Square functions related to integral of Marcinkiewicz and Sobolev spaces

メタデータ	言語：eng
	出版者：
	公開日： $2017-10-02$
	キーワード（Ja）：
	キーワード（En）：
	作成者： メールアドレス： 所属：
hRL	http：／／hdl．handle．net／2297／48265

SQUARE FUNCTIONS RELATED TO INTEGRAL OF MARCINKIEWICZ AND SOBOLEV SPACES

SHUICHI SATO

Abstract. We prove a characterization of Sobolev spaces of order 2 by square functions related to the integral of Marcinkiewicz.

1. Introduction

Let ψ be a function in $L^{1}\left(\mathbb{R}^{n}\right)$ satisfying

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \psi(x) d x=0 . \tag{1.1}
\end{equation*}
$$

We consider the Littlewood-Paley function on \mathbb{R}^{n} defined by

$$
g_{\psi}(f)(x)=\left(\int_{0}^{\infty}\left|f * \psi_{t}(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2}
$$

where $\psi_{t}(x)=t^{-n} \psi\left(t^{-1} x\right)$, and a discrete parameter version of g_{ψ} :

$$
\Delta_{\psi}(f)(x)=\left(\sum_{k=-\infty}^{\infty}\left|f * \psi_{2^{k}}(x)\right|^{2}\right)^{1 / 2}
$$

We recall the non-degeneracy conditions

$$
\begin{array}{cc}
\sup _{t>0}|\hat{\psi}(t \xi)|>0 & \text { for all } \xi \neq 0 \\
\sup _{k \in \mathbb{Z}}\left|\hat{\psi}\left(2^{k} \xi\right)\right|>0 & \text { for all } \xi \neq 0 \tag{1.3}
\end{array}
$$

where \mathbb{Z} denotes the set of integers and the Fourier transform $\hat{\psi}$ is defined by

$$
\hat{\psi}(\xi)=\int_{\mathbb{R}^{n}} \psi(x) e^{-2 \pi i\langle x, \xi\rangle} d x, \quad\langle x, \xi\rangle=\sum_{k=1}^{n} x_{k} \xi_{k}
$$

Obviously, (1.3) implies (1.2). The weighted Lebesgue space $L_{w}^{p}\left(\mathbb{R}^{n}\right)$ with a weight w is defined to be the class of all the measurable functions f on \mathbb{R}^{n} such that

$$
\|f\|_{p, w}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{1 / p}<\infty
$$

Then the following two theorems are known (see [11]).
Theorem A. Suppose that
(1) $B_{\epsilon}(\psi)<\infty \quad$ for some $\epsilon>0$, where $B_{\epsilon}(\psi)=\int_{|x|>1}|\psi(x)||x|^{\epsilon} d x$;

[^0](2) $D_{u}(\psi)<\infty \quad$ for some $u>1$ with $D_{u}(\psi)=\left(\int_{|x|<1}|\psi(x)|^{u} d x\right)^{1 / u}$;
(3) $H_{\psi} \in L^{1}\left(\mathbb{R}^{n}\right)$, where $H_{\psi}(x)=\sup _{|y| \geq|x|}|\psi(y)|$;
(4) the non-degeneracy condition (1.2) holds.

Then $\|f\|_{p, w} \simeq\left\|g_{\psi}(f)\right\|_{p, w}, f \in L_{w}^{p}$, for all $p \in(1, \infty)$ and $w \in A_{p}$ (the Muckenhoupt class), where $\|f\|_{p, w} \simeq\left\|g_{\psi}(f)\right\|_{p, w}$ means that

$$
c_{1}\|f\|_{p, w} \leq\left\|g_{\psi}(f)\right\|_{p, w} \leq c_{2}\|f\|_{p, w}
$$

with positive constants c_{1}, c_{2} independent of f.
Theorem B. We assume that
(1) $B_{\epsilon}(\psi)<\infty$ for some $\epsilon>0$;
(2) $|\hat{\psi}(\xi)| \leq C|\xi|^{-\delta} \quad$ for all $\xi \in \mathbb{R}^{n} \backslash\{0\}$ with some $\delta>0$;
(3) $H_{\psi} \in L^{1}\left(\mathbb{R}^{n}\right)$;
(4) the non-degeneracy condition (1.3) holds.

