route j between OD pair i 
ς  = the vector of variables on the minimum mean route travel times 
rij = the route choice proportion of uninformed drivers on route j between OD pair i. 
r = the vector of route choice proportions of uninformed drivers = (r11, r12,…, rIJI)

T 
Pij = the random variable of the route choice proportion of informed drivers on route 

j between OD pair i  
P = the random vector of route choice proportions of informed drivers = (P11, P12,…, 

PIJI)
T 

pij = the realized value of Pij 

pl = the vector of route choice proportions of informed drivers on day l 
π = the proportion of informed drivers for all drivers 
η  = the common risk attitude parameter 

E[X] = the mean of random variable of X 
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Var[X] = the variance of random variable of X 
Cov[X,Y] = the covariance of the two random variables of X and Y 
Pr[·] = the probability calculation operator 
[m, S] = the normal distribution whose mean and variance are m and S 
〈x, y〉 = the inner product of x and y 
diag(x) = the diagonal matrix whose components are x 
min[⋅] = the operator that returns the minimum 
ln(x) = (ln x11, ln x12,…, ln xIJI)

T 
0 = the null matrix or vector 
I = the unit vector 
T = the transition for vectors or matrices. 
 = the imaginary unit 

JR+  = non-negative orthant of the J-dimensional space 
For this model, we make the following assumptions: 

A1. Drivers, including latent drivers (see Section 3.1), are rational, homogenous, and 
mutually independent. 

A2. Each latent driver randomly determines whether to make a trip or randomly 
changes his destination due to exogenous factors.  

A3. Route choice is made under the stationary condition of stochastic network 
equilibrium. 

A4. The route choice proportion is given deterministically by the random utility 
discrete choice model. 

In this study, the travel demands are stochastic; therefore, flows and travel times are 
random. However, due to Assumption A4, route choice remains deterministic in this 
study. The random utility route choice model gives the “proportion” of choosing a given 
route rather than the probability. The error term in the random utility model is regarded 
as an unobserved factor and is deterministically distributed. As discussed below, the 
route choice proportions are determined through the network equilibrium mechanism. 
Although route choice is deterministic, the decision to make a trip is random, according 
to Assumption A2. Therefore, traffic flows are random.  

Here, we focus on travel time information as traffic information. Two types of 
drivers are assumed: informed and uninformed drivers. Uninformed drivers have no 
traffic information and, therefore, cannot predict a priori the travel time for the route 
they have chosen. However, the drivers are assumed to be familiar with the daily traffic 
conditions, and this leads to a fifth assumption. 

A5. Uninformed drivers know “past” travel times from which they form probability 
distributions of route travel times. 

In this study, the stationary state is assumed, and route choice is made under the 
stationary state, as is mentioned in Assumption A3. The impact of the most recent travel 
time experiences may be greater in a non-stationary state. However, each travel time 
experience should be treated equally, regardless of whether it is new or old, in the 



6 
 

stationary state. This is because each travel time is realized from the same (or 
stationary) travel time distribution. 

Consistent with Assumption A5, drivers take into consideration the probability 
distribution of route travel times for route choice. All drivers are risk averse and, when 
deciding which route to take, they make allowance for a safety margin to avoid arriving 
late at their destination. There are several methods to quantify uncertainty (or 
variability) in travel time. Here, we adopt the efficient travel time proposed by Hall 
(1983). The efficient travel time comprises a mean travel time and safety margin. For 
simplicity, we denote the efficient travel time cij as ijijt ωη+ . Throughout this study, the 
link travel time is random, and is a function of random link flow. Therefore,

])([E 1 ,∑ == A
a aaijaij Xtt δ  and the efficient travel time is flow-dependent. An effective 

method to calculate the efficient travel time is discussed in Section 4. We also used a 
sixth assumption as follows:  

A6. Each uninformed driver chooses a route deterministically based on efficient 
travel times. 

