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Abstract

This paper proposes a new method for obtaining the maximum power output of a doubly fed induction generator

(DFIG) wind turbine. This scheme does not require the precise parameters of the wind turbine or any information

about the wind speed or wind sensor. The maximum power point tracking (MPPT) ability of the proposed method

is theoretically proven under some certain assumptions. To obtain the required control performance, several control

parameters may be adopted. Particularly, the control method is constructed on the basis of the Lyapunov function.

The quality of the proposed method is verified by the numerical simulation of a 1.5-MW DFIG wind turbine. The

simulation results show that the wind turbine implemented with the proposed method can track the optimal operation

point. Furthermore, the energy output of the DFIG wind turbine using the proposed method is higher compared to

conventional methods under the same conditions.

Keywords: doubly fed induction generator, Lyapunov function, maximum power point tracking, maximum energy,

adaptive control

1. Introduction

To optimally utilize wind energy, the energy conversion efficiency of wind turbines must reach the utmost limit.

Therefore, maximum power point tracking (MPPT) is an essential target in wind turbine control. To track the max-

imum power point, the rotor speed of the wind turbine/generator should be adjustable. Hence, the concept of a

variable-speed wind turbine (VSWT) was proposed. According to [1–5], when the generator in a VSWT operates at

variable speeds, its output is often synchronized with the grid via a converter system. Depending on the type of gener-

ator used in the VSWT, the converter’s size will vary [1]. With VSWTs based on synchronous generators, permanent

magnetic synchronous generators (PMSGs), or squirrel-cage induction generators, they require a full converter on

the generator’s stator side [3–5]. However, for VSWTs that use a doubly fed induction generator (DFIG), a partial
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converter is required on the rotor side [2]. In other words, compared to a full converter-based VSWT, the use of a

DFIG wind turbine is more economical; in fact, DFIG wind turbines are more frequently used in large wind farms.

Therefore, control for a MPPT target in DFIG-based wind turbines has become an interesting topic.

To track the maximum power point during operation, a wind turbine must be generally equipped with a good con-

troller integrated with a comprehensive MPPT algorithm. Many MPPT methods have been proposed [5–13]. Original

methods are based on the characteristic curve. They use the curve of the optimal power versus wind speed, for exam-

ple, or the optimal tip-speed ratio of a wind turbine and wind data to determine the reference signal for the controller

[6, 8]. These methods are called wind-data-based methods. Generally, with wind-data-based methods, the MPPT

ability of a wind turbine is appreciably high if accurate wind data is available. However, because of the rapid natural

fluctuation of wind, wind speed measurement is hardly reliable [14]. To overcome this drawback, other methods such

as the MPPT-curve method [10–13] and perturbation and observation (P&O) method [7] were suggested. They oper-

ate basically on the output of the generator; hence, they are called wind speed-sensorless methods. Compared to the

wind-data-based methods, the wind speed-sensorless methods cannot track the optimum point as efficiently as [15].

However, this method is often implemented in wind turbines because there is no requirement for an anemometer. The

P&O method is originally applied for extremum seeking in small inertia systems such as photovoltaic power systems

or small-size PMSG wind turbines with a DC/DC converter [5, 7]. Unlike the P&O method, the MPPT-curve method,

which indexes the current power output (or rotor speed) as well as the wind turbine’s MPPT curve to determine the

reference rotor speed (or power output) [11–13], can apply to both large- and-small scale wind turbines; it is more effi-

cient and does not require any perturbation signal [8]. However, for the high inertia of a generator wind turbine system,

a wind turbine using the MPPT-curve method cannot track the maximum point as rapidly as a wind turbine using the

wind-data-based method [15]. In terms of designing the controller for a wind turbine, traditional proportional-integral

(PI) control is used for many purposes, including rotor-speed, current, and power control [11, 12]. A drawback of

PI control is that stability is not theoretically guaranteed [1, 16, 17]. Thus, sliding-mode control has been recently

developed [18–22]. In fact, sliding-mode control has been applied to the rotor speed [20–22]. However, wind speed

measurement is prerequisite for sliding mode control. In [1], the authors improved the MPPT-curve method, which is

only applied to power control on the rotor-side converter. Hence, an improvement of the MPPT-curve method inte-

grated with a controller, which is designed basically on the Lyapunov control theory, to adjust the rotor speed without

an available wind sensor is currently anticipated.

This research suggests a new scheme to maximize the energy output of a DFIG wind turbine without any informa-

tion about the wind data or an available anemometer. The proposed scheme is based on the improvement of the wind

turbine’s MPPT curve. A new controller based on Lyapunov control theory will be designed for rotor speed adjust-

ment purposes. The efficiency of the proposed scheme will be verified, analyzed, and compared with the conventional

MPPT curve method with PI controllers by the simulation of a 1.5-MW DFIG wind turbine in a MATLAB/Simulink

environment.
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Fig. 1: Overall system of the DFIG wind turbine

2. DFIG wind turbine

A DFIG wind turbine [1, 23] consists of a wind turbine and doubly fed induction generator (DFIG). The wind

turbine is linked to the generator through a gearbox and shaft system, as shown in Fig. 1. The stator side of the DFIG

is often connected directly to the grid, whereas the rotor side is connected through a partial converter, including a

rotor-side converter (RSC) and a grid-side converter (GSC).

2.1. Wind turbine

Generally, the dynamic equation for a generator-wind turbine system [18] is used to described the rotor speed ωr,

mechanical torque Tm, and electrical torque Te as

J
d
dt
ωr(t) = Tm(t) − Te(t), (1)

where J is the inertia of the generator-wind turbine system. Moreover, to use the mechanical and electrical power Pm

and Pe, respectively, we can rewrite (1) as

Jωr(t)
d
dt
ωr(t) = Pm(t) − Pe(t). (2)

Pm, which is a function of the tip-speed ratio λ and wind speed Vw, is written as

Pm(λ,Vw) ,
1
2
ρπR2Cp(λ)V3

w, (3)

where R, ρ, and Cp are the blade size, air density, and power coefficient, respectively. The power coefficient Cp

generally depends on the pitch angle β. Throughout this paper, we fix β as a constant. Hence, we simply denote it as

Cp(λ).

