Pointwise convergence of Cesàro and Riesz means on certain function spaces

メタデータ	言語：eng
	出版者：
	公開日：2017－10－02
	キーワード（Ja）：
	キーワード（En）：
	作成者： メールアドレス： 所属：
hRL	http：／／hdl．handle．net／2297／43465

Pointwise convergence of Cesàro and Riesz means on certain function spaces

Shuichi Sato

Communicated by V. Totik

Abstract

We consider a function space $\mathscr{Q} \mathscr{A}$ on the unit sphere of \mathbb{R}^{3}, which contains $L \log L \log \log \log L$, and prove the spherical harmonics expansions of functions in $\mathscr{Q} \mathscr{A}$ are summable a.e. with respect to the Cesàro means of the critical order $1 / 2$. We also prove that a similar result holds for the BochnerRiesz means of multiple Fourier series of periodic functions on $\mathbb{R}^{d}, d \geq 2$.

1. Introduction

Let

$$
Q_{d}=\left\{x \in \mathbb{R}^{d}:-1 / 2<x_{i} \leq 1 / 2, i=1,2, \ldots, d\right\}, \quad x=\left(x_{1}, \ldots, x_{d}\right),
$$

be the fundamental cube in the d-dimensional Euclidean space \mathbb{R}^{d}. For $f \in L^{1}\left(Q_{d}\right)$ we consider the Fourier series

$$
f(x) \sim \sum a_{n} e^{2 \pi i\langle n, x\rangle}, \quad n=\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}
$$

where $\langle n, x\rangle=n_{1} x_{1}+\cdots+n_{d} x_{d}$ and

$$
a_{n}=\int_{Q_{d}} f(x) e^{-2 \pi i\langle n, x\rangle} d x, \quad d x=d x_{1} \ldots d x_{d}
$$

is the Fourier coefficient. The Bochner-Riesz means of order δ of the series are defined by

$$
T_{R}^{\delta}(f)(x)=\sum_{|n|<R}\left(1-\frac{|n|^{2}}{R^{2}}\right)^{\delta} a_{n} e^{2 \pi i\langle n, x\rangle}
$$

Received May 21, 2012, and in revised form September 17, 2012.
AMS Subject Classifications: 42C10, 42B08.
Key words and phrases: spherical harmonics expansion, Cesàro means, Bochner-Riesz means.
where $|n|=\left(n_{1}^{2}+\cdots+n_{d}^{2}\right)^{1 / 2}$.
According to [2], we define a space $\mathscr{Q} \mathscr{A}\left(Q_{d}\right)$ to be the collection of measurable functions f for which we can find a sequence $\left\{f_{j}\right\}$ of non-negative measurable functions such that

$$
\begin{equation*}
|f| \leq \sum_{j=1}^{\infty} f_{j}, \quad N\left(\left\{f_{j}\right\}\right):=\sum_{j=1}^{\infty}(1+\log j)\left\|f_{j}\right\|_{1} \log \left(\frac{e\left\|f_{j}\right\|_{\infty}}{\left\|f_{j}\right\|_{1}}\right)<\infty \tag{1.1}
\end{equation*}
$$

let $\|f\|_{\mathscr{Q} \mathscr{A}}=\inf N\left(\left\{f_{j}\right\}\right)$, where the infimum is taken over all such $\left\{f_{j}\right\}$. Then, the space $\mathscr{Q} \mathscr{A}$ is a logconvex quasi-Banach space and a subspace of $L \log L$ (see [2,9]).

Define $T_{*}^{\delta}(f)(x)=\sup _{R>0}\left|T_{R}^{\delta}(f)(x)\right|$. Let $\alpha=(d-1) / 2$ (the critical index). Then we shall prove the following.

Theorem 1. There exists a positive constant C such that

$$
\left\|T_{*}^{\alpha}(f)\right\|_{1, \infty}=\sup _{\lambda>0} \lambda\left|\left\{x \in Q_{d}: T_{*}^{\alpha}(f)(x)>\lambda\right\}\right| \leq C\|f\|_{\mathscr{Q} \mathscr{A}}
$$

consequently,

$$
\lim _{R \rightarrow \infty} T_{R}^{\alpha}(f)(x)=f(x) \quad \text { a.e. } \quad \text { for } f \in \mathscr{Q} \mathscr{A}\left(Q_{d}\right)
$$

It is known that $L \log L \log \log \log L$ is a proper subspace of $\mathscr{Q} \mathscr{A}$ (see [2]). Thus, Theorem 1 implies the following.