Then $\|f\|_{p, w} \simeq\left\|\Delta_{\psi}(f)\right\|_{p, w}, f \in L_{w}^{p}$, for all $p \in(1, \infty)$ and $w \in A_{p}$.
The inequality $\left\|g_{\psi}(f)\right\|_{p, w} \leq c\|f\|_{p, w}$ in Theorem A was shown in [8] without the assumption (4).

The Sobolev space $W^{\alpha, p}\left(\mathbb{R}^{n}\right), \alpha>0,1<p<\infty$, consists of all the functions f which can be written as $f=J_{\alpha}(g)=K_{\alpha} * g$ for some $g \in L^{p}\left(\mathbb{R}^{n}\right)$ with the Bessel potential J_{α}, where

$$
\hat{K}_{\alpha}(\xi)=\left(1+4 \pi^{2}|\xi|^{2}\right)^{-\alpha / 2}
$$

(see [12, Chap. V]). The norm of f in $W^{\alpha, p}\left(\mathbb{R}^{n}\right)$ is defined as $\|f\|_{p, \alpha}=\|g\|_{p}$. Let $0<\alpha<2$. The operator

$$
\mathcal{U}_{\alpha}(f)(x)=\left(\int_{0}^{\infty}\left|f(x)-f_{B(x, t)} f(y) d y\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2}
$$

was studied in [1] and used to characterize the space $W^{\alpha, p}\left(\mathbb{R}^{n}\right)$. Here we write

$$
f_{B(x, t)} f(y) d y=\frac{1}{|B(x, t)|} \int_{B(x, t)} f(y) d y
$$

where $|B(x, t)|$ is the Lebesgue measure of a ball $B(x, t)$ in \mathbb{R}^{n} with center x and radius t.

We recall the weight class A_{p} of Muckenhoupt. A weight w belongs to A_{p}, $1<p<\infty$, if

$$
\sup _{B}\left(f_{B} w(x) d x\right)\left(f_{B} w(x)^{-1 /(p-1)} d x\right)^{p-1}<\infty
$$

where the supremum is taken over all balls B in \mathbb{R}^{n} (see [4]).
Let $1<p<\infty, \alpha>0$ and $w \in A_{p}$. Then $J_{\alpha}(g) \in L_{w}^{p}$ if $g \in L_{w}^{p}$, since it is known that $\left|J_{\alpha}(g)\right| \leq C M(g)$, where where M denotes the Hardy-Littlewood maximal operator defined by

$$
M(f)(x)=\sup _{t>0} f_{B(x, t)}|f(y)| d y
$$

The weighted Sobolev space $W_{w}^{\alpha, p}\left(\mathbb{R}^{n}\right)$ is defined as the collection of all the functions $f \in L_{w}^{p}\left(\mathbb{R}^{n}\right)$ which can be expressed as $f=J_{\alpha}(g)$ for some $g \in L_{w}^{p}\left(\mathbb{R}^{n}\right)$; such g is uniquely determined and the norm is defined to be $\|f\|_{p, \alpha, w}=\|g\|_{p, w}$.

Theorems A, B can be applied to characterize the weighted Sobolev spaces $W_{w}^{\alpha, p}\left(\mathbb{R}^{n}\right)$ by square functions related to the Marcinkiewicz function including $\mathcal{U}_{\alpha}(f)$ and

$$
\left(\sum_{k=-\infty}^{\infty}\left|f(x)-f_{B\left(x, 2^{k}\right)} f(y) d y\right|^{2} 2^{-2 k \alpha}\right)^{1 / 2}, \quad \alpha>0
$$

The Marcinkiewicz function was introduced by [7] (see [9] for some background materials).

We say $\Phi \in \mathcal{M}^{\alpha}\left(\mathbb{R}^{n}\right), \alpha>0$, if Φ is a compactly supported, bounded function on \mathbb{R}^{n} satisfying $\int_{\mathbb{R}^{n}} \Phi(x) d x=1$; if $\alpha \geq 1$, we further assume that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \Phi(x) x^{\gamma} d x=0, \quad x^{\gamma}=x_{1}^{\gamma_{1}} \ldots x_{n}^{\gamma_{n}}, \quad \text { for all } \gamma \text { with } 1 \leq|\gamma| \leq[\alpha] \tag{1.4}
\end{equation*}
$$

