二相混合体内の波動伝播に基づく海底地盤の波浪応答の理論解

由比政年*・石田 啓**・矢富盟祥*** 廣部英一****・保智正和****

1. 序 論

波浪による海底地盤の動的な応答特性を知ることは. 海洋構造物基礎地盤の安定性を評価する上での重要課題 の1つである。海底地盤を気泡を含む間隙水(圧縮性流 体)と土粒子骨格(線形弾性体)との混合体と考えると、 波浪による水圧変動が地盤表面に作用することにより, 地盤内部には2種類の膨張波と1種類のせん断波が誘起 され、これらの波動の伝播により土粒子骨格や間隙水の 動的な応答が生じる. つまり,海底地盤の波浪応答の問 題は、土、水の二相混合体内部を伝播する波動の問題に 帰着できる.二相混合体内の波動の特性に対しては,Biot (1956)の理論が良く用いられるが, Biotの理論には、物 理的意味の不明確な仮想質量がパラメータとして含ま れ、また、具体的な問題に対して閉じた解を求めること も非常に困難である。これに対し、本研究では、海底地 盤内部の波動伝播問題に、Mei (1989)が、混合体理論か ら導いた基礎方程式を適用し,境界領域近似を用いずに 直接解くことにより、海底地盤の波浪応答に対する新し い理論解を物理的意味の明快な形で誘導する。また、本 論で誘導される動的な理論解が、その極限形として、従 来用いられてきた準静的な解(Yamamoto ら, 1978)を 含むことを示し、両者の関係から、動的解、準静的解の 有効性を判断する上で重要となる無次元パラメータを提 示する.

2. 基礎方程式および境界条件

2.1 基礎方程式

Mei (1989)の手法に従い,海底地盤を多孔質の土粒子 骨格と間隙水の混合体と考え,混合体理論に基づいて定 式化を行う.

まず、土粒子骨格は圧縮性を持つとし、有効応力とひ ずみの関係が Hooke の法則に従う、等方・一様な線形弾 性体としてモデル化する。ただし、土粒子自身は非圧縮

*	正会員	工修	金沢大学助手 工学部土木建設工学科
**	正会員	工博	金沢大学教授 工学部土木建設工学科
***	正会員	Ph.D.	金沢大学教授 工学部土木建設工学科
****	正会員	工修	福井高専助教授 環境都市工学科
****			金沢大学大学院

性とする.一方,間隙水は気泡の混入を考慮して圧縮性 の完全流体として扱う.次に,二相間の相互作用力は, 二相間の相対運動による抗力と間隙水圧に関連した力の 和で表されるとし,重力項は他の各項に比較して十分小 さいと仮定する.静的平衡状態からの変動量に対する基 礎方程式を求めることとし,微小量(変動量)の2次以 上の項を無視して線形化を行うと,貯留式および土相, 水相の運動方程式が次のように導かれる.

$$k\nabla^{2}p = \frac{\partial}{\partial t} (\operatorname{div} \boldsymbol{u}_{s}) + \frac{n}{\beta} \frac{\partial p}{\partial t} - k\rho_{w} \frac{\partial^{2}}{\partial t^{2}} (\operatorname{div} \boldsymbol{u}_{w})$$

$$G[\nabla^{2}\boldsymbol{u}_{s} + \frac{1}{1-2\nu} \operatorname{grad}(\operatorname{div} \boldsymbol{u}_{s})] - \operatorname{grad} p$$

$$= n\rho_{w} \frac{\partial^{2}\boldsymbol{u}_{w}}{\partial t^{2}} + (1-n)\rho_{s} \frac{\partial^{2}\boldsymbol{u}_{s}}{\partial t^{2}}$$

$$n\rho_{w} \frac{\partial^{2}\boldsymbol{u}_{w}}{\partial t^{2}} = -n \operatorname{grad} p - \frac{n^{2}}{k} \left(\frac{\partial \boldsymbol{u}_{w}}{\partial t} - \frac{\partial \boldsymbol{u}_{s}}{\partial t}\right)$$

ここで、pは間隙水圧、uは変位であり、静的平衡状態からの変動量を表す.なお、添え字 s、wは、それぞれ土相および水相に対応する.また、 ρ は物質密度、 β は間隙水の体積弾性係数、n、k、G、 ν は土粒子骨格の間隙率、透水係数、せん断弾性係数およびポアソン比をそれぞれ表す.