The tip-speed ratio is

λ(ωr,Vw) ,
Rωr

Vw
. (4)

Hence, we can regard Pm as

Pm(ωr,Vw) =
1
2
ρπR2Cp(λ(ωr,Vw))V3

w. (5)
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2.2. DFIG

The DFIG can be described in the dq frame [1, 24, 25] as

Ls
d
dt

is(t) + Lm
d
dt

ir(t) + Rsis(t) + ωsΘ(Lsis(t) + Lmir(t))

= vs(t)

Lr
d
dt

ir(t) + Lm
d
dt

is(t) + Rrir(t) + s(t)ωsΘ(Lmis(t) + Lrir(t))

= vr(t),

(6)

where vs ,
[
vsd vsq

]>
, vr ,

[
vrd vrq

]>
, is ,

[
isd isq

]>
, and ir ,

[
ird irq

]>
are the stator-side, rotor-side voltage,

stator-side current, and rotor-side current, respectively; Θ ,

0 −1

1 0

; and ω, R, L, and s represent the rotational

speed, resistance, inductance, and rotor slip, respectively. The subscripts r, s, and m stand for rotor side, stator side,

and magnetization, respectively. Normally, ωs is assumed constant. The rotor slip of the DFIG is written as

s(t) , 1 −
pnΩr(t)
ωs

= 1 −
pnNωr(t)

ωs
, (7)

where pn is the number of pole pairs, and N is the gearbox ratio defined as the ratio between the rotational speeds of

the low-speed shaft ωr and high-speed shaft Ωr

Ωr(t) , Nωr(t). (8)

Assumption 1. The stator flux is constant and the d-axis of the dq-frame is oriented with the stator flux vector [1].

Hence,

Ψs(t) =

Ψsd(t)

Ψsq(t)

 ≡
Ψsd

0

 = Lsis(t) + Lmir(t). (9)

Then,

Ls
d
dt

is(t) + Lm
d
dt

ir(t) = 0. (10)

Moreover, the resistance of the stator winding of the generator is zero, i.e., Rs = 0 [1].

Lemma 1. Under Assumption 1, in a DFIG (6), the stator-side voltage becomes constant as

vs(t) =

[
0 Vs

]>
, (11)

where Vs is the magnitude of the stator voltage ‖vs(t)‖. Moreover, the rotor-side current ir and voltage vr satisfy

σ
d
dt

ir(t) = Ar(t)ir(t) − vr(t) + d(t), (12)
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where

σ ,

(
L2

m

Ls
− Lr

)
, (13)

Ar(t) ,

 Rr σωss(t)

−σωss(t) Rr

 , (14)

d(t) ,
Lm

Ls
s(t)

 0

Vs

 . (15)

Proof. By substituting (10) and Rs = 0 into (6), we have (11) as

vs(t) =

 0

ωsΨsd

 =

 0

Vs

 , (16)

because Vs = ‖vs(t)‖ = |ωsΨsd |. From (9) and (16), we have

Lsis(t) + Lmir(t) =
1
ωs

Vs

0

 . (17)

Hence,

is(t) = −
Lm

Ls
ir(t) +

1
Lsωs

Vs

0

 , (18)

d
dt

is(t) = −
Lm

Ls

d
dt

ir(t). (19)

Substituting (18) and (19) into the second equation of (6), we have

vr(t) = Rrir(t) +

(
Lr −

L2
m

Ls

)
d
dt

ir(t) + ωss(t)Θ
Lm

Lsωs

Vs

0


+ ωss(t)Θ

(
Lr −

L2
m

Ls

)
ir(t). (20)

From (7) and (20), we obtain (12).

The active power in the stator side of the DFIG Ps can be calculated [25]

Ps(t) = Re
{(

vsd(t) + jvsq(t)
) (

isd(t) − jisq(t)
)}

= vsd(t)isd(t) + vsq(t)isq(t). (21)

By substituting vsd(t) = 0, vsq(t) = Vs from (11) and isq(t) = −
Lm

Ls
irq(t) from (18) into (21), we have

Ps(t) = −
Lm

Ls
Vsirq(t). (22)

5



When the power loss in the DFIG can be neglected, the power output of the generator Pe is described by

Pe(t) = Ps(t) + Pr(t) = (1 − s(t)) Ps(t), (23)

where Pr is the rotor-side active power. Hence,

Te(t) =
Pe(t)
ωr(t)

=
pnNPs(t)

ωs
= −

pnNLm

Lsωs
Vsirq(t). (24)

3. Controller design for rotor-side converter

Assumption 2. We can measure ir, is, vs, and ωr. We can also manipulate vrd, vrq, and the know the parameters Rs,

Rr, Ls, Lr, Lm, pn, and N [1].

Assumption 3. The dq/abc transformation block, pulse-width modulation (PWM), and IGBT valves in the converters

appropriately operate [1].

The objective of RSC is to maintain the ird of the DFIG and the rotor speed ωr of the wind turbine at the desired

references. From (1), (12), and (24), to control ird and ωr, we can adjust ird and irq by vrd and vrq, respectively. To

achieve this task, in previous research, traditional PI control was used [12, 26–29]. In this research, a new law for

rotor speed control is proposed.