where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right), \gamma_{j} \in \mathbb{Z}, \gamma_{j} \geq 0$, is a multi-index and $|\gamma|=\gamma_{1}+\cdots+\gamma_{n}$; also $[\alpha]$ denotes the largest integer not exceeding α. Let

$$
\begin{gather*}
U_{\alpha}(f)(x)=\left(\int_{0}^{\infty}\left|f(x)-\Phi_{t} * f(x)\right|^{2} \frac{d t}{t^{1+2 \alpha}}\right)^{1 / 2}, \quad \alpha>0 \tag{1.5}\\
E_{\alpha}(f)(x)=\left(\sum_{k=-\infty}^{\infty}\left|f(x)-\Phi_{2^{k}} * f(x)\right|^{2} 2^{-2 k \alpha}\right)^{1 / 2}, \quad \alpha>0 \tag{1.6}
\end{gather*}
$$

with $\Phi \in \mathcal{M}^{\alpha}\left(\mathbb{R}^{n}\right)$.
Then the following results are known (see [11]).
Theorem C. Let $1<p<\infty, w \in A_{p}$ and $0<\alpha<n$. Let U_{α} be as in (1.5). Then $f \in W_{w}^{\alpha, p}\left(\mathbb{R}^{n}\right)$ if and only if $f \in L_{w}^{p}$ and $U_{\alpha}(f) \in L_{w}^{p}$; furthermore,

$$
\|f\|_{p, \alpha, w} \simeq\|f\|_{p, w}+\left\|U_{\alpha}(f)\right\|_{p, w}
$$

Theorem D. Suppose that $1<p<\infty, w \in A_{p}$ and $0<\alpha<n$. Let E_{α} be as in (1.6). Then $f \in W_{w}^{\alpha, p}\left(\mathbb{R}^{n}\right)$ if and only if $f \in L_{w}^{p}$ and $E_{\alpha}(f) \in L_{w}^{p}$; also,

$$
\|f\|_{p, \alpha, w} \simeq\|f\|_{p, w}+\left\|E_{\alpha}(f)\right\|_{p, w}
$$

See $[6,10]$ for relevant results.
In this note we consider another characterization of $W_{w}^{2, p}\left(\mathbb{R}^{n}\right)$ by certain square functions relative to the integral of Marcinkiewicz when $n \geq 3$, which extends to the cases $n=1,2$.

Let $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$. We assume

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \Phi(x) x_{j}^{2} d x=\frac{1}{n} \int_{\mathbb{R}^{n}} \Phi(x)|x|^{2} d x=b_{0} \quad \text { for all } j, 1 \leq j \leq n \tag{1.7}
\end{equation*}
$$

When $n \geq 2$, we also assume

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \Phi(x) x_{j} x_{k} d x=0 \quad \text { for all } j, k, 1 \leq j, k \leq n \text { with } j \neq k \tag{1.8}
\end{equation*}
$$

Let I_{α} be the Riesz potential operator defined by

$$
\begin{equation*}
\widehat{I_{\alpha}(f)}(\xi)=(2 \pi|\xi|)^{-\alpha} \hat{f}(\xi), \quad 0<\alpha<n \tag{1.9}
\end{equation*}
$$

Let $L_{\alpha}(x)=\tau(\alpha)|x|^{\alpha-n}$, where

$$
\tau(\alpha)=\frac{\Gamma\left(\frac{n}{2}-\frac{\alpha}{2}\right)}{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)} .
$$

Then $\widehat{L}_{\alpha}(\xi)=(2 \pi|\xi|)^{-\alpha}, 0<\alpha<n$.
Let $n \geq 3$. Define

$$
\begin{equation*}
\psi(x)=\Phi * L_{2}(x)-L_{2}(x)+c_{0} \Phi(x) \tag{1.10}
\end{equation*}
$$

with $c_{0}=b_{0} / 2$ and $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$ satisfying (1.7) and (1.8); when $n=1$ and $n=2$, we have analogues of (1.10) in (5.5) and (4.4) below, respectively. Applying Theorems A and B, we have the following results.