Theorem 2. If $f \in L \log L \log \log \log L\left(Q_{d}\right)$, then

$$
\lim _{R \rightarrow \infty} T_{R}^{\alpha}(f)(x)=f(x) \quad \text { a.e. }
$$

The convergence a.e. for $f \in L \log L \log \log L\left(Q_{d}\right)$ was proved in [17].
If we write $T_{N}(f)=T_{N}^{\alpha}(f)$ when $d=1$, then $T_{N+1}(f)$ is the N th partial sum of the Fourier series of f. For $f \in L^{2}\left(Q_{1}\right)$, there is a result of L. Carleson [5] which shows that $\left\{T_{N} f\right\}$ converges a.e. (see also [7]). Let $T_{*} f=\sup _{N \geq 1}\left|T_{N} f\right|$. R. Hunt [8] proved the restricted weak type estimates:

$$
\begin{equation*}
\sup _{\lambda>0} \lambda\left|\left\{x \in Q_{1}: T_{*}\left(\chi_{A}\right)(x)>\lambda\right\}\right|^{1 / p} \leq C p^{2}(p-1)^{-1}|A|^{1 / p}, \quad 1<p<\infty \tag{1.2}
\end{equation*}
$$

where χ_{A} denotes the characteristic function of a set $A \subset Q_{1}$. By (1.2) R. Hunt [8] proved the convergence a.e. of $\left\{T_{N} f\right\}$ for $f \in L(\log L)^{2}\left(Q_{1}\right)$. P. Sjölin [12] showed that (1.2) can be used to prove the convergence a.e. for the class $L \log L \log \log L\left(Q_{1}\right)$. Applying (1.2) more efficiently, N. Yu. Antonov [1] proved that $\left\{T_{N} f\right\}$ converges a.e. if $f \in L \log L \log \log \log L\left(Q_{1}\right)$. Theorem 2 can be regarded as a generalization of this result to higher dimensions.

To prove Theorem 1 for $d \geq 2$ we use the following estimates:

Lemma 1. Let $1<p \leq 2, d \geq 2$. Then there exists a constant C independent of p such that

$$
\sup _{\lambda>0} \lambda\left|\left\{x \in Q_{d}: T_{*}^{\alpha}(f)(x)>\lambda\right\}\right|^{1 / p} \leq C(p-1)^{-1}\|f\|_{p}
$$

We write $\delta=\sigma+i \tau, \sigma, \tau \in \mathbb{R}$. Lemma 1 was proved in [17] by using the following two results and analytic interpolation.

Lemma 2. Suppose $f \in L^{1}\left(Q_{d}\right), d \geq 2$ and $\sigma>\alpha$. Then

$$
\left\|T_{*}^{\delta}(f)\right\|_{1, \infty} \leq A_{\sigma} e^{\pi|\tau|}(\sigma-\alpha)^{-1}\|f\|_{1}
$$

where A_{σ} remains bounded as $\sigma \rightarrow \alpha$.
Lemma 3. Suppose that $f \in L^{2}\left(Q_{d}\right), d \geq 2$. Then

$$
\left\|T_{*}^{\delta}(f)\right\|_{2} \leq A_{\sigma} e^{\pi|\tau|}\|f\|_{2}, \quad \sigma>0
$$

See Lemma 12 and Theorem 7 of [15] for Lemmas 2 and 3, respectively.
Sjölin-Soria [13] extended results of [1] to more general settings. We can apply results of [13] to prove Theorem 2 for $d \geq 2$. Indeed, we easily see that Theorem 2 for $d \geq 2$ follows from Lemma 1 and methods of [13, Section 3] (see Remark at the end of Section 3 of [13]). When $d=1$, Theorem 1 is due to [2]. The result also can be proved by using the estimate (1.2) and Antonov's idea. More precisely, when $d=1$, Lemma 7 (a key estimate) below is first proved for characteristic functions by applying (1.2) and the transition from characteristic functions to general functions f can be carried out by Antonov's idea. We can prove Theorem 1 by Lemma 1 in the same way in higher dimensions. In fact, our proof of Theorem 1 for $d \geq 2$ is more straightforward; to prove Lemma 7 the application of the idea of Antonov is not needed, since the estimate of Lemma 1 is not restricted to characteristic functions (see Section 2).

We have analogous results for the Cesàro means of spherical harmonics expansions. Let \mathscr{H}_{k} be the space of the spherical harmonics of degree k on Σ_{d}, where $\Sigma_{d}=\left\{x \in \mathbb{R}^{d+1}:|x|=1\right\}$ is the unit sphere in \mathbb{R}^{d+1}. We recall that the space \mathscr{H}_{k} consists of the restrictions to Σ_{d} of harmonic homogeneous polynomials of degree k. Let

$$
H_{k} f(x)=\int_{\Sigma_{d}} Z_{x}^{(k)}(y) f(y) d \mu(y)
$$

where $d \mu$ is the Lebesgue surface measure on Σ_{d} normalized as $\mu\left(\Sigma_{d}\right)=1$ (we also write $|E|=\mu(E)$ for a set $\left.E \subset \Sigma_{d}\right)$, and $Z_{x}^{(k)} \in \mathscr{H}_{k}$ is the zonal harmonic of degree
k with pole $x \in \Sigma_{d}$:

$$
\begin{aligned}
Z_{x}^{(k)}(y) & =\left(\frac{2 k}{d-1}+1\right) \frac{\Gamma(d / 2) \Gamma(d+k-1)}{\Gamma(d-1) \Gamma(k+d / 2)} P_{k}^{((d-2) / 2,(d-2) / 2)}(\langle x, y\rangle) \\
& =\left(\frac{2 k}{d-1}+1\right) P_{k}^{((d-1) / 2)}(\langle x, y\rangle) .
\end{aligned}
$$