Lemma 2. Under Assumptions 2 and 3, for any reference irdref and ωrref , if vr of the DFIG (6) is chosen as

vr(t) = Ar(t)ir(t) + d(t) − σ
d
dt

irref(t)

− σK (irref(t) − ir(t)) , (25)

where, for kd > 0,

irref(t) ,

irdref(t)

irqref(t)

 =

 irdref(t)

irq(t) + kd
d
dt

eωrref (t) + kpeωrref (t)

 , (26)

eωrref (t) , ωrref(t) − ωr(t), (27)

and if the feedback gain K and kp satisfy

Q̃ ,


2kp

[
0 −1

]
 0

−1

 K> + K

 > 0, (28)

then

lim
t→∞

(irref(t) − ir(t)) = 0, and lim
t→∞

(ωrref(t) − ωr(t)) = 0. (29)
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Remark 1. The inequality (28) means that Q̃ = Q̃> is a positive definite matrix. See Appendix A for the definition

and the related properties.

Proof. Let us define

e1(t) ,

eωrref (t)

ei(t)

 =

ωrref(t) − ωr(t)

irref(t) − ir(t)

 . (30)

(26) can be rewritten as

kd
d
dt

eωrref (t) = −kpeωrref (t) +

[
0 1

]
ei(t). (31)

By substituting (25) into (12), we have

d
dt

(irref(t) − ir(t)) = −K (irref(t) − ir(t)) . (32)

Then,

E1
d
dt

e1(t) = A1e1(t), (33)

where

E1 =

kd 0

0 I2

 > 0, A1 = −

kp

[
0 −1

]
0 K

 . (34)

When we define a Lyapunov function as

V1 , e>1 (t)E1e1(t), (35)

its derivative is

V̇1 = e>1 (t)E1
d
dt

e1(t) +

(
d
dt

e1(t)
)>

E1e1(t). (36)

By substituting (33) into (36), and noting that A1 + A>1 = −Q̃, we have

V̇1 = e>1 (t)
(
A1 + A>1

)
e1(t) = −e>1 (t)Q̃e1(t)

≤ −λmin(Q̃)e>1 (t)e1(t). (37)

From the Lyapunov Stability Theory, limt→∞ e1(t) = 0. This completes the proof.

Hence, from Lemma 2 and Assumption 3, if the rotor-side voltage of the DFIG is adjusted to satisfy (25), ir(t) and

ωr(t) will converge to the desired values irref(t) and ωrref(t), respectively.

Herein, we do not design a new control for the GSC. Instead, we use the control described in [1].
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(a) (b)

Fig. 2: Wind turbine characteristic of (41) for β = 0: (a) Cp(λ), (b) Pm(λ,Vw), and Pmppt(ωr).

4. Maximum power point tracking scheme

The wind turbine is operated in the optimal power control region defined with the minimum rotor speed ωrmin,

rated rotor speed ωrrated, minimum wind speed Vwmin, and rated wind speed Vwrated by

D , {(ωr,Vw) | ωrmin ≤ ωr ≤ ωrrated,

Vwmin ≤ Vw ≤ Vwrated, and Cp(λ) > 0}. (38)

In the optimal power control region D, the tip-speed ratio is bounded as

λmin ,
Rωrmin

Vwrated
≤ λ(t) ≤ λmax , max{λ | Cp(λ) > 0}.

This paper aims to suggest a MPPT scheme and controller such that the wind turbine can work in the optimal

power control region D of the MPPT curve.

4.1. MPPT-curve method

We consider a maximization of the mechanical power to change ωr. Evidently, it is equivalent to a maximization

of Cp(λ(ωr,Vw)). That is,

Cpmax , Cp(λopt), (39)

λopt , arg max
λ

Cp(λ). (40)

In this paper, we use

Cp(λ) =
(
165.2842λ−1 − 16.8693

)
e−21λ−1

+ 0.009λ (41)

for the pitch angle β = 0. It has a unique maximum point of Cpmax = 0.4 at λopt = 6.7562 (Fig. 2a).

The optimal rotor speed

ωopt(Vw) ,
λoptVw

R
. (42)

8



achieves the maximal mechanical power

max
ωr

Pm(ωr,Vw) =
1
2
ρπR2CpmaxV3

w (43)

= koptω
3
opt(Vw), (44)

kopt ,
1
2
ρπR5 Cpmax

λ3
opt

. (45)

To maximize the mechanical power, if we have a wind speed Vw, we simply control to make ωr(t) track the ωopt(Vw(t))

given in (42). However, since it is difficult to obtain precise values of Vw, we generally control ωr to make the

mechanical power Pm(ωr,Vw) track

Pmppt(ωr) = koptω
3
r , (46)

instead of (44). Pmppt(ωr) is a locus of the peak of Pm(ωr,Vm) as Vm changes in the optimal power control region D

(Fig. 2b). This is called the MPPT-curve method or MPPT scheme.

4.2. Proposed MPPT control

In this subsection, we propose a new MPPT scheme using no real-time information about Vw(t). The scheme aims

to reduce |ωropt(Vw(t)) − ωr(t)| to achieve the maximum P(ωr,Vw).

Although the scheme does not use any real-time measurement of Vw, as in [1], for analysis of the control perfor-

mance, we need the bound of the wind speed as

d
dt
ωropt(Vw(t)) =

λopt

R
d
dt

Vw(t) ≤
λopt

R

∣∣∣∣∣ d
dt

Vw(t)
∣∣∣∣∣ , γ. (47)

Moreover, in the analysis of the proposed scheme, we use

ζ(ωr,Vw) , −
Pm(ωr,Vw) − Pmppt(ωr)
ωr(ωr − ωropt(Vw))

. (48)

This is well defined by L’Hôpital’s rule to ensure that

lim
ωr→ωropt(Vw)

ζ(ωr,Vw)

= − lim
ωr→ωropt(Vw)

d
dωr

Pm(ωr,Vw) −
d

dωr
Pmppt(ωr)

d
dωr

(ωr(ωr − ωropt(Vw)))

= − lim
ωr→ωropt(Vw)