土粒子骨格と間隙水の変位 *u*_s, *u*_w を, スカラーポテン シャル φ_s, φ_w とベクトルポテンシャル φ_s, φ_w を用いて 非回転部分と非発散部分に分解する.

$$\begin{array}{c|c} u_s = \operatorname{grad} \phi_s + \operatorname{rot} \phi_s \\ u_w = \operatorname{grad} \phi_w + \operatorname{rot} \phi_w \end{array}$$

これを式(1)に代入し整理すると次式が得られる.

 $p, \phi_s, \phi_w, \psi_s, \psi_w$ が以下の式を満足する時,式(3) なお, d_1, d_2, d_3 は以下の通りであり, は、自動的に満たされることになる.

$$\left. \begin{array}{l} G \nabla^2 \boldsymbol{\psi}_s - n \rho_w \frac{\partial^2 \boldsymbol{\psi}_w}{\partial t^2} - (1 - n) \rho_s \frac{\partial^2 \boldsymbol{\psi}_s}{\partial t^2} = 0 \\ n \rho_w \frac{\partial^2 \boldsymbol{\psi}_w}{\partial t^2} + \frac{n^2}{k} \frac{\partial \boldsymbol{\psi}_w}{\partial t} - \frac{n^2}{k} \frac{\partial \boldsymbol{\psi}_s}{\partial t} = 0 \end{array} \right\} \quad \dots \dots (5)$$

ここで、p、 ϕ_s 、 ϕ_w に対する方程式系(4)と、 ψ_s 、 ψ_w に対する方程式系(5)は、互いに分離された形で表さ れており,前者が海底地盤内の膨張波に対する方程式系, 後者がせん断波に対する方程式系となっている.

2.2 境界条件

以下では、x-z面内の平面ひずみ問題を考え、水平方向 に x 軸, 鉛直下向きに z 軸を取る. x 軸の正の方向に進 行する波浪と厚さが半無限大の地盤を考え、地盤の表面 と無限下方で次のような境界条件を課す。

$$\sigma_{zz} = 0, \ \tau_{zx} = 0, \ p = p_0 \exp[i(ax - \omega t)] \quad \text{at } z = 0 \\ u_s = 0, \ w_s = 0, \ p = 0 \qquad \text{at } z = \infty \end{bmatrix}$$

なお、 $u_s = (us, w_s)$ であり、 σ_{zz} 、 τ_{zx} はそれぞれ、鉛直有 効応力およびせん断応力を表す.また,地盤表面での間 隙水圧の変動振幅 bo は微小振幅波理論を用いて求める。

3. 理論解の誘導

3.1 膨張波に対する特性方程式

境界条件が時間および空間(x方向)に関して周期的 であるので,間隙水圧とスカラーポテンシャルの任意点 での解にも調和振動的な形を仮定する.

> $\phi_s = S \exp[i(ax + \xi z - \omega t)]$ $\phi_w = W \exp[i(ax + \xi z - \omega t)] \Big\{ \cdots \cdots \cdots \cdots (7)$

$$p = P \exp[i(ax + \xi z - \omega t)]$$

これらを式(4)に代入し、得られた式が非自明な解を 持つという条件から、 €に対する特性方程式が 2 次の代 数方程式として導かれる.これを解いて、2組の複素解 *±ξ*, *±ξ*2を求めると次のようになる.

$$\xi_{1} = \left[\frac{-d_{2} - \sqrt{d_{2}^{2} - 4d_{1}d_{3}}}{2d_{1}}\right]^{1/2} \dots (8)$$

$$\xi_{2} = \left[\frac{-d_{2} + \sqrt{d_{2}^{2} - 4d_{1}d_{3}}}{2d_{1}}\right]^{1/2} \dots (9)$$

ただし、ξ,ξ,は虚数部が正のものを選ぶものとする. ただし、Γ,および Λ,は次式で表される.

$\rho_e = n\rho_w + (1-n)\rho_s \cdots \qquad \cdots$	(13)
$\mu = \rho_w \omega k \cdots$	(14)
$m = nG/[(1-2\nu)\beta]$	(15)

ここで、 pe は、海底地盤の混合体としての密度であり、 μ, mは無次元のパラメータとなる. また, ξ1, ξ2 に対応 した波動は、Biot(1956)の示した2種類の膨張波に対応 しており、以下では、これらをそれぞれ第1,第2の膨 張波と呼ぶことにする.