Here $P_{k}^{(\alpha, \beta)}$ is the Jacobi polynomial and $P_{k}^{(\lambda)}$ is the Gegenbauer polynomial defined by $\left(1-2 t r+r^{2}\right)^{-\lambda}=\sum_{k=0}^{\infty} P_{k}^{(\lambda)}(t) r^{k}$. We consider the spherical harmonics expansion $f \sim \sum_{k=0}^{\infty} H_{k} f$ and the Cesàro means of order δ defined by

$$
S_{n}^{\delta} f=\frac{1}{A_{n}^{(\delta)}} \sum_{k=0}^{n} A_{n-k}^{(\delta)} H_{k} f, \quad n=0,1,2, \ldots, \quad \delta=\sigma+i \tau,
$$

where

$$
\begin{equation*}
A_{k}^{(\delta)}=\frac{\Gamma(k+\delta+1)}{\Gamma(k+1) \Gamma(\delta+1)}=\binom{k+\delta}{k}, \quad \sigma>-1 \tag{1.3}
\end{equation*}
$$

(see [19, Chap. III]). We refer to [4, 6, 14, 18] and [16, Chap. IV] for relevant results.
Let $S_{*}^{\delta}(f)(x)=\sup _{n>0}\left|S_{n}^{\delta}(f)(x)\right|$. If we define the space $\mathscr{Q} \mathscr{A}\left(\Sigma_{d}\right)$ analogously to $\mathscr{Q} \mathscr{A}\left(Q_{d}\right)$, we have the following result (we focus on the case $d=2$).

Theorem 3. There exists a positive constant C such that

$$
\sup _{\lambda>0} \lambda\left|\left\{x \in \Sigma_{2}: S_{*}^{1 / 2}(f)(x)>\lambda\right\}\right| \leq C\|f\|_{\mathscr{Q} \mathscr{A}}
$$

for $f \in \mathscr{Q} \mathscr{A}\left(\Sigma_{2}\right)$, which implies

$$
\lim _{n \rightarrow \infty} S_{n}^{1 / 2}(f)(x)=f(x) \quad \text { a.e. } \quad \text { for } f \in \mathscr{Q} \mathscr{A}\left(\Sigma_{2}\right)
$$

Theorem 3 implies the following result as Theorem 1 implies Theorem 2.
Theorem 4. If $f \in L \log L \log \log \log L\left(\Sigma_{2}\right)$, then

$$
\lim _{n \rightarrow \infty} S_{n}^{1 / 2} f(x)=f(x) \quad \text { a.e. }
$$

See [4] for the convergence a.e. of $\left\{S_{n}^{1 / 2} f\right\}$ for $f \in L^{p}\left(\Sigma_{2}\right), p>1$. The proof of Theorem 3 is similar to that of Theorem 1 , with the following estimates:
Lemma 4. Let $1<p \leq 2$. Then we have

$$
\sup _{\lambda>0} \lambda\left|\left\{x \in \Sigma_{2}: S_{*}^{1 / 2}(f)(x)>\lambda\right\}\right|^{1 / p} \leq C(p-1)^{-1}\|f\|_{p}
$$

for a positive constant C independent of p.

Let

$$
M f(x)=\sup _{r>0}|B(x, r)|^{-1} \int_{B(x, r)}|f(y)| d \mu(y)
$$

where $B(x, r)=\left\{y \in \Sigma_{2}:|y-x|<r\right\}, x \in \Sigma_{2}$. To prove Lemma 4 we need the following two results.

Lemma 5. Suppose that $f \in L^{1}\left(\Sigma_{2}\right)$ and $\alpha<\sigma<1$, where $\alpha=1 / 2$. Then

$$
S_{*}^{\delta}(f)(x) \leq A_{\sigma} e^{B \tau^{2}}(\sigma-\alpha)^{-1}(M f(x)+M f(-x))
$$

The constant A_{σ} remains bounded as $\sigma \rightarrow \alpha$.
Lemma 6. Suppose that $f \in L^{2}\left(\Sigma_{2}\right)$. Then

$$
\left\|S_{*}^{\delta}(f)\right\|_{2} \leq A_{\sigma} e^{B_{\sigma} \tau^{2}}\|f\|_{2}, \quad \sigma>0
$$

The constants A_{σ} and B_{σ} are bounded on any compact subinterval of $(0, \infty)$.
We can find Lemma 6 in [4]. Using Lemmas 5 and 6, we can prove Lemma 4 by analytic interpolation (see Section 4). We shall prove Lemma 5 in Section 3 by applying methods of [10].