R
Vw

∂

∂λ
Pm(λ,Vw) − 3koptω

2
r

2ωr − ωropt(Vw)

=
3koptωropt(Vw)2

ωropt(Vw)
= 3koptωropt(Vw). (49)
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Assumption 4. The precise value of kopt for the MPPT curve is not available. Instead, we can use the estimate k′opt

with

k′opt = (1 + δ)kopt, |δ| ≤ δmax. (50)

The proposed MPPT scheme is given as the reference (27) for the RSC control (25) as

ωrref(t) ,
 P̂mppt(t)

k̂opt(t)

1/3

, (51)

P̂mppt(t) = ωr(t)
(
k1

d
dt
ωr(t) − k2

(
ωr(t) − ω̂ropt(t)

))
+ Pe(t), (52)

d
dt
ω̂ropt(t) , k3

(
ωr(t) − ω̂ropt(t)

)
, (53)

d
dt

k̂opt(t) , k4(k′opt − k̂opt(t)) + ωr(t)2
(
ωr(t) − ω̂ropt(t)

)
, (54)

where k̂opt(t) and ω̂ropt(t) are estimations of kopt and ωropt(Vw(t)), respectively. The feedback gains k1, k2, k3, and k4

are designed as the conditions in Theorem 1 and

J > k1 ≥ 0. (55)

Lemma 3. In the optimal power control region D, k̂opt(t) is bounded, i.e.,

max k̂opt(t) ≤ k̂opt,ub, (56)

k̂opt,ub = 2k−1
4 ω3

rrated + k−1
4

∣∣∣ω̂ropt(0)
∣∣∣ω2

rrated +
∣∣∣k̂opt(0)

∣∣∣ + k′opt. (57)

See Appendix B for the proof.

Theorem 1. In addition to Assumption 4, we suppose that (51) is restricted within the optimal control region D as

(ωrref(t),Vw) ∈ D. (58)

Then, if there exist positive constants α, v, w and q satisfying

Ξ = K> + K − qI2 > 0,

2kp − αk̂2
opt,ubξ

2
max −

[
0 1

]
Ξ−1

01
 − qkd > 0,

2ζmin − (wγ + q)Ĵ − (k3 − k2) − 1 > 0,

k3 − k2 − ω
2
rrated − wγ − q > 0,

(2 − vkopt)k4 − ω
2
rrated − q > 0,

(59)
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where

ζmin , min ζ(ωr,Vw), (60)

ξ (ωr, ωrref) , ω−1
r ω2

rref + ωr + ωrref , (61)

ξmax , max ξ (ωr, ωrref) , (62)

Ĵ , J − k1 > 0, (63)

then, there exists a time to > 0 such that for all t ≥ to,

∣∣∣ωr(t) − ωropt(Vw(t))
∣∣∣ < 1
√

q

√
1 + Ĵ−1

w
γ +

k4 Ĵ−1

v
koptδ

2
max. (64)

See Appendix C for the proof.

Remark 2. We consider ξ (ωr, ωrref) only for the region of ωr > 0 and ωrref > 0, and the Hessian of ξ (ωr, ωrref) is

positive semidefinite as 
∂2ξ

∂ω2
r

∂2ξ

∂ωr∂ωrref
∂2ξ

∂ωrref∂ωr

∂2ξ

∂ω2
rref

 = 2


ω2

rref

ω3
r

−
ωrref

ω2
r

−
ωrref

ω2
r

1
ωr

 ≥ 0. (65)

Hence, ξmax is attained at the boundary of the region [ωrmin, ωrrated] × [ωrmin, ωrrated]. Moreover, from
∂ξ

∂ωr
∂ξ

∂ωrref

 =


1 −

ω2
rref

ω2
r

1 + 2
ωrref

ωr

 , (66)

it is easy to realize ξmax = ξ (ωrmin, ωrrated).

Note that the optimal control region D is divided into three parts:

Dlr ,
{
(ωr,Vw) ∈ D | Rωr/Vw > λopt

}
(67)

Dopt ,
{
(ωr,Vw) ∈ D | Rωr/Vw = λopt

}
(68)

Dul ,
{
(ωr,Vw) ∈ D | Rωr/Vw < λopt

}
. (69)

Note also that (ωr,Vwmppt(ωr)) ∈ Dopt and (ωropt(Vw),Vw) ∈ Dopt. Moreover,

∂

∂λ
Cp(λ)


< 0 (ωr,Vw) ∈ Dlr

= 0 (ωr,Vw) ∈ Dopt

> 0 (ωr,Vw) ∈ Dul.

(70)

By regarding (5) to use (4) as

Pm(ωr, λ) =
1
2
ρπR5 Cp(λ)

λ3 ω3
r (71)

11



Fig. 3: ζ(ωr ,Vw).

and as in [1], from Pmppt(ωr) = koptω
3
r and the definition of kopt in (45), we have

Pm(ωr,Vw) − Pmppt(ωr) =
1
2
ρπR5ω3

r

Cp(λ)
λ3 −

Cpmax

λ3
opt

 . (72)

Hence,

ζ(ωr,Vw) =
ρπR5ω2

r

2(ωr − ωropt(Vw))

Cpmax

λ3
opt
−

Cp(λ)
λ3

 (73)

=
ρπR6ω2

r

2Vwλ3(λ − λopt)

Cpmax

λ3
opt

λ3 −Cp(λ)

 . (74)

Lemma 4. For a point (ωr,Vw) ∈ Dopt ∪ Dlr, ζ(ωr,Vw) > 0. Moreover, for a point (ωr,Vw) ∈ Dul, if

Cpmax

λ3
opt
−

Cp(λ)
λ3 < 0, (75)

then

ζ(ωr,Vw) > 0. (76)

Proof. From (49), for a point (ωr,Vw) ∈ Dopt, ζ(ωr,Vw) > 0.