3.2 せん断波に対する特性方程式

3.1 節と同様にベクトルポテンシャルの解にも調和振 動的な形を仮定する.

$$\psi_{sy} = \overline{S} \exp[i(ax + \eta z - \omega t)] \\ \psi_{wy} = \overline{W} \exp[i(ax + \eta z - \omega t)] \end{cases}$$
(16)

なお、平面ひずみ問題では、 $\boldsymbol{\psi}_{s}$ 、 $\boldsymbol{\psi}_{w}$ は y 成分のみ有効と なるので y 成分のみを示している.

これらを式(5)に代入し、得られた式が非自明な解 を持つという条件から, ηに対する特性方程式が1次の 代数方程式として導かれ、その解が次のように求められ る.

ただし、ηは虚数部が正のものを選ぶものとする.

3.3 係数間の関係式

3.1, 3.2 節の結果と無限下方での境界条件を考慮する

と、p, ϕ_s , ϕ_w , ψ_{sy} , ψ_{wy} は次のように表される. $\phi_s = [S_1 \exp(i\xi_1 z) + S_2 \exp(i\xi_2 z)] \exp[i(ax - \omega t)]$ $\phi_w = [W_1 \exp(i\xi_1 z) + W_2 \exp(i\xi_2 z)] \exp[i(ax - \omega t)]$ $p = [P_1 \exp(i\xi_1 z) + P_2 \exp(i\xi_2 z)] \exp[i(ax - \omega t)]$ $\psi_{sy} = S_3 \exp(i\eta z) \exp[i(ax - \omega t)]$ $\psi_{wy} = W_3 \exp(i\eta z) \exp[i(ax - \omega t)]$

ここで、各項の係数は独立ではなく、式(4)および(5) を満たすという条件から、次の関係式が得られる。

$$\Gamma_{j} = \frac{in\omega - \frac{2(1-\nu)}{(1-2\nu)}kG(\xi_{j}^{2} + a^{2}) + (1-n)\omega\frac{\rho_{s}}{\rho_{w}}\mu}{\omega[in + \mu(1-n)]}$$
(j=1, 2)

$$\Gamma_{3} = \frac{in}{in + \mu}$$

$$\Lambda_{j} = -\frac{2(1 - \nu)}{(1 - 2\nu)} G(\xi_{j}^{2} + a^{2}) + (1 - n)\rho_{s}\omega^{2}$$

$$+ n\rho_{w}\omega^{2}\Gamma_{j} \quad (j = 1, 2)$$

......(20)

次に、地盤表面での境界条件から以下の式が導かれる。 $F_1S_1+F_2S_2=0$

 $\left.\begin{array}{c} A_1S_1 + A_2S_2 = p_0\\ S_3 = 2a(\xi_1S_1 + \xi_2S_2)/(\eta^2 - a^2) \end{array}\right\} \cdots \cdots \cdots (21)$

ここで, F_iは次式で定義される.

$$F_{j} = \xi_{j}^{2} + \frac{\nu}{1 - 2\nu} (\xi_{j}^{2} + a^{2}) + \frac{2a^{2}\xi_{j}\eta}{\eta^{2} - a^{2}} \quad (j = 1, 2) \cdots (22)$$

3.4 理論解の誘導

式(21)をS_i,S₂について解き,その結果を式(19) に代入すると,海底地盤の波浪応答に対する動的な理論 解として次式が得られる.

$$\phi_{s} = p_{0}[F_{2} \exp(i\xi_{1}z) - F_{1} \exp(i\xi_{2}z) \exp[i(ax - \omega t)]/J]$$

$$\phi_{w} = p_{0}[F_{2}\Gamma_{1} \exp(i\xi_{1}z) - F_{1}\Gamma_{2} \exp(i\xi_{2}z)]$$

$$\times \exp[i(ax - \omega t)]/J$$

$$p = p_{0} \frac{\exp(i\xi_{1}z) + M \exp(i\xi_{2}z)}{(1 + M)} \exp[i(ax - \omega t)]$$

$$\phi_{sy} = \frac{2ap_{0}(F_{2}\xi_{1} - F_{1}\xi_{2})}{J(\eta^{2} - a^{2})} \exp(i\eta z) \exp[i(ax - \omega t)]$$

$$\phi_{wy} = \frac{2in \ ap_{0}(F_{2}\xi_{1} - F_{1}\xi_{2})}{J(\eta^{2} - a^{2})(in + \mu)} \exp(i\eta z) \exp[i(ax - \omega t)]$$
.....(23)