Theorem 1.1. Suppose that $n \geq 3$. Let $w \in A_{p}, p \in(1, \infty)$. Let ψ be as in (1.10) with $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$ satisfying (1.7) and (1.8). Suppose that the non-degeneracy condition (1.2) holds. Then

$$
\|f\|_{p, w} \simeq\left\|g_{\psi}(f)\right\|_{p, w}, \quad f \in L_{w}^{p}
$$

Theorem 1.2. Let $n \geq 3$. Let Φ be a function in $\mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$ with (1.7), (1.8) and let ψ be as in (1.10). We assume that

$$
\begin{equation*}
|\hat{\Phi}(\xi)| \leq C|\xi|^{-\delta} \quad \text { for all } \xi \in \mathbb{R}^{n} \backslash\{0\} \text { with some } \delta>0 \tag{1.11}
\end{equation*}
$$

and that the non-degeneracy condition (1.3) holds. Then we have

$$
\|f\|_{p, w} \simeq\left\|\Delta_{\psi}(f)\right\|_{p, w}, \quad f \in L_{w}^{p}
$$

for all $p \in(1, \infty)$ and $w \in A_{p}$.
Theorems 1.1 and 1.2 will be used to prove Theorems 1.4 and 1.5 below for $n \geq 3$, respectively.

Proof of Theorem 1.1. Suppose that $\operatorname{supp}(\Phi) \subset\{|x| \leq M\}$. Then we have $|\psi(x)| \leq$ $C|x|^{2-n}$ if $|x| \leq 2 M$. Let $|x| \geq 2 M$. Then, applying Taylor's formula, by (1.7), (1.8) and (1.4) with $|\gamma|=1$ we see that

$$
\begin{aligned}
L_{2} * \Phi(x)-L_{2}(x) & =\tau(2) \int_{\mathbb{R}^{n}}\left(|x-y|^{2-n}-|x|^{2-n}\right) \Phi(y) d y \\
& =\frac{1}{2} \int_{\mathbb{R}^{n}} \sum_{j=1}^{n} y_{j}^{2} \partial_{j}^{2} L_{2}(x) \Phi(y) d y+O\left(|x|^{-n-1}\right) \\
& =\frac{1}{2} b_{0} \sum_{j=1}^{n} \partial_{j}^{2} L_{2}(x)+O\left(|x|^{-n-1}\right) \\
& =O\left(|x|^{-n-1}\right),
\end{aligned}
$$

as $|x| \rightarrow \infty$, where the last equality follows from $\Delta L_{2}(x)=\sum_{j=1}^{n} \partial_{j}^{2} L_{2}(x)=0$, $\partial_{j}=\partial / \partial x_{j}$.

We see that

$$
\hat{\psi}(\xi)=(2 \pi|\xi|)^{-2} \hat{\Phi}(\xi)-(2 \pi|\xi|)^{-2}+c_{0} \hat{\Phi}(\xi)=(2 \pi|\xi|)^{-2}(\hat{\Phi}(\xi)-1)+c_{0} \hat{\Phi}(\xi)
$$

Also, by (1.7), (1.8) and (1.4) with $|\gamma|=1$, we have

$$
\begin{aligned}
\hat{\Phi}(\xi) & =\int_{\mathbb{R}^{n}} \Phi(x) e^{-2 \pi i\langle x, \xi\rangle} d x \\
& =1+\int_{\mathbb{R}^{n}} \Phi(x) \frac{1}{2}(-2 \pi i\langle x, \xi\rangle)^{2} d x+O\left(|\xi|^{3}\right) \\
& =1-2 \pi^{2} \int_{\mathbb{R}^{n}} \Phi(x)\left(\sum_{j=1}^{n} x_{j}^{2} \xi_{j}^{2}\right) d x+O\left(|\xi|^{3}\right) \\
& =1-2 \pi^{2} b_{0}|\xi|^{2}+O\left(|\xi|^{3}\right),
\end{aligned}
$$

as $|\xi| \rightarrow 0$. Thus, since $c_{0}=b_{0} / 2$, we have $|\hat{\psi}(\xi)| \leq C|\xi|$ and hence (1.1). Altogether, thus we can apply Theorem A to get the conclusion of Theorem 1.1.

Similarly, Theorem 1.2 follows from Theorem B.
Define $\mathcal{L}=-\Delta=-\sum_{j=1}^{n} \partial_{j}^{2}, \partial_{j}=\partial / \partial x_{j}$, on $\mathbb{R}^{n}, n \geq 1$. Then, if $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$,

$$
\widehat{\mathcal{L}(f)}(\xi)=(2 \pi|\xi|)^{2} \hat{f}(\xi)
$$

where we have denoted by $\mathcal{S}\left(\mathbb{R}^{n}\right)$ the Schwartz class of rapidly decreasing smooth functions on \mathbb{R}^{n}. We note the following.