2. Proof of Theorem 1

We assume that $d \geq 2$. In proving Theorem 1 we use the following result.
Lemma 7. Suppose that $f \in L^{\infty}\left(Q_{d}\right), f \neq 0$. Then

$$
\left\|T_{*}^{\alpha}(f)\right\|_{1, \infty} \leq C\|f\|_{1} \log \left(\frac{e\|f\|_{\infty}}{\|f\|_{1}}\right)
$$

Proof. By homogeneity we may assume that $\|f\|_{\infty}=1$. For $\lambda>0$, let $m(\lambda)=$ $\inf _{1<p \leq 2} \lambda^{-p}(p-1)^{-p}$. Then, observing that $\|f\|_{p}^{p} \leq\|f\|_{1}$, by Lemma 1 we have

$$
\left|\left\{x \in Q_{d}: T_{*}^{\alpha}(f)(x)>\lambda\right\}\right| \leq C \min \left(1, m(\lambda)\|f\|_{1}\right) .
$$

This will imply the conclusion, if we note that $m(\lambda)=\lambda^{-2}$ when $\lambda \geq e^{-2}$ and $m(\lambda) \sim \lambda^{-1} \log (1 / \lambda)$ when $\lambda<e^{-2}$.

Let $f \in \mathscr{Q} \mathscr{A}\left(Q_{d}\right)$. To prove Theorem 1, we may assume that $f \geq 0$. For any $\epsilon>0$ there exists a sequence $\left\{f_{j}\right\}$ of non-negative bounded functions such that $f=\sum f_{j}$ and $N\left(\left\{f_{j}\right\}\right) \leq\|f\|_{\mathscr{Q} \mathscr{A}}+\epsilon$ (see [2, p. 149]). Since $L^{1, \infty}$ is a logconvex
quasi-Banach space (see [9]) and T_{*}^{α} is a sublinear operator, using Lemma 7 we have

$$
\begin{aligned}
\left\|T_{*}^{\alpha}(f)\right\|_{1, \infty} & \leq C \sum_{j}(1+\log j)\left\|T_{*}^{\alpha}\left(f_{j}\right)\right\|_{1, \infty} \\
& \leq C \sum_{j}(1+\log j)\left\|f_{j}\right\|_{1} \log \left(\frac{e\left\|f_{j}\right\|_{\infty}}{\left\|f_{j}\right\|_{1}}\right)=C N\left(\left\{f_{j}\right\}\right) \leq C\left(\|f\|_{\mathscr{Q} \mathscr{A}}+\epsilon\right)
\end{aligned}
$$

Letting $\epsilon \rightarrow 0$, we get the conclusion.

3. Proof of Lemma 5

Let

$$
S_{n}^{(\delta, \lambda)}(\cos v)=\left(A_{n}^{(\delta)}\right)^{-1} \sum_{k=0}^{n} A_{n-k}^{(\delta)} 2(k+\lambda) P_{k}^{(\lambda)}(\cos v)
$$

where $0<\lambda<1,0 \leq v \leq \pi, 0<\sigma<1, \delta=\sigma+i \tau$. Then, $S_{n}^{(\delta, 1 / 2)}(\langle x, y\rangle)$ is the kernel of the operator S_{n}^{δ}. In [10, p. 121], $S_{n}^{(\delta, \lambda)}(\cos v)$ was represented by the contour integrals as follows:

$$
\begin{equation*}
\frac{1}{2} A_{n}^{(\delta)} S_{n}^{(\delta, \lambda)}(\cos v)=\frac{1}{2 \pi i} \int_{L_{1}} \varphi(z) d z+\frac{1}{2 \pi i} \int_{L_{2}} \varphi(z) d z+\frac{1}{2 \pi i} \int_{L_{3}} \varphi(z) d z \tag{3.1}
\end{equation*}
$$

where

$$
\varphi(z)=\frac{\lambda(1+z) z^{n+\delta+2 \lambda}}{(z-1)^{\delta}\left(1-2 z \cos v+z^{2}\right)^{\lambda+1}}
$$