ただし、J、Mは次式で定義される。 $J = \Lambda_1 F_2 - \Lambda_2 F_1$

間隙水圧の変動は、第1、第2の膨張波の重ね合わせ で表現され、第1項、第2項がそれぞれ第1、第2の膨 張波に対応している。また、両者の係数比は、無次元パ ラメータMのみで決定される。なお、間隙水圧の変動は、 せん断波にはよらない。

一方,土粒子骨格の変位 u_s , w_s は, ポテンシャル ϕ_s , ϕ_{sy} を式(2)に代入することにより求められ, 2つの膨張 波とせん断波の重ね合わせとして次のように表される.

$$u_{s} = p_{0} [iaF_{2} \exp(i\xi_{1}z) - iaF_{1} \exp(i\xi_{2}z) \\ -2ia\eta(F_{2}\xi_{1} - F_{1}\xi_{2})\exp(i\eta z)/(\eta^{2} - a^{2})]/J \\ \times \exp[i(ax - \omega t)] \\ w_{s} = p_{0} [i\xi_{1}F_{2} \exp(i\xi_{1}z) - i\xi_{2}F_{1} \exp(i\xi_{2}z) \\ +2ia^{2}(F_{2}\xi_{1} - F_{1}\xi_{2})\exp(i\eta z)/(\eta^{2} - a^{2})]/J \\ \times \exp[i(ax - \omega t)]$$
 ... (25)

ここで、 u_s 、 w_s の第1項、第2項がそれぞれ第1、第 2の膨張波に、第3項がせん断波による変位に対応して いる.また、変位の式を Hooke の法則に代入することに より、有効応力も容易に算出することができる.

4. 理論解に対する考察

4.1 膨張波およびせん断波の鉛直方向の伝達特性

海底地盤の波浪応答における代表的な諸元を用いる と,

$$\begin{cases} \xi_1 = ia(1 - \varepsilon \delta)^{1/2} \\ \eta = ia(1 - \delta)^{1/2} \end{cases} \quad \dots \qquad (27)$$

ただし、 ε および δ は、 次式で定義される.

 ε は(nG/β)および ν の関数であり、図—1に示すように、 0 $\leq \varepsilon \leq 0.5$ の範囲内で変化する.

ここで、水面波の位相速度を C_w とし、また、海底地盤 内の土相と水相が一体となって運動する場合のせん断波 の位相速度を C_s とすると、

$$C_W = \omega/a C_S = (G/\rho_e)^{1/2}$$
 (29)

であり,これらを用いると,δは*C*wと*C*sの比の2乗として,次のように表せる.

図-1 εのνに対する変化

図-3 δの Cs に対する変化

て計算を行っている. これらの図より, $C_s > 100 (m/s) の$ 条件下では, $\delta \ll 1$ となるが, $C_s < 100 (m/s)$ となるような 軟弱地盤に対しては, δ は C_s の減少に伴い急激な上昇を 見せること, また, 微小振幅波理論の分散関係に従う場 合には, 水面波の周期Tが小さくなるほど δ の値は小さ くなることが分かる.

ここで、1に対して δ の2次以上の項が無視できるような場合を考えると、 ξ_i 、 η は次のように簡略化される.

 $\begin{cases} \xi_1 = ia(1 - \varepsilon \delta/2) \\ \eta = ia(1 - \delta/2) \end{cases}$ (31)

 ξ_1, η は、ともに準虚数となるので、この近似のもとでは、第1の膨張波およびせん断波は、鉛直方向に無限大の位相速度で伝播することになる。また、振幅が e^{-1} 倍となる距離を減衰の代表長さLと定義すると、

$$L_{\epsilon 1} = a^{-1} (1 - \epsilon \delta/2)^{-1} L_{\eta} = a^{-1} (1 - \delta/2)^{-1}$$
 (32)

となり,水面波の波数 $a \ge \delta$ に依存することが分かる. なお、今の場合、第1の膨張波とせん断波の位相・減衰 特性は、透水係数の影響を受けない.

一方,第2の膨張波について、µ≪1の近似を行うと、

$$\xi_{2} = \left[-a^{2} + i \frac{\omega}{k} \left(\frac{1 - 2\nu}{2(1 - \nu)G} + \frac{n}{\beta} \right) \right]^{1/2} \dots \dots \dots (33)$$

となる. ξ_2 は複素数になるので、第2の膨張波はz方向に減衰と位相遅れを伴いながら伝播する.また、一般に、

ん断波に比べてかなり急激なものとなる.