Lemma 1.3. Let $n \geq 1$. Define H_{0} on $\mathcal{S}\left(\mathbb{R}^{n}\right)$ by $H_{0}(f)=\mathcal{L}\left(J_{2}(f)\right)$. Then H_{0} extends to a bounded operator on L_{w}^{p} and also we have $H_{0}(f)=\mathcal{L}\left(J_{2}(f)\right)$ for $f \in L_{w}^{p}$, where $\mathcal{L}=-\Delta=-\sum_{j=1}^{n} \partial_{j}^{2}$ is defined by the weak derivative:

$$
\int_{\mathbb{R}^{n}} H_{0}(f)(x) \eta(x) d x=\int_{\mathbb{R}^{n}} J_{2}(f)(x) \mathcal{L}(\eta)(x) d x=-\int_{\mathbb{R}^{n}} J_{2}(f)(x) \sum_{j=1}^{n} \partial_{j}^{2} \eta(x) d x
$$

for all $\eta \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
We shall give a proof of Lemma 1.3 in Section 2.
Let $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$. Let

$$
\begin{equation*}
S(f)(x)=\left(\int_{0}^{\infty}\left|f * \Phi_{t}(x)-f(x)+c_{0} t^{2} \mathcal{L}(f) * \Phi_{t}(x)\right|^{2} \frac{d t}{t^{5}}\right)^{1 / 2} \tag{1.12}
\end{equation*}
$$

when $f, \mathcal{L}(f) \in L_{w}^{p}$, where c_{0} is as in (1.10). For $g \in L_{w}^{p}$ let $H_{0}(g)$ be as in Lemma 1.3 and define

$$
\begin{equation*}
S_{2}(g)(x)=\left(\int_{0}^{\infty}\left|J_{2}(g) * \Phi_{t}(x)-J_{2}(g)(x)+c_{0} t^{2} H_{0}(g) * \Phi_{t}(x)\right|^{2} \frac{d t}{t^{5}}\right)^{1 / 2} \tag{1.13}
\end{equation*}
$$

Then $S\left(J_{2}(g)\right)=S_{2}(g)$ for $g \in L_{w}^{p}$ by Lemma 1.3. Let

$$
\begin{equation*}
S(f, g)(x)=\left(\int_{0}^{\infty}\left|f * \Phi_{t}(x)-f(x)+c_{0} t^{2} g * \Phi_{t}(x)\right|^{2} \frac{d t}{t^{5}}\right)^{1 / 2} \tag{1.14}
\end{equation*}
$$

for $f, g \in L_{w}^{p}$. Then, if $f, \mathcal{L}(f) \in L_{w}^{p}$, we have $S(f, \mathcal{L}(f))=S(f)$.
The square function $S(f, g)$ is able to characterize the space $W_{w}^{2, p}$ as follows.
Theorem 1.4. Let $n \geq 1$. Suppose that $f \in L_{w}^{p}, 1<p<\infty, w \in A_{p}$. Let $S(f)$, $S(f, g)$ be as in (1.12), (1.14), respectively, with $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$ satisfying (1.7), (1.8) and (1.2), where Φ and ψ are related as in (1.10), (4.4) or (5.5) according as $n \geq 3$, $n=2$ or $n=1$. Then
(1) if $f \in W_{w}^{2, p}$, then $\mathcal{L}(f) \in L_{w}^{p}$ and $S(f) \in L_{w}^{p}$;
(2) if $S(f, g) \in L_{w}^{p}$ for some $g \in L_{w}^{p}$, then $f \in W_{w}^{2, p}$ and $g=\mathcal{L}(f)$. Also, if $f \in W_{w}^{2, p}$,

$$
\|S(f)\|_{p, w} \simeq\|\mathcal{L}(f)\|_{p, w}, \quad\|S(f)\|_{p, w}+\|f\|_{p, w} \simeq\|f\|_{p, 2, w}
$$