Conversely, informed drivers possess traffic information provided by the road 
manager. Unless otherwise noted, traffic information is assumed to be significantly 
accurate. If the travel time information is inaccurate, we apply the same method to 
choose a route, as described above for uninformed drivers. Uninformed drivers 
determine a route travel time distribution solely based on their past travel times, 
whereas informed drivers with inaccurate travel time information do so based on 
inaccurate travel time information and past travel times. Furthermore, informed drivers 
with inaccurate travel time information have to incorporate a safety margin because they 
do not know a priori the exact travel time for their trip, and their travel cost should be 
the efficient travel time, just as for uninformed drivers. Therefore, informed drivers with 
inaccurate travel times can be modeled in the same manner as uninformed drivers. In 
this study, we focus on the case in which the travel time information is accurate. 
However, the quality of information is another research subject that should be 
investigated, e.g. Ben-Elia (2013). Since informed drivers with accurate a priori travel 
time information do not need a safety margin, we are led to the following seventh 
assumption: 

A7. Informed drivers choose routes solely based on travel times provided by the road 
network manager.  

In other words, the variable for the informed drivers’ route choice model is the route 
travel time provided by the road manager. 
 

 
3. Demand and Route Flow Distributions 

3.1 Stochastic demand distributions 
We generalize the concept by allowing a random change of the OD pair, and introduce a 
hypothetical OD pair. The notation N0k = 1, means that driver k makes no trip. It is 
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assumed for simplicity that Nk = (N0k, N1k,…, NIk)T (k = 1, 2,…, K) is exogenously given 
in this study, because ∑ == K

k k1NQ , the demand vector, Q, is also exogenous. According to 
Assumption A1, Nk is independent and identically distributed among drivers. Note that 
N0k, N1k,…, NIk are not necessarily independent within the same driver, and the demands 
(Q0, Q1,…, QI) may be correlated.  

Consider the behavior of a single (latent) driver. A simple behavior is that the driver 
changes the OD pair (or destination) at random, with each OD pair having a fixed 
probability of being chosen. The sum of these behaviors leads to multinomially 
distributed OD demands. This is just a simple example; in reality however, it is more 
complicated, so we consider a more general case. Instead of assuming a specified 
behavior, we define the mean vector and variance-covariance matrix of Nik as follows: 
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Clearly, Eqs. (1) and (2) include those of multinomially distributed and more 
complicated cases.  

As per Assumption A1, each latent driver is independent, so ∑= =
K
k k1μμ  and

∑= =
K
k k1ΣΣ .  

The central limit theorem for independent multivariate random variables can be 
applied to Q. Because Nik is binary, Pr[|N0k| ≤ 1, |N1k| ≤ 1,…] = 1, and the random vector 
Nk = (N0k, N1k,…)T is uniformly bounded. Nakayama & Watling (2014) examine the 
central limit theorem applied to multivariate random route flows. The same method can 
be applied to these random OD demands.  

For convenience, we introduce the variable Wk, which represents the weighted sum 
of Nik. Let Wk = κT Nk, where κ is the weight vector and κ = (κ0,κ1…κI)T. Using Wk, the 
vector Nk can be treated as a scalar, which means that the standard central limit theorem 
is applicable.  

First, we show that the sum of Wk  converges to a (univariate) normal distribution. 
Next, we show that this sum is identical to the asymptotically and normally distributed 
Q. Because Nk is uniformly bounded, Wk is also uniformly bounded when κ  is in the 
finite sphere. Also, E[Wk] = E[κT Nk] = κT

kμ  and Var[Wk] = Var[κT Nk] = κT
kΣ κ. 

Clearly, Var[Σ K
k 1= Wk]→∞ as K→∞ (κ ≠ 0) because Var[Wk] > 0 .  If the standardized 

random variables U0,  U1,…, whose mean and variance are 0 and 1, respectively, are 
independent and uniformly bounded, then )1( K Σ K

k 0= Uk→[0, 1] as K→∞ (Loève, 
1977,  p. 289). As K→∞, 
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because ∑= =
K
k k1μμ and ∑= =

K
k k1ΣΣ . Therefore, Σ K

k 1= Wk→ ],[ TT
iiiii κΣκμκ  (Stuart & 

Ord, 1994, p. 512). We now consider the convergence of random vectors of demand. To 
denote the convergence of random vectors, μNQ −= ∑ =

K
k kK 1  is used instead of Q. In this 

case,  
],[1 Σκκ0μκQκ TTK

k k
T W ⎯→⎯−∑= =ν .  (4) 

According to the Cramér–Wold device (Billingsley, 1995,  p. 380), a necessary and 
sufficient condition for QK→V is Σ K

k 1= Σ I
i 0= κiQik→Σ I

i 0= κiVi for each κ  in a finite 
(I +1)-dimensional sphere, where V = (V1, V2,…). If V = ],[ Σ0 , then Σ I

i 0= κiVi = 
],[ Σκκ0 T  (Stuart & Ord, 1994, p. 512). As Eq. (4) indicates, Σ I

i 0= κiVi =
],[ Σκκ0Qκ TT →ν . We confirm that Qν→V because Σ K

k 1= Σ
I
i 0= κiQik→Σ I

i 0= κiUi ~
],[ Σκκ0 T . Therefore, as K→∞,  

],[ ΣμQ ⎯→⎯ . (5) 
Thus, when demand is sufficiently large, the distribution of travel demand 
approximately follows the multivariate normal distribution.  
 