4.2 係数間の関係式

3.3節で求めた係数間の関係式を *µ*≪1 の条件下で近 似すると以下の式が得られる.

$$\left.\begin{array}{l}
\Gamma_{1}=1 \\
\Gamma_{2}=1-[1+2(1-\nu)m]/n \\
\Gamma_{3}=1 \\
\Lambda_{1}=(\rho_{e}\omega^{2})/[1+2(1-\nu)m] \\
\Lambda_{2}=-i(\omega/k)/[1+2(1-\nu)m]
\end{array}\right\} \quad \dots \dots \dots (35)$$

この時,式(19)より,

4.3 準静的解との比較

次に、今回得られた動的な理論解と Yamamoto ら (1978)の準静的な理論解との関係を検討する.

まず, 3.1 および 3.2 節で得られた波動の特性に関して は次のことがいえる.準静的解での間隙水圧および土粒 子骨格変位の各項の指数部分は,第1の膨張波とせん断 波に対しては,式(31)で $\delta \rightarrow 0$ の極限をとったものに対 応し,また,第2の膨張波に対しては式(33)に対応し ている.従って,準静的解においては,第1の膨張波と せん断波に対して,波動の減衰を過大に評価しているこ とになる.通常の場合には, δ は1に対して十分小さな値 を取り,その影響も小さいと考えられるが,大河川の河 口周辺で見られるような未圧密軟弱地盤の波浪安定性を 考える場合には, δ は1に対して無視できない大きさと なり,慣性項を含んだ動的な解析が必要となる.

次に,各項の係数部分についての比較を行う. μ の1次 以上の項および δ の2次以上の項を1に対して無視す る近似を行うと,間隙水圧の表示式(23)中のMは次の ようになり,

$$M = \frac{(1-\nu)(\xi_2^2 + a^2)m}{(1-\nu)(\xi_2^2 + a^2) - (1-2\nu)(a^2 + ia\xi_2)} \cdots (37)$$

∂に関連した項は互いにキャンセルする.つまり,間隙水 圧の各項の係数部分に対しては,∂は,2次以上の影響し かもたない.

ここで,式(37)をさらに変形すると,間隙水圧の第 1項,第2項の係数部分が,Yamamotoらの準静的解と 完全に一致することを示すことができる.ただし,本論 では,*x*軸の正方向の進行波を扱っているのに対し, Yamamotoら(1978)は, *x*軸の負方向の進行波を対象 としていることを考慮する必要がある.

次に、土粒子骨格変位に対して同様の近似を行うと、 u_s の係数部分は、式(38)に示すように、 ∂ の1次の項 が残る形となる.これより、間隙水圧よりも土粒子骨格 変位の方が、慣性項の影響をより強く受けることが分か る.

 $S_{1}=2H[\hat{F}_{2}(1+2(1-\nu)m)]/(a\delta)$ $S_{2}=-aH/[2(1-\nu)]$ $S_{3}=-2H[i\hat{F}_{2}(1+2(1-\nu)m)(1+(1-\varepsilon)\delta/2) - ma\xi_{2}\delta(1+\delta/2)/2]/(a\delta)$ $H=p_{0}/[2aG\{\hat{F}_{2}+m(\xi_{2}^{2}+a^{2})(1-\nu)/(1-2\nu)]]$ $\hat{F}_{2}=-a^{2}+(\xi_{2}^{2}+a^{2})(1-\nu)/(1-2\nu)-ia\xi_{2}$ $C \subset \mathfrak{C}, \delta \to 0 \text{ 0D極限に対する } u_{s} \text{ 0D関数形を計算する } \varepsilon,$ $u_{s}=iH[-\hat{F}_{2}(1+m)az \exp(-az) + m\{(1-2\nu)\hat{F}_{2}-ia\xi_{2}\}\exp(-az) - a^{2}\exp(-\xi_{2}z)/(2(1-\nu))]\exp[i(ax-\omega t)]]$

となる.式(39)に対しても,水面波の進行方向の違い を考慮して式変形を行うことにより,Yamamotoらの準 静的解と等価であることを示すことができる.なお,極 限操作の際,第1の膨張波とせん断波に対応した部分が, 0/0の不定形となるが,その部分については,ロピタルの 定理を用いて,極限形を求めている.

また、土粒子骨格の鉛直方向変位 w_s に関して、同様に $\mu \rightarrow 0$ 、 $\delta \rightarrow 0$ の極限形を求めると次のようになり、

 $w_s = H[\hat{F}_2(1+m)az\exp(-az) + \{\hat{F}_2(1+2(1-\nu)m)\}$

 $+ia\xi_2 m$ } exp(-az)- $ia\xi_2 exp(-i\xi_2 z)$

/2(1-ν))] exp[*i*(*ax*-ω*t*)] ………………………(40) これも Yamamoto らの準静的解と等価な形となる.