For a point (ωr,Vw) ∈ Dlr, since λ > λopt, from (74), Cp(λ) ≤ Cpmax,

ζ(ωr,Vw) >
ρπR6ω2

rCp(λ)
2Vwλ3(λ − λopt)

 λ3

λ3
opt
− 1

 > 0. (77)

For a point (ωr,Vw) ∈ Dul, since ωr < ωropt(Vw), it follows from (73) and (75) that ζ(ωr,Vw) > 0.

5. Simulation results

In this section, we evaluate the performance of the proposed MPPT scheme by comparing the simulation results

for the 1.5 MW DFIG wind turbine with the conventional MPPT-curve method with traditional PI control. In all

simulations, we used the parameters of the wind turbine [1] and generator [24] as shown in Table 1.
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Table 1: Parameters in simulations (from [1] for wind turbine parameters and [24] for DFIG parameters)

Name Symbol Value Unit

Rated power P 1.5 MW

The length of blade R 35.25 m

Normal rotor speed ωrrated 22 rpm

Minimum rotor speed ωrmin 11 rpm

Rated wind speed Vwrated 12 m/s

Rated stator voltage Vs 690 V

Rated rotor voltage Vr 120 V

Rated stator frequency f 50 Hz

Minimum rotor speed Ωr min 1200 rpm

Rated rotor speed Ωrrated 1750 rpm

Number of pole pairs pn 2 p.u

Stator winding resistance Rs 2.65 mΩ

Rotor winding resistance Rr 2.63 mΩ

Stator winding inductance Ls 5.6438 mH

Rotor winding inductance Lr 5.6068 mH

Magnetizing inductance Lm 5.4749 mH

Gearbox ratio N 79.545 p.u

Inertia of system J 445000 kg·m2

13



We used the power coefficient (41) by setting β = 0. Then,

kopt = 1.2467 × 105 kg·m2

λopt = 6.7562.

As in [1], we used the optimal control region D defined by

ωrmin = 1.15 rad/s, ωrrated = 2.3 rad/s,

Vwmin =
Rωrmin

λopt
=

35.25 × 1.15
6.7562

= 6 m/s

Vwrated = 12m/s.

The wind speed profile (Fig. 4) we used satisfied Vw(t) < Vwrated, and
∣∣∣∣∣ d
dt

Vw(t)
∣∣∣∣∣ ≤ 0.44 m/s2. Hence,

γ =
λopt0.44

R
=

6.7562 × 0.44
35.25

= 0.0843.

Hence, from (47) and (61), we have

max ξ (ωr, ωrref) =
ω2

rrated

ωrmin
+ ωrmin + ωrrated

=
2.32

1.15
+ 1.15 + 2.3 = 8.05.

In D, λmax = 10.239 and

λmin =
Rωrmin

Vwrated
=

35.25 × 1.15
12

= 3.4 p.u.

Obviously, since the power coefficient (41) satisfies the condition (75) in Lemma 4, ζ(ωr,Vw) is always positive, as

shown in Fig. 3. From this figure,

min
(ωr ,Vw)∈D

ζ(ωr,Vw) = 1.271 × 105.

The reference values setting for the RSC control (25) with irdref = 401.4A,

K = 200I2.

Note that as ird(t)→ 401.4 A, the DFIG will generate with a unity power factor. Here, we used ωrref(t) with

k1 = 0.3J, Ĵ = J − k1 = 0.7J = 3.12 × 105,

k2 = 2Ĵ, k3 = k2 + 0.001Ĵ, k4 = 10, kd = 0.0029J, kp = 100kd,

ω̂ropt(0) = ωrrated, k′opt = 124610, δmax = 5kopt × 10−4,

k̂opt(0) = k′opt, k̂opt,ub = k′opt + k′opt + 3k−1
4 ω3

rrated ≈ 2kopt.

Hence, when v = 0.6 × 10−5, w = 4.825, α = kd k̂−2
opt,ubξ

−2
max and q = 0.4
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Fig. 4: Wind speed profile: (a) wind speed and (b) wind acceleration.

Ξ = K> + K − qI2 = diag (399.6, 399.6) > 0,[
0 1

]
Ξ−1

01
 + qkd = 0.0025 + 0.4kd ≈ 0.4kd,

2kp − αk̂2
opt,ubξ

2
max −

[
0 1

]
Ξ−1

01
 − qkd ≈ 198.6kd > 0,

and

2ζmin − wĴγ − (k3 − k2) − 1 ≈ 2.542 × 105 − 0.105wĴ − 0.001Ĵ

= (0.8145 − 0.0843w − 0.001)Ĵ

= 0.4068Ĵ > qĴ,

k3 − k2 − ω
2
rrated − wγ = 0.001Ĵ − 2.32 − 0.0843w

≈ 3.12 × 102 − 5.6967 = 306.3033 > q,

(2 − vkopt)k4 − ω
2
rrated = (2 − v × 1.2467 × 105)k2 − 2.32

= 6.26 − 5.29 = 0.97 > q.

It is easily observed that the five inequalities in Theorem 1 are satisfied. Hence, the upper bound for the rotor speed

ωr(t) in Theorem 1 is

|ωr(t) − ωropt(Vw(t))| ≤

1
√

0.4

√
0.0843
4.825

(
1 +

1
3.12 × 105

)
+

5 × 25 × 10−8

0.6 × 10−5

1.2467 × 105

3.12 × 105

= 0.254.
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(a) (b)

(c) (d)

Fig. 5: Simulation results: (a) ωr(t) − ωropt(Vw(t)), (b) power coefficient Cp(λ(t)), (c) Pmax(t) − Pm(t), and (d) electrical energy output.

(a) (b)

Fig. 6: Simulation results: (a) ratio k̂opt/kopt and (b) ωropt(t) − ω̂ropt(t).