3.2 Route flow distribution 
As Assumption A4 states, the route choice proportion is given deterministically in the 
random utility discrete choice model. In addition, the route choice differs for informed 
and uninformed drivers.  

The chosen OD pair (or destination), including no travel, is determined randomly 
and exogenously, and the travel demand is normally distributed, as shown in Section 3.1. 
When all drivers are uninformed, the random flow on route j between OD pair i is Σ K

k 1=

rijNik  = rij Qi (i = 1, 2,…, I ) due to Assumption A4. Route choice is not made for the 
drivers who do not travel, and Σ K

k 1= N0k  = Q0. Although some latent drivers make no 
trips, route/link flows are illustrated from the revealed demands (Q1, Q2,…, QI) in the 
remainder of this section, because Q0 does not contribute to the revealed route/link 
flows.  

The mean of rij Qi is rijμi and the variance is rijσi
2 (i = 1, 2,…, I ), because the 

driver’s behavior is independent. In this case, Yij = rij Qi ~ ],[ 2
iijiij rr σμ  (i = 1, 2,…, I ), 

since Qi is asymptotically normally distributed and rij  is deterministic, as stated above. 
Note that Q0 ~ ],[ 2

00 σμ . 
An example of a simple case is as follows. The network has two OD pairs and each 

OD pair has two routes. Set r11 = 0.4, r12 = 0.6, r21 = 0.3, r22 = 0.7, and K =100, as 
shown in Fig. 1. Thus, r11 + r12 = 1 and r21 + r22 = 1. The route choice of each latent 
driver is deterministic as Assumption A4 mentions, even if they randomly determine 
whether to make a trip. The driver does not have an incentive to switch the route 
randomly and then continue to take that route. Thus, each latent driver determines the 
fixed route when making a trip. Furthermore, the route choice proportions, r11 (= 0.12), 
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r12 (= 0.28), r21 (= 0.18) and r22 (= 0.42), are given endogenously through the 
equilibrium mechanism, and are illustrated in Fig. 1. The drivers in region II of Fig. 1 
choose route 1 unexceptionally if they travel between OD pair 1, although they may not 
travel randomly. They always take route 2 when traveling between OD pair 2. Similarly, 
the drivers in region III may continually select route 2 between OD pair 1 and route 1 
between OD pair 2. Thus, each latent driver is assigned to one of four regions: I, II, III, 
and IV, and these assignment shares are r11r21, r11r22, r12r21, and r12r22, respectively. 
Note that this assignment is endogenously determined through the equilibrium 
mechanism. The flow Y11 on route 1 between OD pair 1 is the number of drivers who 
make trips in regions I and II, and Y12 is the flow for regions III and IV. Each driver 
makes a trip independently, exogenously, and randomly. Therefore, Y11 and Y12 are 
independent when the route choice proportions are given, and, similarly, the route flows 
between the same OD pair are mutually independent. However, a route flow is not 
necessarily independent of the route flow between the different OD pairs. The drivers in 
region I randomly select their OD pair. Therefore, one day they may travel between OD 
pair 1 and, on another day, travel between OD pair 2, but they take route 1 for both OD 
pairs. Thus, the flow on route 1 between OD pair 1 is not independent of the flow on 
route 1 between OD pair 2, because N1k, N2k,…, NIk are generally correlated. The 
covariance of flows on route 1 between OD pair 1 and OD pair 2 is r11r21σ12 (= 0.12σ12 
in this case). 