Let

$$
\begin{aligned}
i_{n}^{(\delta, \lambda)}(v)= & \frac{\lambda \sin (\delta \pi)}{\pi} \int_{0}^{1} \frac{u^{n+\delta+2 \lambda}}{(1-u)^{\delta}\left(1-2 u \cos v+u^{2}\right)^{\lambda+1}} d u \\
\mathscr{I}_{n}^{(\delta, \lambda)}(v)= & \frac{\exp (-i[(n+\lambda+(\delta+1) / 2) v-(\lambda+\delta+1) \pi / 2])}{(2 \sin v)^{\lambda}(2 \sin (v / 2))^{\delta+1}} \frac{\sin (\lambda \pi)}{\pi} \times \\
& \times \int_{0}^{1} \frac{u^{-\lambda}(1-u)^{n+\delta+2 \lambda}}{(1-u \tau(v / 2))^{\delta+1}(1-u \tau(v))^{\lambda}} d u \\
\mathscr{J}_{n}^{(\delta, \lambda)}(v)= & \frac{\exp (i[(n+\lambda+(\delta+1) / 2) v-(\lambda+\delta+1) \pi / 2])}{} \frac{\sin (\lambda \pi)}{\pi} \times \\
& \times \int_{0}^{1} \frac{u^{-\lambda}(1-u)^{n+\delta+2 \lambda}}{(1-u \tau(-v / 2))^{\delta+1}(1-u \tau(-v))^{\lambda}} d u
\end{aligned}
$$

where $\tau(v)=(1+i \cot v) / 2$. Then, according to (3.1), it follows that

$$
\begin{align*}
& \frac{1}{2} A_{n}^{(\delta)} S_{n}^{(\delta, \lambda)}(\cos v)=(n+\lambda) \mathscr{I}_{n}^{(\delta, \lambda)}(v)-(\delta+1) \mathscr{I}_{n-1}^{(\delta+1, \lambda)}(v)+i_{n+1}^{(\delta, \lambda)}(v)+ \\
&+i_{n}^{(\delta, \lambda)}(v)+(n+\lambda) \mathscr{J}_{n}^{(\delta, \lambda)}(v)-(\delta+1) \mathscr{J}_{n-1}^{(\delta+1, \lambda)}(v) \tag{3.2}
\end{align*}
$$

(see [10]). Put

$$
\begin{aligned}
K(n, \delta, \lambda, v) & =\frac{4(n+\lambda)}{\Gamma(\lambda)} C(n, \delta, \lambda) \frac{\cos [(n+\lambda+(\delta+1) / 2) v-(\lambda+\delta+1) \pi / 2]}{(2 \sin v)^{\lambda}(2 \sin (v / 2))^{\delta+1}} \\
L(n, \delta, \lambda, v) & =\frac{-4(\delta+1)}{\Gamma(\lambda)} C(n, \delta, \lambda) \frac{\cos [(n+\lambda+\delta / 2) v-(\lambda+\delta+2) \pi / 2]}{(2 \sin v)^{\lambda}(2 \sin (v / 2))^{\delta+2}}
\end{aligned}
$$

where

$$
C(n, \delta, \lambda)=\frac{\Gamma(n+\delta+2 \lambda+1)}{\Gamma(n+\delta+\lambda+2)}
$$

and also

$$
\begin{aligned}
& R_{1}(n, \delta, \lambda, v)=2(n+\lambda) \mathscr{I}_{n}^{(\delta, \lambda)}(v)+2(n+\lambda) \mathscr{J}_{n}^{(\delta, \lambda)}(v)-K(n, \delta, \lambda, v), \\
& R_{2}(n, \delta, \lambda, v)=-2(\delta+1) \mathscr{I}_{n-1}^{(\delta+1, \lambda)}(v)-2(\delta+1) \mathscr{J}_{n-1}^{(\delta+1, \lambda)}(v)-L(n, \delta, \lambda, v), \\
& R_{3}(n, \delta, \lambda, v)=2 i_{n+1}^{(\delta, \lambda)}(v)+2 i_{n}^{(\delta, \lambda)}(v) .
\end{aligned}
$$

Then (3.2) implies that

$$
\begin{align*}
S_{n}^{(\delta, \lambda)}(\cos v)=\left(A_{n}^{(\delta)}\right)^{-1}(K(n, \delta, \lambda, v) & +L(n, \delta, \lambda, v)+R_{1}(n, \delta, \lambda, v)+ \\
& \left.+R_{2}(n, \delta, \lambda, v)+R_{3}(n, \delta, \lambda, v)\right) \tag{3.3}
\end{align*}
$$

We need the following results.
Lemma 8. Let $x>-1, y \in \mathbb{R}$. Then $\left|A_{n}^{(x+i y)}\right| \geq\left|A_{n}^{(x)}\right|$ and $\left|A_{n}^{(x+i y)}\right| \leq e^{c(x) y^{2}} A_{n}^{(x)}$, where $c(x)=(1 / 2) \sum_{k=1}^{\infty}(x+k)^{-2}$ and $A_{n}^{(x+i y)}$ is as in (1.3).