For the above DFIG wind turbine, wind profile, and controller, the simulation results are shown in Fig. 5. Fig. 5a

argues that with the conventional method, the error between ωr(t) and ωropt(t) is still quite large, up to 0.3 rad/s. This

is unlikely with the proposed method, as ωr(t) always approaches ωropt(t) and guarantees that the |ωr(t) − ωropt(t)| is

always very small, below 0.254 rad/s, as Theorem 1. Consequently, the power coefficient Cp is virtually maintained

around its maximum value Cpmax= 0.4 p.u. during the simulation interval. This is displayed clearly by the solid line

in Fig. 5b. This performance is hardly seen in the case with the conventional method, because during the interval of

rapid decrease in wind speed, the large error in rotor speed, ωr(t) − ωropt(t), leads to a reduction of Cp to 0.45 p.u., as

shown by the broken line in Fig. 5b.

Concerning the mechanical power output of the wind turbine, Fig. 5c depicts the error between Pmax and Pm.

The figure shows that when the wind velocity varies dramatically, the error between Pmax and Pm is approximately

to zero with the proposed method. This is mainly because the power coefficient Cp remains around Cpmax, as shown

in Fig. 5b. In other words, with the proposed method, the main objective, which is to have Pm approach Pmax,

is completely achieved. With the conventional method, however, this goal is not achievable due to the significant

decrease in Cp during sudden variations in wind conditions.

With the proposed strategy, the total electrical energy output of the generator is higher than that with the conven-
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(a) (b)

(c)

Fig. 7: Simulation results: (a) wind speed, (b) power coefficient, and (c) energy output.

tional strategy, as shown in Fig. 5d. This is mainly because Pm in the case of the proposed method has a higher value.

This confirms that the quality of the proposed scheme is always better than that of the conventional one.

Fig. 6a indicates that during the simulation interval, k̂opt is always below its maximum value, which is estimated

as k̂opt,ub = 2kopt. From Fig. 6b, the gap between ωropt(t) and its estimation ω̂ropt(t) is quite small, below 0.097rad/s.

In other words, the proposed method is more suitable than the conventional one.

In the case where a rapid wind profile, similar to that shown in Fig. 7a, is used, the simulation results are demon-

strated in Fig. 7b and Fig. 7c. Obviously, the wind turbine with the proposed method has better performance than with

the conventional one, in terms of both the power coefficient Cp and energy output.

6. Conclusion

This paper suggests a MPPT method for DFIG wind turbines without any information about the wind data or an

available anemometer. With the proposed MPPT method, it is guaranteed that a wind turbine can track the maximum

power operation point better than a wind turbine with the conventional MPPT-curve method; this is verified through

the simulation of a 1.5-MW DFIG wind turbine in a MATLAB/Simulink environment. The simulation results illustrate

that Cp, Pm, and ωr vary around their optimal values; the electrical energy output of the generator is always higher

than that extracted with the conventional method. Furthermore, with the proposed control method, the wind turbine is

always in stable operation. Thus, the proposed control method has a high qualified performance.

Appendix A. Matrix inequality

Let Sn denote a set of real-valued symmetrical n × n matrices and let λi(Y) denote the ith eigenvalue of Y ∈ Sn.
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For Y ∈ Sn and x ∈ Rn, the following inequality holds [30]:

min λi(Y) ‖x‖2 ≤ x>Yx ≤ max λi(Y) ‖x‖2 . (A.1)

Definition 1. (ex. p. 647 in [31]) A matrix Y = Y> ∈ Rn×n is said to be positive definite if x>Yx > 0 for all nonzero

vector x ∈ Rn. We denote the positive definite matrix as Y > 0. Moreover, if x>Yx ≥ 0 for all x , 0, Y is said to be

positive semidefinite, and we denote it as Y ≥ 0.

Lemma 5. For Y ∈ Sn,

Y > 0 ⇔ λi(Y) > 0, (A.2)

Y ≥ 0 ⇔ λi(Y) ≥ 0. (A.3)

For Y, Z ∈ Sn, we use Y > (≥)Z to mean Y − Z > (≥)0.

Lemma 6. For any matrices Y and Z,

±Y>Z ± Z>Y ≤ Y>Y + Z>Z, (A.4)

∓Y>Z ∓ Z>Y ≥ −Y>Y − Z>Z. (A.5)

Proof. It is trivial from

∓Y>Z ∓ Z>Y + Y>Y + Z>Z = (Y ∓ Z)>(Y ∓ Z) ≥ 0. (A.6)

Lemma 7.  Q S

S> R

 > 0⇔ R > 0 and Q − SR−1S> > 0 (A.7)

⇔ Q > 0 and R − S>Q−1S > 0. (A.8)

Proof.  Q S

S> R

 =

I SR−1

0 I


Q − SR−1S> 0

0 R


 I 0

R−1S> I

 (A.9)

=

 I 0

S>Q−1 I


Q 0

0 R − S>Q−1S


I Q−1S

0 I

 (A.10)

For square matrices A and B, we denote a block-diagonal matrix as

A ⊕ B ,

A 0

0 B

 . (A.11)
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Appendix B. Proof of Lemma 3

The solutions of (53) and (54) are

ω̂ropt(t) = e−k3tω̂ropt(0) + k3

∫ t

0
e−k3(t−τ)ωr(τ)dτ, (B.1)

k̂opt(t) = e−k4tk̂opt(0) (B.2)

+

∫ t

0
(−ωr(τ)2ω̂ropt(τ) + ωr(τ)3 + k4k′opt)e

−(k4−τ)dτ. (B.3)

Because ωr(t) < ωrrated, we have∣∣∣ω̂ropt(t)
∣∣∣ ≤ ∣∣∣e−k3t

∣∣∣ ∣∣∣ω̂ropt(0)
∣∣∣ + k3

∣∣∣∣∣∣
∫ t

0
e−k3(t−τ)ωr(τ)dτ

∣∣∣∣∣∣
≤

∣∣∣e−k3t
∣∣∣ ∣∣∣ω̂ropt(0)