The preceding paragraph discusses a simple 2-OD-4-route network. In general,
],[~ SmY  . In the case of all uninformed drivers, the mean vector and 

variance-covariance matrix of route flows are  

 
Fig. 1  The latent drivers’ assignments in the 2-OD-4-route network 
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The link flow distributions are also given using the above multinormally distributed 
route flows. Clearly, 

∑∑
= =

=
I

i

J

j
ijijaa

i

YX
1 1

,δ . (8) 

The link flow vector is X =ΔY. Because of the property of multivariate normal 
distributions (Stuart & Ord, 1994, p. 512), the link flow vector X follows a multivariate 
normal distribution 

],[~ TΔSΔmΔX  . (9) 
Informed drivers choose routes based on the provided travel times. Each day, travel 

time information is provided and on that day, informed drivers choose their routes 
deterministically. However, the actual travel times fluctuate daily because travel 
demand is random, so their route choice proportions also fluctuate from day to day. 
Thus, route choice proportions of informed drivers are random day to day even if they 
are decided deterministically on each day. If all drivers are informed, Yij = Pij Qi  (i = 1, 
2,…, I ). Unlike the case for uninformed drivers, Pij Qi  is not necessarily normally 
distributed, as Pij  and Qi  are both random. Even so, it can approximately be normally 
distributed, due to the central limit theorem, when the demand is sufficiently large. 

With both informed and uninformed drivers, the random route flow is 
Yij = [(1−π)rij +πPij]Qi  (i = 1, 2,…, I ). We can treat the route choice proportion rij of 
uninformed drivers as a constant once it is determined. However, the route choice 
proportion Pij of informed drivers is random. Moreover, it is difficult to derive the 
probability distribution of Pij. In this study, we have to estimate Pij by simulation.  
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4. Mean and Variance-Covariance of Travel Times  

The case in which all drivers are uninformed is a benchmark when assessing the effect 
of providing information. We call this the “no-information case.” In the no-information 
case, route flows are normally distributed, as described in the previous section. 
However, it is difficult to derive a tractable probability distribution of route travel times, 
even if the route flows are normally distributed. In this study, we do not directly 
manipulate the route travel time distributions. Instead, we use the means and 
variance-covariance of route travel times.  

The mean travel time on link a is 

∫
∞

∞−
== dxxfxtXtT

aXaaaa )()()]([E][E . (10) 

The probability density function of the normal distribution is not analytically integrable, 
so we must use a numerical integral or another method with a high computational cost.  

We adopt a BPR-type travel time function for calculating travel time, 
ta(xa) =τa [1+α(xa/γa)β]. For simplicity, we express link travel times as τa + ξa xa

β, where 
ξa = ατa γa

–β. When β is an integer (typically 4 is used), the mean link travel time can be 
calculated using the characteristic function. Unless the computational cost is questioned, 
any other approach can be applied to model the travel cost or utility under uncertain 
conditions.  

The characteristic function ϕ(z) is defined as E[ezX] (Stuart & Ord,  1994; Papoulis,  
1965). As a property of the characteristic function, E[X β] = (−)βdβϕ(z)/dzβ|z=0 (Stuart & 
Ord, 1994,  Eq.  ( 3.18); Papoulis, 1965,  p. 157). The mean travel time over link a is  

0

)() (][E
=

−+=
z

a
aaa dz

zdT β

β
β φξτ ) , (11) 

where ϕa(z) is the characteristic function of Xa. The variance of the link travel time is 
Var[Ta] = E[Ta

2] – {E[Ta]}2, where E[Ta
2] is also calculated using characteristic 

functions. 
The variances and covariance of Xa and Xa′ are given by Eq. (9). Even if the number 

of routes is greater than two, the bivariate normal distribution of Xa and Xa′ can be given 
as a marginal distribution of X. Because they follow the bivariate normal distribution, 
the characteristic function ),(, aaaa zz ′′φ  of Xa and Xa′ is  
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The variance of the route travel time can be calculated using  
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The variance of travel time on route j between OD pair i is 

∑∑
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where Cov[Ta,Ta'] = Var[Ta] if a' = a. To obtain the variance or SD of route travel times, 
we have to calculate the covariance of link travel times because Cov[Ta,Ta′] = E[Ta Ta′] 
− E[Ta ]E[Ta′] = E[(τa + ξa Xa

β)(τa′+ ξa′Xa′
β)] = τa τa′ + τa′ξa E[Xa

β] + τa ξa′E[Xa′
β] + 

ξa ξa′E[Xa
βXa′

β] − E[Ta ]E[Ta′],  
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using Eqs. (11) and (13). Thus, the covariance Cov[Ta,Ta′] of travel times over links a 
and a′ can also be calculated using characteristic functions. 