We can also consider discrete parameter version of Theorem 1.4. Let $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
V(f)(x)=\left(\sum_{k=-\infty}^{\infty}\left|f * \Phi_{2^{k}}(x)-f(x)+c_{0} 2^{2 k} \mathcal{L}(f) * \Phi_{2^{k}}(x)\right|^{2} 2^{-4 k}\right)^{1 / 2} \tag{1.15}
\end{equation*}
$$

if $f, \mathcal{L}(f) \in L_{w}^{p}$. Let

$$
\begin{equation*}
V_{2}(g)(x)=\left(\sum_{k=-\infty}^{\infty}\left|J_{2}(g) * \Phi_{2^{k}}(x)-J_{2}(g)(x)+c_{0} 2^{2 k} H_{0}(g) * \Phi_{2^{k}}(x)\right|^{2} 2^{-4 k}\right)^{1 / 2} \tag{1.16}
\end{equation*}
$$

for $g \in L_{w}^{p}$. If $g \in L_{w}^{p}$, we have $V\left(J_{2}(g)\right)=V_{2}(g)$ by Lemma 1.3. For $f, g \in L_{w}^{p}$, let

$$
\begin{equation*}
V(f, g)(x)=\left(\sum_{k=-\infty}^{\infty}\left|f * \Phi_{2^{k}}(x)-f(x)+c_{0} 2^{2 k} g * \Phi_{2^{k}}(x)\right|^{2} 2^{-4 k}\right)^{1 / 2} \tag{1.17}
\end{equation*}
$$

We have $V(f, \mathcal{L}(f))=V(f)$ if $f, \mathcal{L}(f) \in L_{w}^{p}$.
We have a discrete parameter analogue of Theorem 1.4.
Theorem 1.5. Suppose that $n \geq 1$ and $f \in L_{w}^{p}, 1<p<\infty, w \in A_{p}$. Let Φ be a function in $\mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$ satisfying (1.7), (1.8), (1.11) and (1.3), where Φ and ψ are related as in Theorem 1.4. Let $V(f)$ and $V(f, g)$ be as in (1.15) and (1.17), respectively. Then
(1) $\mathcal{L}(f) \in L_{w}^{p}$ and $V(f) \in L_{w}^{p}$ if $f \in W_{w}^{2, p}$;
(2) if $V(f, g) \in L_{w}^{p}$ for some $g \in L_{w}^{p}$, it follows that $f \in W_{w}^{2, p}$ and $g=\mathcal{L}(f)$.

Further, if $f \in W_{w}^{2, p}$,

$$
\|V(f)\|_{p, w} \simeq\|\mathcal{L}(f)\|_{p, w}, \quad\|V(f)\|_{p, w}+\|f\|_{p, w} \simeq\|f\|_{p, 2, w}
$$

See [2] for characterization of the Sobolev spaces by square functions related to the Lusin area integral and the Littlewood-Paley g_{λ}^{*} function.

Let Φ be a function in $\mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$ satisfying (1.7) and (1.8), then we have already seen in the proof of Theorem 1.1 that the function ψ defined by (1.10), $n \geq 3$, satisfies the conditions (1.1) and (1), (2), (3) of Theorem A. This is also the case for functions ψ in (4.4) and in (5.5) below, on \mathbb{R}^{2} and on \mathbb{R}, respectively, as can be shown similarly.

Let us further assume that Φ is a radial function. Then, we have the decay estimate (1.11) by the formula in [13, p.155, Theorem 3.3] for $n \geq 2$. Also, if Φ is a radial function, it follows that ψ defined by (1.10) satisfies the non-degeneracy condition (1.3) and hence (1.2). This is also the case for functions ψ in (4.4) and (5.5).

We can see (1.3) when Φ is a radial function as follows. First, we note that there exists an entire function $G(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ such that $\hat{\psi}(\xi)=G(|\xi|)$. We can see that ψ is not identically 0 . This holds since ψ is unbounded when $n \geq 2$; the result for $n=1$ is also seen by an inspection (see Section 5). Therefore we have (1.3) since $z=0$ cannot be an accumulation point of zeros of $G(z)$.