Lemma 9. Suppose $0<\lambda<1,0<\sigma<1$. Let $C(n, \delta, \lambda)$ be as above. Then

$$
|C(n, \delta, \lambda)| \leq C(n+1)^{\lambda-1}
$$

where the constant C is independent of δ and λ.
Lemma 8 is in [3]. Lemma 9 can be proved by using the formula

$$
\lim _{\operatorname{Re}(z) \geq c>0,|z| \rightarrow \infty} \frac{\Gamma(z)}{\sqrt{2 \pi} e^{-z} z^{z-1 / 2}}=1
$$

Let $|\pi / 2-v| \leq(\pi / 2)(n /(n+1))$. By [10, pp. 130-133] and Lemma 9 we have

$$
\begin{aligned}
\left|R_{1}(n, \delta, \lambda, v)\right| & \leq C e^{B|\tau|} \frac{C(n, \sigma, \lambda)}{\Gamma(\lambda)|n+\sigma+\lambda+2|} \frac{n+1}{(\sin v)^{\lambda+1}(\sin (v / 2))^{\sigma+1}} \\
& \leq C e^{B|\tau|} \frac{(n+1)^{\lambda-1}}{(\sin v)^{\lambda+1}(\sin (v / 2))^{\sigma+1}}, \\
\left|R_{2}(n, \delta, \lambda, v)\right| & \leq C e^{B|\tau|} \frac{C(n, \sigma, \lambda)}{\Gamma(\lambda)|n+\sigma+\lambda+2|} \frac{1}{(\sin v)^{\lambda+1}(\sin (v / 2))^{\sigma+2}} \\
& \leq C e^{B|\tau|} \frac{(n+1)^{\lambda-1}}{(\sin v)^{\lambda+1}(\sin (v / 2))^{\sigma+1}}
\end{aligned}
$$

Also, by [10, pp. 122-123] and estimates similar to the one in Lemma 9

$$
\begin{aligned}
\left|R_{3}(n, \delta, \lambda, v)\right| & \leq C \frac{|\sin (\delta \pi)| \Gamma(1-\sigma)}{(\sin (v / 2))^{2(\lambda+1)}}\left(\frac{\Gamma(n+\sigma+2 \lambda+1)}{\Gamma(n+2 \lambda+2)}+\frac{\Gamma(n+\sigma+2 \lambda+2)}{\Gamma(n+2 \lambda+3)}\right) \\
& \leq C(n+1)^{\sigma-1} \frac{|\sin (\delta \pi)| \Gamma(1-\sigma)}{(\sin (v / 2))^{2(\lambda+1)}}
\end{aligned}
$$

Since $\left|A_{n}^{(\delta)}\right| \geq\left|A_{n}^{(\sigma)}\right|$ and $A_{n}^{(\sigma)} \sim(n+1)^{\sigma}$ (see Lemma 8 and [19, Chap. III]), if $|\pi / 2-v| \leq(\pi / 2)(n /(n+1))$, we have

$$
\begin{align*}
& \left|R_{j}(n, \delta, \lambda, v) / A_{n}^{(\delta)}\right| \leq C e^{B|\tau|} \frac{(n+1)^{\lambda-1-\sigma}}{(\sin v)^{\lambda+1}(\sin (v / 2))^{\sigma+1}}, \quad j=1,2 \tag{3.4}\\
& \left|R_{3}(n, \delta, \lambda, v) / A_{n}^{(\delta)}\right| \leq C \frac{|\sin (\delta \pi)| \Gamma(1-\sigma)}{(n+1)(\sin (v / 2))^{2(\lambda+1)}} \tag{3.5}
\end{align*}
$$

By Lemma 9 we have

$$
\begin{equation*}
\left|K(n, \delta, \lambda, v) / A_{n}^{(\delta)}\right| \leq C e^{(\pi / 2)|\tau|} \frac{(n+1)^{\lambda-\sigma}}{(\sin v)^{\lambda}(\sin (v / 2))^{\sigma+1}} \tag{3.6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left|L(n, \delta, \lambda, v) / A_{n}^{(\delta)}\right| \leq C(1+|\tau|) e^{(\pi / 2)|\tau|} \frac{(n+1)^{\lambda-\sigma-1}}{(\sin v)^{\lambda}(\sin (v / 2))^{\sigma+2}} \tag{3.7}
\end{equation*}
$$

We also need the following.
Lemma 10. Let $0<\lambda<1,0<\sigma<1, \delta=\sigma+i \tau, 0 \leq v \leq \pi$. Then

$$
\left|S_{n}^{(\delta, \lambda)}(\cos v)\right| \leq C e^{c \tau^{2}}(n+1)^{2 \lambda+1}
$$