以上のことより、Yamamoto らの準静的解は、今回導 かれた理論解において、 $\mu \rightarrow 0$ 、 $\delta \rightarrow 0$ の極限をとったもの であることがわかる.なお、 $\mu \rightarrow 0$ 、 $\delta \rightarrow 0$ はそれぞれ、貯 留式中および運動方程式中で慣性項が無視できるための 条件に相当する.

この結果より,準静的解の適用性を考慮する際には, 2つの無次元パラメータ,μ,δが重要な役割を果たすこ とがわかる.これらのパラメータが1に比較して十分小 さい場合には,準静的解が適用可能であるが,これらの 値が1に対して無視できないような場合,即ち,先に述 べたような大河川河口周辺部での未圧密軟弱地盤等の波 浪安定性の検討に際しては,準静的解ではなく,今回示 した動的な解(式 (23))を用いる必要がある.

なお,準静的な解の適用性に関しては,Miuraら (1991)が,有限要素法を用いた動的な数値解析結果と準 静的および静的な理論解析結果とを比較し,動的な手法 が最も正確であること,特に地盤の透水性が高く,軟弱 な地盤において有効であることを示している.この指摘 のうち,地盤の透水性に関した部分は μ に,地盤の剛性 に関した部分は δ に,それぞれ関連したものである.ま た,Sakaiら(1988)は,Meiら(1981)の境界領域近似 解を拡張して,慣性項の影響を検討し,海底面の圧力波 形が前傾し切り立った形を持つ場合には,動的な解が必 要となる可能性を示唆している.この点に関しては,今 回の解析の結果より,以下のことがいえる.4.1節に示し たように,最も周波数の低い成分波に対して δ が1より も十分小さければ,それより高い周波数の成分に対する δ の値はさらに小さくなり,準静的解の適用が可能にな る.つまり,準静的な近似が有効性を失うのは,高周波 成分に対してではなく,逆に波長が非常に長い場合,即 ち1次元的な解析を行う場合となる.

5. 結 論

海底地盤を間隙水(圧縮性流体)と土粒子骨格(線形 弾性体)の混合体でモデル化し、その混合体内部を伝播 する2種類の膨張波と1種類のせん断波に対して、波動 の位相,減衰特性を導いた。さらに、一様な半無限地盤に 波浪が作用する場合の土粒子骨格と間隙水の動的応答に 対する理論解を誘導した。得られた解の各成分は第1, 第2の膨張波およびせん断波に対応しており、物理的意 味のきわめて明確な形で表現された。また、今回得られ た理論解は、その極限形として、従来用いられてきた準 静的な理論解を含むことを示し、さらに、両者の関係を 検討することにより、準静的解の適用性を判断する上で 重要となる2つの無次元パラメータを提示した。

参考文献

- Biot, M. A. (1956): Theory of propagation of elastic waves in a fluid-saturated porous solid.
 I. Low-frequency range, J. Acoust. Soc. Am., Vol. 28, No. 2,
- pp. 168-178. Madsen, O. S. (1978): Wave-induced pore pressures and effective etroscos in a percus hed Control. Vol. 28. No. 4.
- effective stresses in a porous bed, Geotech., Vol. 28, No. 4, pp. 377–393. Mei, C. C. and M. A. Foda, (1981): Wave-induced responses in
- a fluid-filled poro-elastic solid with a free surface—a boundary layer theory, Geophys. J. R. astr. Soc., Vol. 66, pp. 597-631.
- Mei, C. C. (1989): The Applied Dynamics of Ocean Surface Waves, World-Scientific, Singapore, 740 p.
- Miura, K., M. Hayashi and N. Yoshida (1991): Applicability of analytical methods for seabed response to ocean waves, Proc. Geo-Coast '91 Yokohama, pp. 609–614.
- Sakai, T., H. Mase and A. Matsumoto (1988): Effects of inertia and gravity on seabed response to ocean waves, Modeling Soil-Water-Structure interactions, Kolkman et al. (eds), Balkema, Rotterdam, pp. 61-66.
- Yamamoto, T., H. L. Koning, H. Sellmeijer and E. V. Hijum (1978): On the response of a poro-elastic bed to water waves, J. Fluid Mech., Vol. 87, Part 1, pp. 193–206.