∣∣∣ + k3ωrrated

∣∣∣∣∣∣
∫ t

0
e−k3(t−τ)dτ

∣∣∣∣∣∣
≤

∣∣∣ω̂ropt(0)
∣∣∣ + (1 − e−k3t)ωrrated

≤
∣∣∣ω̂ropt(0)

∣∣∣ + ωrrated

and ∣∣∣k̂opt(t)
∣∣∣ ≤ ∣∣∣e−k4t

∣∣∣ ∣∣∣k̂opt(0)
∣∣∣ +

∫ t

0

∣∣∣ωr(τ)2
∣∣∣ ∣∣∣ω̂ropt(τ)

∣∣∣ e−k4(t−τ)dτ

+

∫ t

0

(∣∣∣ωr(τ)3
∣∣∣ + k4k′opt

)
e−k4(t−τ)dτ

≤
∣∣∣e−k4t

∣∣∣ ∣∣∣k̂opt(0)
∣∣∣

+ (
∣∣∣ω̂ropt(0)

∣∣∣ + ωrrated)
∫ t

0

∣∣∣ωr(τ)2
∣∣∣ e−k4(t−τ)dτ

+

∫ t

0

(∣∣∣ωr(τ)3
∣∣∣ + k4k′opt

)
e−k4(t−τ)dτ

≤
∣∣∣k̂opt(0)

∣∣∣ + (1 − e−k4t)
(
k−1

4 ω3
rrated + k′opt

)
+

(∣∣∣ω̂ropt(0)
∣∣∣ + ωrrated

)
(1 − e−k4t)k−1

4 ω2
rrated

≤
∣∣∣k̂opt(0)

∣∣∣ + k−1
4 ω3

rrated + k′opt

+
(∣∣∣ω̂ropt(0)

∣∣∣ + ωrrated

)
k−1

4 ω2
rrated

≤
∣∣∣k̂opt(0)

∣∣∣ + 2k−1
4 ω3

rrated + k−1
4

∣∣∣ω̂ropt(0)
∣∣∣ω2

rrated + k′opt.

Appendix C. Proof of Theorem 1

To use

E =

kd 0

0 I2

 ⊕
Ĵ 0

0 I2

 > 0 (C.1)
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and

X =

αI3 0

0 I3

 > 0, (C.2)

we define a Lyapunov function as

V , e(t)>XEe(t), (C.3)

where

e(t) =



eωrref (t)

ei(t)

eωopt (t)

eω̂ropt (t)

ekopt (t)


,



ωrref(t) − ωr(t)

irref(t) − ir(t)

ωr(t) − ωropt(Vw(t))

ωropt(Vw(t)) − ω̂ropt(t)

kopt − k̂opt(t)


. (C.4)

In this proof, we show that the derivative of the Lyapunov function

V̇ = e(t)>XE
d
dt

e(t) +

(
E

d
dt

e(t)
)>

Xe(t), (C.5)

satisfies

V̇ < −qV + ε. (C.6)

By defining the function p(t) , −qV + ε − V̇ > 0, we have

V̇ = −qV + ε − p(t).

Then,

V(t) = e−qtV(0) +

∫ t

0
e−q(t−τ) (ε − p(τ)) dτ (C.7)

< e−qtV(0) +

∫ t

0
e−q(t−τ)εdτ (C.8)

= e−qtV(0) +
ε

q

(
1 − e−qt

)
. (C.9)

Hence, the upper bound of V(t) converges to ε/q. This implies that V(t) will be bounded by ε/q as t increases. Since

Ĵeωopt (t)
2 ≤ V(t), there exists a time to > 0 such that for all t ≥ to,

|eωopt (t)| = |ωr(t) − ωropt(Vw(t))| <
√

ε

Ĵq
(C.10)

is satisfied.

Hereafter, we will derive (C.6).
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From (2), (72), and (51), we have

Jωr(t)
d
dt
ωr(t) = Pm(t) − Pe(t)

= koptωr(t)3 − ζ(t)ωr(t)eωopt (t) − k̂opt(t)ωrref(t)3

+ ωr(t)
(
k1

d
dt
ωr(t) − k2

(
ωr(t) − ω̂ropt(t)

))
.

Then, when we use Ĵ = J − k1 and ωrref(t)3 − ωr(t)3 = ξ (ωr(t), ωrref(t))ωr(t)eωrref (t), and ωr(t) − ω̂ropt(()t) = eωopt (t) +

eω̂ropt (t), we have

Ĵ
d
dt
ωr(t) = koptωr(t)2 − ζ(t)eωopt (t) − k̂opt(t)ωr(t)2

− k̂opt(t)ξ (ωr(t), ωrref(t)) eωrref (t) − k2

(
ωr(t) − ω̂ropt(t)

)
= (kopt − k̂opt(t))ωr(t)2 − ζ(t)eωopt (t)

− k̂opt(t)ξ (ωr(t), ωrref(t)) eωrref (t) − k2

(
eωopt (t) + e4(t)

)
= −ζ(t)eωopt (t) − k2

(
eωopt (t) + eω̂ropt (t)

)
+ ωr(t)2ekopt (t) − k̂opt(t)ξ (ωr(t), ωrref(t)) eωrref (t).