Proof. By [18, p. 168], we have $\left|P_{n}^{(\lambda)}\right| \leq C A_{n}^{(2 \lambda-1)}$. Using this and Lemma 8, we see that

$$
\begin{aligned}
\left|S_{n}^{(\delta, \lambda)}(\cos v)\right| & \leq C\left|A_{n}^{(\delta)}\right|^{-1} \sum_{m=0}^{n}\left|A_{n-m}^{(\delta)}\right|(m+\lambda) A_{m}^{(2 \lambda-1)} \\
& \leq C \lambda\left|A_{n}^{(\delta)}\right|^{-1} \sum_{m=0}^{n} \frac{m+\lambda}{m+2 \lambda}\left|A_{n-m}^{(\delta)}\right| A_{m}^{(2 \lambda)} \\
& \leq C e^{c \tau^{2}}\left|A_{n}^{(\sigma)}\right|^{-1} \sum_{m=0}^{n}\left|A_{n-m}^{(\sigma)}\right| A_{m}^{(2 \lambda)} \\
& \leq C e^{c \tau^{2}}\left|A_{n}^{(\sigma)}\right|^{-1} A_{n}^{(\sigma+2 \lambda+1)} \leq C e^{c \tau^{2}}(n+1)^{2 \lambda+1}
\end{aligned}
$$

By (3.3)-(3.7) and Lemma 10, we have

$$
\begin{equation*}
\left|S_{n}^{(\delta, \lambda)}(\cos v)\right| \leq C e^{B \tau^{2}}(n+1)^{\lambda-\sigma}\left((n+1)^{-1}+\sin v\right)^{-\lambda-\sigma-1} \tag{3.8}
\end{equation*}
$$

where $0 \leq v \leq \pi, \lambda=1 / 2,1 / 2<\sigma<1$. Suppose $\langle x, y\rangle=\cos v, x, y \in \Sigma_{2}$. Then $\sin v \sim|x-y|$ if $\langle x, y\rangle \geq 0$ and $\sin v \sim|x+y|$ if $\langle x, y\rangle \leq 0$. Thus (3.8) implies

$$
\begin{align*}
& \left|S_{n}^{(\delta, \lambda)}(\langle x, y\rangle)\right| \\
& \quad \leq \begin{cases}C e^{B \tau^{2}}(n+1)^{\lambda-\sigma}\left((n+1)^{-1}+|x-y|\right)^{-\lambda-\sigma-1}, & \text { if }\langle x, y\rangle \geq 0, \\
C e^{B \tau^{2}}(n+1)^{\lambda-\sigma}\left((n+1)^{-1}+|x+y|\right)^{-\lambda-\sigma-1}, & \text { if }\langle x, y\rangle \leq 0 .\end{cases} \tag{3.9}
\end{align*}
$$

Since $S_{n}^{\delta} f(x)=\int_{\Sigma_{2}} S_{n}^{(\delta, 1 / 2)}(\langle x, y\rangle) f(y) d \mu(y)$, the conclusion of Lemma 5 easily follows from (3.9).

Remark. In fact, we can prove estimates of the type in [6, Theorem (3.21)], partly improving (3.9). We do not need those estimates here; for our purpose (3.9) suffices.

4. Proofs of Lemmas 4, 6 and Theorem 3

We first prove Lemma 6.
Proof of Lemma 6. When $\delta>0$, we have $\left\|S_{*}^{\delta}(f)\right\|_{2} \leq A_{\delta}\|f\|_{2}$ (see [4, Lemma (3.5)]). If $\delta=\sigma+i \tau, \sigma>0, \tau \in \mathbb{R}$, we write

$$
S_{n}^{\delta}(f)=\left(A_{n}^{\delta}\right)^{-1} \sum_{k=0}^{n} A_{k}^{(\sigma-\epsilon)} A_{n-k}^{(\epsilon-1+i \tau)} S_{k}^{\sigma-\epsilon}(f)
$$

where $0<\epsilon<\sigma$. Using Lemma 8 as in [4], we have $S_{*}^{\delta}(f) \leq e^{c(\epsilon-1) \tau^{2}} S_{*}^{\sigma-\epsilon}(f)$. Combining these results, we reach the conclusion of Lemma 6.

Proof of Lemma 4. Let $1<p<2,1 / p=(1-\theta) / 2+\theta, \alpha=(1-\theta) c+\theta b$, where $c=\alpha-(1 / 2)(1 / p-1 / 2), b=\alpha+(1 / 2)(1-1 / p), \alpha=1 / 2$. We note that $\theta=2(1 / p-1 / 2), 1 / 4 \leq c \leq \alpha, \alpha \leq b \leq 3 / 4$.

Define $T_{z} f=S_{0}^{\delta(z)} f, \delta(z)=(1-z) c+z b, 0 \leq \sigma \leq 1, z=\sigma+i \tau, \tau \in \mathbb{R}$. Here S_{0}^{δ} is a linear operator approximating S_{*}^{δ} defined by $S_{0}^{\delta} f(x)=S_{n(x)}^{\delta} f(x)$, where $n(x)$ is a suitable non-negative mapping from Σ_{2} to \mathbb{Z}, so that $\left\{T_{z}\right\}$ is an analytic family of linear operators which is admissible in the sense of [11] (see also [16, Chap. V, Section 4]).