 

5. Formulation 
5.1. Network equilibrium for the no-information case 
The link travel time is Ta = ta(Xa). As described in Section 2, the efficient travel time cij 
= ijijt ωη+ is used to choose a route in the no-information case. The means and SDs of 
travel times are calculated using the method proposed in the previous section, where the 
mean vector and variance-covariance matrix of route flows, m and S, are given. 
Because the demand distribution, ],[ Σμ , is given, m and S are both functions of r, as 
show in Eqs. (6) and (7). Thus, the efficient travel time function cij is a function of r in 
the no-information case. In the case with information, the efficient travel time function 
is a function of r and P that will be described later. 

As Assumption A4 states, the route choice proportion r is given by the random 
utility discrete choice model. Let hij(c) denote the random utility discrete choice 
function. This function gives the proportion at which route j between OD pair i is 
chosen. When the multinomial logit model is adopted, hij(c) = exp(−θcij) ⁄ Σ iJ

j 1=′

exp(−θcij′) .  In this case, θ  is an exogenous constant, which means the error terms 
follow an independent and identical Gumbel distribution that represents unobserved 
factors. As stated above, the vector of efficient route travel times, c, is flow-dependent, 
and is a vector function of Y. In the no-information case, Y = diag(Q) r, and the 
efficient travel time vector function is expressed by c[diag(Q) r]. Then, the stochastic 
network equilibrium model can be formulated as a fixed-point problem:  

{ }])(diag[ rQchr = . (16) 
where h(c) = (h11(c),…, hIJI(c))T. Equation (16) can be reformulated as the following 
complementary problem. 
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where 
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5.2. Network equilibrium for the information case 
As described above, uninformed drivers choose a route based on the efficient travel 
times of routes. The traffic state is assumed to be stationary and equilibrated, and the 
efficient travel times remain deterministic. Therefore, the route choice proportions for 
uninformed drivers are also deterministic.  

Informed drivers choose routes based on travel times provided by the road manager 
on each day. Because the actual route travel times fluctuate daily, their route choice 
proportions also fluctuate daily. Thus, the route choice proportions for informed drivers 
are random and are deterministic for uninformed drivers (over a time span of several 
days). Accordingly, the formulation of an equilibrium with informed drivers differs 
from that of the no-information case. 

Informed drivers possess a priori knowledge of the exact travel time, so they do not 
need to incorporate a safety margin. As Assumption A4 states, the route choice 
proportions are given deterministically on each day by the random utility discrete choice 
model. First, we consider the case in which all drivers are informed. In this case, with 
the route choice determined by the random utility model, the deterministic network 
equilibrium is reached when travel demand for the day is given. The network 
equilibrium on day l is formulated as follows: 

( )])(diag[ lll pqthp = . (19) 
As mentioned above, travel demand is random and fluctuates daily. The route choice 
proportions for informed drivers and route flows are also random, even if the 
deterministic network equilibrium with route choice determined by the random utility 
model is reached each day. Therefore, using the random variables, Eq. (19) can also be 
expressed as ( )])(diag[ PQthP = .   

The demand Q is multinormally distributed. Because it is difficult to analytically 
derive the distribution P of the random vector of route choice proportions, we are 
obliged to use a simulation to solve the problem of the stochastic network equilibrium 
with informed drivers. A simple simulation method is used to randomly generate travel 
demand and iteratively calculate the deterministic network assignment.  

The number of informed drivers between OD pair i is πQi. If informed and 
uninformed drivers coexist, the stochastic network equilibrium requires finding (r, P)T 
such that  

{ }[ ]( )
{ }[ ]( )⎩

⎨
⎧

+−=
+−=

PrQthP
PrQchr
π)π1()(diag
π)π1()(diag

, (20) 

because { }PrQY π)π1()(diag +−= in the information case. 
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5.3. Assessment of providing information  
In the no-information case, all drivers take the efficient travel time to reach their 
destination. In the information case, informed drivers simply depart at the desired 
arrival time minus the provided exact travel time and they consume the route travel time. 
Even in the information case, the uninformed drivers spend the efficient travel time. The 
travel time fluctuates daily, as stated before. In contrast, the efficient travel time is 
deterministic, even if the travel times oscillate. The mean time savings for the exact 
travel time information provision is  
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where w
ijr  and o

ijr  are the route choice proportions on route j between OD pair i in the 
information and no-information cases, w

ijc  and o
ijc  are the efficient travel times on 

route j between OD pair i in the information and no-information cases, respectively, and 
w

ijT  is the random travel time on route j between OD pair i in the information case. 
Note that the information provision does not necessarily give positive effect, as Huang 
et al. (2011) and others have discussed. 