Hence,

Ĵ
d
dt

e3(t) = Ĵ
d
dt
ωr(t) − Ĵ

d
dt
ωropt(Vw(t))

= − (ζ(t) + k2) eωopt (t) − k2eω̂ropt (t) + ωr(t)2ekopt (t)

− k̂opt(t)ξ (ωr(t), ωrref(t)) eωrref (t) − Ĵ
d
dt
ωropt(Vw(t)). (C.11)

From (33), (50), (54), (53), and (C.11), we can summarize

E
d
dt

e(t) = A(t)e(t) + B
d
dt
ωropt(t) + Cδ

+ Dk̂opt(t)ξ (ωr(t), ωrref(t)) Ge(t), (C.12)
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where

A(t) =

A1 0

0 A2(t)

 , B =



0

0

−Ĵ

1

0


,C =



0

0

0

0

−k4


,D =



0

0

−1

0

0


,

G =

[
1 0 0 0 0

]
, (C.13)

A1 = −

kp

[
0 −1

]
0 K

 , (C.14)

A2(t) =


− (ζ(t) + k2) −k2 Jωr(t)2

−k3 −k3 0

−ωr(t)2 −ωr(t)2 −k4

 . (C.15)

By substituting (C.12) into (C.5), we have

V̇ = e(t)>
(
XA(t) + A(t)>X

)
e(t) + 2e(t)>XB

d
dt
ωropt(t)

+ 2e(t)>Cδ + 2e(t)>XDk̂opt(t)ξ (ωr(t), ωrref(t)) Ge(t). (C.16)

Since 2|eωopt (t)| ≤ weωopt (t)
2 + w−1 and 2|eω̂ropt (t)| ≤ weω̂ropt (t)

2 + w−1 for w > 0, we have

2e(t)>XB
d
dt
ωropt(t) ≤ 2

∣∣∣−Ĵeωopt (t) + eω̂ropt (t)
∣∣∣ ∣∣∣∣∣ d

dt
ωropt(Vw(t))

∣∣∣∣∣
≤ 2

(
Ĵ|eωopt (t)| + |eω̂ropt (t)|

)
γ

≤
(
wĴeωopt (t)

2 + weω̂ropt (t)
2 + w−1 Ĵ + w−1

)
γ

= e(t)>Me(t) + ε1, (C.17)

where

M , wγ diag
(
0, 0, Ĵ, 1, 0

)
, (C.18)

ε1 , w−1γ(Ĵ + 1). (C.19)

Likely, we have

2e(t)>XCδ < 2k4|ekopt (t)||δmax|kopt ≤ e(t)>Ne(t) + ε2, (C.20)

where N = diag(0, 0, 0, 0, vkoptk4), ε2 = v−1k4koptδ
2
max. Furthermore, by applying (A.4) in Lemma 6 to set Y =
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αk̂opt(t)ξ (ωr(t), ωrref(t)) G and Z = α−1D>X, we have

2e(t)>XDk̂opt(t)ξ (ωr(t), ωrref(t)) Ge(t)

= e(t)>G>k̂opt(t)ξ (ωr(t), ωrref(t)) D>Xe(t)

+ e(t)>XDk̂opt(t)ξ (ωr(t), ωrref(t)) Ge(t)

≤ e(t)>α2k̂opt(t)2ξ (ωr(t), ωrref(t))2 G>Ge(t)

+ α−2e(t)>(t)XDD>Xe(t). (C.21)

Then, by noting that α−2XDD>X = DD> and defining

Q(t) , −XA(t) − A(t)>X −M − N − DD>

− α2k̂opt(t)2ξ (ωr(t), ωrref(t))2 G>G, (C.22)

ε , ε1 + ε2, (C.23)

we have

V̇ ≤ −e(t)>Q(t)e(t) + ε. (C.24)

Hence, if

Q(t) − qXE > 0, (C.25)

then

V̇ < −qe(t)>XEe(t) + ε. (C.26)

This implies (C.6). To complete the proof, we need the next lemma.

Lemma 8. The five inequalities in (59) imply (C.25).

Proof. qXE and Q(t) are both block diagonal as

qXE = qα

kd 0

0 I2

 ⊕ q

Ĵ 0

0 I2

 , (C.27)

Q(t) = α


2kp − αk̂opt(t)2ξ (ωr(t), ωrref(t))2

[
0 −1

]
 0

−1

 K> + K


⊕


2ζ(t) + 2k2 − wγĴ − 1 k2 + k3 0

k2 + k3 2k3 − wγ ωr(t)2

0 ωr(t)2 (2 − vkopt)k4

 . (C.28)
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Hence, we show (C.25) separately as
2kp − αk̂opt(t)2ξ (ωr(t), ωrref(t))2

[
0 −1

]
 0

−1

 K> + K

 − q

kd 0

0 I2

 > 0, (C.29)


2ζ(t) + 2k2 − wγĴ − 1 k2 + k3 0

k2 + k3 2k3 − wγ ωr(t)2

0 ωr(t)2 (2 − vkopt)k4

 − q

Ĵ 0

0 I2

 > 0. (C.30)

By noting that k̂opt,ubξmax ≥ k̂opt(t)ξ (ωr(t), ωrref(t)) and applying (7) , the first two inequalities in (59) imply (C.29).
2kp − αk̂2

opt,ubξ
2
max −

[
0 −1

]
Ξ−1

 0

−1

 − qkd > 0,

Ξ = K> + K − qI2 > 0.

(C.31)

To apply (A.5) in Lemma 6 by setting

Y =


√

k2 + k3 0 0

0 0 ωr(t)

 , Z =

0
√

k2 + k3 0

0 ωr(t) 0

 , (C.32)

the off-diagonal elements of (C.30) are bounded as
0 k2 + k3 0

k2 + k3 0 ωr(t)2

0 ωr(t)2 0


≥ −


k2 + k3 0 0

0 k2 + k3 + ωr(t)2 0

0 0 ωr(t)2

 . (C.33)

By noting that ζ(t) ≥ ζmin and ωr(t) ≤ ωrrated, the last three inequalities in (59) imply (C.30).
2ζmin − wĴγ − (k3 − k2) − 1 > qĴ,

k3 − k2 − ω
2
rrated − wγ > q,

(2 − vkopt)k4 − ω
2
rrated > q.

(C.34)

This completes the proof.
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