We apply the analytic interpolation theorem on the Lorentz spaces $L^{p, q}$ due to [11]. Note that $\operatorname{Re}(\delta(i \tau))=c \in[1 / 4,1 / 2]$. Thus Lemma 6 implies

$$
\begin{equation*}
\left\|T_{i \tau} f\right\|_{2,2} \leq C_{0} e^{B_{0} \tau^{2}}\|f\|_{2,2} \tag{4.1}
\end{equation*}
$$

for some $B_{0}, C_{0}>0$. By Lemma 5 and the $L^{1}-L^{1, \infty}$ boundedness of the maximal operator M we have

$$
\begin{equation*}
\left\|T_{1+i \tau} f\right\|_{1, \infty} \leq C_{1}(p-1)^{-1} e^{B_{1} \tau^{2}}\|f\|_{1,1} \tag{4.2}
\end{equation*}
$$

for some $B_{1}, C_{1}>0$, since $\operatorname{Re}(\delta(1+i \tau))=b$. Interpolating between (4.1) and (4.2), we get

$$
\left\|S_{0}^{\alpha} f\right\|_{p, p^{\prime}}=\left\|T_{\theta} f\right\|_{p, p^{\prime}} \leq A_{\theta}\|f\|_{p, p}
$$

where

$$
A_{\theta} \leq C(p-1)^{-\theta} \leq C(p-1)^{-1}
$$

Therefore

$$
\left\|S_{0}^{\alpha} f\right\|_{p, \infty} \leq C\left\|S_{0}^{\alpha} f\right\|_{p, p^{\prime}} \leq C(p-1)^{-1}\|f\|_{p}
$$

from which Lemma 4 follows.
To prove Theorem 3, we note that by Lemma 4, similarly to the case of T_{*}^{α}, we can prove

$$
\begin{equation*}
\left\|S_{*}^{1 / 2} f\right\|_{1, \infty} \leq C\|f\|_{1} \log \left(\frac{e\|f\|_{\infty}}{\|f\|_{1}}\right) \tag{4.3}
\end{equation*}
$$

if $f \in L^{\infty}\left(\Sigma_{2}\right), f \neq 0$. Also, as in the case of T_{*}^{α}, the estimate (4.3) readily implies $\left\|S_{*}^{1 / 2} f\right\|_{1, \infty} \leq C\|f\|_{\mathscr{Q} A}$, from which the almost everywhere convergence follows.

References

[1] N. Yu. Antonov, Convergence of Fourier series, East J. Approx., 2 (1996), 187-196.
[2] J. Arias-de-Reyna, Pointwise convergence of Fourier series, J. London Math Soc. (2), 65 (2002), 139-153.
[3] R. Askey and I. I. Hirschman, Mean summability for ultraspherical polynomials, Math. Scand., 12 (1963), 167-177.
[4] A. Bonami and J.-L. Clerc, Sommes de Cesàro et multiplicateurs des développments en harmonique sphérique, Trans. Amer. Math. Soc., 183 (1973), 223-263.
[5] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135-157.
[6] L. Colzani, M. H. Taibleson and G. Weiss, Maximal estimates for Cesàro and Riesz means on spheres, Indiana Univ. Math. J., 33 (1984), 873-889.
[7] C. Fefferman, Pointwise convergence of Fourier series, Ann. of Math., 98 (1973), 551-572.
[8] R. Hunt, On the convergence of Fourier series, Orthogonal Expansions and their Continuous Analogues (Edwardsville, IL, 1967), Southern Illinois Univ. Press, 1968, 235-255.
[9] N. J. Kalton, Convexity type and the three space problem, Studia Math., 69 (1981), 247-287.
[10] E. Kogbetliantz, Recherches sur la sommabilité des séries ultrasphériques par la méthode des moyennes arithmétiques, J. Math. Pures Appl., 3 (1924), 107-187.
[11] Y. Sagher, On analytic families of operators, Israel J. Math., 7 (1969), 350-356.
[12] P. Sjölin, An inequality of Paley and convergence a.e. of Walsh-Fourier series, Ark. Mat., 7 (1968), 551-570.
[13] P. Sjölin and F. Soria, Remarks on a theorem by N. Yu. Antonov, Studia Math., 158 (2003), 79-97.
[14] C. D. Sogqe, Oscillatory integrals and spherical harmonics, Duke Math. J., 53 (1986), 43-65.
[15] E. M. Stein, Localization and summability of multiple Fourier series, Acta Math., 100 (1958), 93-147.
[16] E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.
[17] G. Sunouchi, On the summability almost everywhere of the multiple Fourier series at the critical index, Kodai Math. J., 8 (1985), 1-4.
[18] G. Szeqö, Orthogonal Polynomials, 4th ed., Amer Math. Soc. Coll. Publ. No. 23, Amer. Math. Soc., Providence, R. I., 1975.
[19] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge London - New York - Melbourne, 1977.
S. Sato, Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan; e-mail: shuichi@kenroku.kanazawa-u.ac.jp