The total travel time w
ij

I
i

J
j iji TPQi∑ ∑= =1 1  can be obtained by simulation as mentioned 

above. An approximate method of calculating ][E 1 1∑ ∑= =
I
i

J
j

w
ijiji

i TPQ  is also proposed 
briefly as follows. When the actual demands are given, the route choice proportions and 
travel times, in the case that drivers are all informed, are given by the standard SUE. 
Therefore, the total travel time is a function of demands, such that g(q) is the total travel 
time function in the case that all drivers are informed. The total travel time function is 
not generally explicit, so an approximate method is examined. The Taylor expansion 
around the mean demand μ  yields ( )μQqμQ μqq −∇+≈ =)()()( ggg  as a first-order 
approximate. Then, E[g(Q)] ≈ [ ]μQqμ μqq −∇+ = E)()( gg = )(μg  because [ ]Qμ E= . 
Thus, the first-order approximate mean total travel time is )(μg , that is, the total travel 
time of the standard SUE with mean demands.  

Equation (21) allows us to calculate the savings in travel cost. In some cases, 
satisfaction (Daganzo, 1979, p. 128) could be more appropriate to evaluate a 
transportation policy when the route choice is made according to the random utility 
discrete choice model. If the route choice is made as per the multinomial logit model, 
the satisfaction is modeled as a log sum. In this case, the benefit of providing the exact 
travel time information is  
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 (22) 
Next, the case that a minority of drivers are informed is discussed. We will examine 

the benefit of providing such information to ambulances in Kanazawa, Japan, in the 
next section. In this case, the number of uninformed drivers is much larger than that of 
the informed drivers, so the stochastic network equilibrium in the no-information case 
can be assumed as a whole traffic state, because the effect of a small number of 
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informed drivers to traffic is negligible. The ambulances must reach their destinations as 
soon as possible, so they should choose the route with the minimum travel time. 
Without travel time information, they choose the route with the minimum mean travel 
time, which is determined by the travel time distributions. They take the same route 
between the same OD pair every day even if the travel time on this route is random. 
Therefore, their mean travel time is ],...,2,1|min[ iij Jjt = . However, the route with the 
minimum mean travel time may differ from the route with the minimum actual travel 
time.  

The informed drivers are able to take the route with the actual minimum travel time 
on each trip. The series of their experienced route travel times are {min[tij1], min[tij2], 
min[tij3],...}. Thus, their travel time follows a type of extreme value distribution of 
random route travel times: ],...,2,1|min[ iij JjT = . In this case, the savings in travel time 
for informed drivers is  

( )],...,2,1|min[E],...,2,1|min[ iijiij JjTJjt =−= . (23) 

 
 

6. Example 
6.1 Simple network  
To illustrate the above proposed methods, we present a simple example of a network 
consisting of two OD pairs and three links. Such a network is one of the simplest 
networks with multiple OD pairs, links, and routes. Figure 2 shows the network, which 
has four routes. Route 1 between OD pair 1 consists of link 1 and link 2 and route 2 
between OD pair 1 is comprised of link 1 and link 3. The link route incidence matrix for 
this network is  
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The normally distributed OD demands are as follows.  

  
Fig. 2.  A simple network. 
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The multinomial logit model is adopted to determine discrete choices of routes. We set 
the diversion parameter θ in the logit model to 0.1 and the risk attitude parameter η to 
1.0. The route choice proportions for uninformed drivers are rij = exp[−( ijijt ω+ )] ⁄ Σ iJ

j 1=′

exp[−( jijit ′′ +ω )] . The standard (or deterministic) link travel time function is ta(xa) = 
τa[1 + (xa/γa)2], and capacities and free flow travel times of the three links in the 
network are given in Table 1.  
 
6.1.1 No-Information Case  
The mean and variance of link travel times were derived using the method in Section 4. 
In the no-information case of the example, the mean of the link travel time is expressed 
as 
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The variance is given by  
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aaaa ssm
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In this section, r1 and r2 are used instead of r11 and r21 for simpler expression. 
Therefore, the proportion of choosing route 2 between OD pair 1 is 1− r1, while

22211211 tttt −=− , c11− c12 ≠ c21− c22. Therefore, r1 ≠ r2. Then, according to Eqs. (6) 
and (7), the mean vector and variance-covariance matrix of route flows are 
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and 

Table 1.  Capacities and free-flow travel times of link travel-time functions. 
 

 

Free-flow travel time Capacity
Link 1 10 20

Link 2 10 20

Link 3 5 10
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The mean vector and variance-covariance matrix of link flows are given by 
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and 
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Substituting Eqs. (30) and (31) into Eqs. (26) and (27) yields the means and 
variances of link travel times, and the efficient travel times are obtained. The covariance 
of link travel times is also obtained.  

We obtain r1 = 0.504 and r2 = 0.512 by solving the stochastic network problem of 
Eq. (16). Table 2 shows the equilibrium link travel times for the example network in the 
no-information case. Links 1 and 2 share the same attributes. The (mean) travel time of 
link 1 is greater than that of link 2, and the SD and variance for link 1 are greater than 
those for link 2. The capacity of link 3 is half that of links 1 and 2, and the flow through 
link 3 fluctuates more than links 1 and 2. Thus, the SD and variance of link 3 are greater 
than those of links 1 and 2, although the mean travel time through link 3 is the smallest. 
We can also calculate the covariance between link travel times, route variances, and 

Table 2.  Equilibrium travel times in the simple network 
 

 

Link 1 Link 2 Link 3
Mean 16.23 14.23 13.01
S.D. 2.42 1.89 3.61
Variance 5.86 3.57 13.04

Link 1,2 Link 1, 3
1.03 1.98Covariance
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efficient travel times, using Eqs. (11), (14) and (15), respectively. This allows us to 
evaluate the network uncertainty as the sum of safety margins.  

The case that all drivers are informed is also considered. As mentioned in Section 
5.3, the first-order approximate of mean total travel time is given by the (deterministic) 
total travel time of the standard SUE with mean demands. The mean total travel time is 
approximately 598.78 in the case that all drivers are informed. In contrast, the total 
efficient travel time is 696.60 in the no-information case. Therefore, the benefit of 
providing the travel time information to all drivers is a time savings of 97.82. The total 
of mean demands is 25.0, and 3.91 min. per driver is saved. 
 
6.1.2 Information Case 
In the previous sub-section, to evaluate the effect of the information provision, the 
no-information case is compared with the case where all drivers are informed. The 
information case where informed and uninformed drivers coexist is much more 
complicated. It is difficult to solve Eq. (20) analytically, and it is calculated by 
simulation. Using 1,000 sets of simulated demands, Eq. (20) is numerically solved.  

A simple network case, where the proportion of informed latent drivers for all latent 
drivers is 0.2 in each OD pair, π = 0.2, is examined in this sub-section. At the 
(stationary) equilibrium, r11 = 0.503 (=r1) and r21 = 0.505 (=r2) for the route choice 
proportions of uninformed drivers. While the proportion of the uninformed drivers that 
choose route 1 between OD pair 1 is fixed at 0.503, informed drivers could change the 
routes each time, even at the stationary equilibrium. The exact travel times are provided 
to the informed drivers, but they fluctuate because the demands are normally distributed. 
Therefore, the route choice proportions of informed drivers are stochastic, because they 
choose the routes based on the realized travel time information that oscillates every 
time.  

The mean travel time of informed drivers between OD pair 1 for 1,000 days is as 

follows: (1/1000)Σ1000
1=l (p11l t11l + p12l t12l) = 30.27. In contrast, the mean travel time of 

uninformed drivers between OD pair 1 is 30.32 = r11Σ
1000

1=l t11l/1000 + r12Σ
1000

1=l t12l/1000. 
The mean travel time of informed drivers between OD pair 2 is 13.57 and that of 
uninformed drivers is 13.63. Thus, the mean travel times of informed drivers are less 
than those of uninformed drivers. The total consumed time, which consists of the total 
travel time of informed drivers and the total efficient travel time of uninformed drivers, 
is 592.67 in this case. Compared to the no-information case in the previous sub-section, 
4.16 min. per driver is saved, on average, for providing information to 20% of drivers in 
the example network.  

 
 
6.2 Information Provision to Ambulances in Kanazawa  
Figure 3 shows the road network of central Kanazawa, Japan. The network consists of 
140 nodes and 467 links. There are four fire stations with ambulances: Ekinishi, 
Hirosaka, Chuo, and Naruwa. In Japan, emergency hospitals are classified into first, 
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second, and third ranks. First-order emergency hospitals provide medical services 
without surgical operations. Second-order hospitals accept patients requiring operations. 
Patients with more serious ailments are transferred to third-order emergency hospitals. 
There are two third-order emergency hospitals in the network. One third-order 
emergency hospital (Kanazawa University Hospital) is located in the Hirosaka district 
and the other (Ishikawa Prefecture Hospital) is in the Ekinishi district. Most patients 
with serious ailments, such as myocardial infarction or multiple traumas, are transported 
to one of the two third-order emergency hospitals.  

The mean travel demands are derived from a personal trip survey within the 
Kanazawa urban area that was conducted previously. It is difficult to obtain the 
variance-covariance matrix of travel demands. For simplicity, independent demands are 
assumed in this case. We observed several links on the network, and found that 2

as  = 42
am  represents the relationship between the mean and variance of link flows. Because of 

independent route flows, ijij ms 422 =  is consistent with 2
as  = 42 am , and ii μσ 422 =  is 

derived due to independent demands.  
In this section, the effect of providing exact travel time information to ambulances 

is discussed. No other vehicles are informed. Without information, the stochastic 
network equilibrium expressed by Eq. (16) is established. Unfortunately, we have no 
information on the risk attitude of drivers in Kanazawa, so we tentatively set the risk 
parameter η to 0, meaning the uninformed drivers choose routes based on mean route 
travel times. Estimation of the risk attitude parameter for the stochastic network 
equilibrium should be a topic of future investigation. Without the travel time 
information, ambulances and other drivers choose the minimum mean travel time 
routes.  

In this example, the multinomial logit model is adopted, but the parameter θ in the 

 
 

Fig. 3. Kanazawa road network. 
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logit model is assumed to be sufficiently large. This implies that the drivers have exact 
knowledge of travel time distributions without perceptual error. Then, the stochastic 
network equilibrium can be formulated as a link-based optimization problem. This 
reduces computational cost drastically, and we are freed from generating the set of 
routes, which includes the overlapping problem. The travel times without the 
information are obtained by solving the following problem: 
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0≥ijm , (35) 

where )( aa mt  is the mean travel time function, which is derived by the method 
described in Section 4. We can apply the standard Wardrop user equilibrium algorithms, 
such as the Frank–Wolfe method. 

If only ambulance drivers are provided with exact travel time information, the 
above stochastic network equilibrium is still established because the effect of 
ambulances on traffic is negligible. In this section, we focus on the third-order 
emergency patients, so the destination of ambulances is one of the two third-order 
emergency hospitals. The travel times fluctuate daily, but the ambulance drivers choose 
the route with the actual minimum travel time each time. The travel time from the fire 
station to the third-order emergency hospital via a patient’s location forms an 
extreme-value distribution of route travel times. In this section, the mean travel time of 
ambulances with travel time information is calculated by numerical simulation. 
Specifically, it is given by 

],...,2,1|min[
1000

1 1000

1
∑
=

=
l

iijl Jjt . (36) 

Thus, the minimum travel time for a given route is obtained by summing over 1000 
traffic time assignments.  

Results of the numerical calculation of Eq. (36) are summarized in Table 3. The 
table shows the mean decrease in ambulance transport time for patients at each node in 
the district. Approximately three minutes are saved by providing ambulance drivers 
with exact travel time information. The mean of each ambulance transport time is 14.11 
min. without the information, and the accurate travel time information provision results 
in a 21.0% reduction in ambulance transport time in Kanazawa. Furthermore, the 
variance in travel time is also reduced. Figure 4 gives the reduction in travel time for 
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travel time information leads to an average reduction in travel time of approximately 
three minutes.  

When applying these methods to real networks, we must estimate several 
parameters including a risk attitude parameter and the multivariate distribution of OD 
demands. Future work in this area should include developing a quantitative estimate of 
these parameters. The demand distributions are exogenous in this study, but could be 
given endogenously. In addition, simultaneous origin-destination and route choices 
should be considered in the future. The proposed model is static, but dynamic aspects 
may be required in some cases; therefore, dynamic stochastic network equilibrium 
models should be formulated in the future. The behavioral impacts of traffic information 
are actually more complex than we assumed, e.g. Tseng et al. (2013), Kusakabe & 
Nakano (2015). These are also future works. 
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