If $\Phi=|B(0,1)|^{-1} \chi_{B(0,1)}$, then $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{n}\right)$ and Φ satisfies (1.7) with $b_{0}=2 c_{0}=$ $1 /(n+2),(1.8),(1.11)$ and (1.3) with ψ as in (1.10), (4.4) and (5.5), for all $n \geq 1$. This follows from remarks above and easy observations. In this case we can rewrite $S(f), S(f, g)$ and $V(f), V(f, g)$ as follows.

$$
\begin{gathered}
S(f)(x)^{2}=\int_{0}^{\infty}\left|f_{B(x, t)}\left(f(y)-f(x)-\frac{1}{2 n}(\Delta f)_{B(x, t)}|y-x|^{2}\right) d y\right|^{2} \frac{d t}{t^{5}} \\
S(f, g)(x)^{2}=\int_{0}^{\infty}\left|f_{B(x, t)}\left(f(y)-f(x)+\frac{1}{2 n} g_{B(x, t)}|y-x|^{2}\right) d y\right|^{2} \frac{d t}{t^{5}} \\
V(f)(x)^{2}=\sum_{k=-\infty}^{\infty}\left|f_{B\left(x, 2^{k}\right)}\left(f(y)-f(x)-\frac{1}{2 n}(\Delta f)_{B\left(x, 2^{k}\right)}|y-x|^{2}\right) d y\right|^{2} 2^{-4 k} ; \\
V(f, g)(x)^{2}=\sum_{k=-\infty}^{\infty}\left|f_{B\left(x, 2^{k}\right)}\left(f(y)-f(x)+\frac{1}{2 n} g_{B\left(x, 2^{k}\right)}|y-x|^{2}\right) d y\right|^{2} 2^{-4 k},
\end{gathered}
$$

where $f_{B}=f_{B} f$. The square functions $S(f), S(f, g)$ are considered in [1] and unweighted results concerning them contained in Theorem 1.4 are due to [1].

In Section 2, we shall prove Lemma 1.3 and Theorem 1.4 for $n \geq 3$ by applying Theorem 1.1. Theorem 1.5 can be proved in the same way as Theorem 1.4, by using Theorem 1.2 if $n \geq 3$. We shall give an outline of the proof of Theorem 1.5 for $n \geq 3$ in Section 3 .

To prove Theorems 1.4 and 1.5 for $n=1,2$, we need analogues of Theorems 1.1 and 1.2. The cases $n=1,2$ should be treated separately, since the Riesz potential is not available as in the case of \mathbb{R}^{n} above for $n \geq 3$. In Section 4 , in the two dimensional case, Theorems 1.4 and 1.5 will be proved, where analogues of Theorems 1.1 and 1.2 will be shown for $n=2$. Finally, in Section 5, we shall prove Theorems 1.4 and 1.5 for $n=1$. Also, analogues of Theorems 1.1 and 1.2 for $n=1$ will be given.

2. Proof of Theorem 1.4 for $n \geq 3$

We need the following.
Lemma 2.1. Let S and S_{2} be as in (1.12) and (1.13), respectively, on $\mathbb{R}^{n}, n \geq 1$, with Φ as in Theorem 1.4. Let $g \in L_{w}^{p}, w \in A_{p}, 1<p<\infty$. Then

$$
\begin{equation*}
\left\|S\left(J_{2}(g)\right)\right\|_{p, w}+\left\|J_{2}(g)\right\|_{p, w}=\left\|S_{2}(g)\right\|_{p, w}+\left\|J_{2}(g)\right\|_{p, w} \simeq\|g\|_{p, w} \tag{2.1}
\end{equation*}
$$

We give a proof of Lemma 2.1 for $n \geq 3$ in this section. The results for $n=2$ and $n=1$ can be shown similarly with the arguments in Sections 4 and 5, respectively.

The following relations concerning Riesz and Bessel potentials are useful.
Lemma 2.2. Let $\alpha>0$. Suppose that $1<p<\infty$ and w is a weight in A_{p} on \mathbb{R}^{n}, $n \geq 1$.
(1) We can find a Fourier multiplier ℓ for L_{w}^{p} such that

$$
(2 \pi|\xi|)^{\alpha}=\ell(\xi)\left(1+4 \pi^{2}|\xi|^{2}\right)^{\alpha / 2}
$$

(2) We have

$$
\left(1+4 \pi^{2}|\xi|^{2}\right)^{\alpha / 2}=m(\xi)+m(\xi)(2 \pi|\xi|)^{\alpha}
$$

with some Fourier multiplier m for L_{w}^{p}.

Here we give a proof of Lemma 1.3.
Proof of Lemma 1.3 . By part (1) of Lemma 2.2, we see that H_{0} initially defined on $\mathcal{S}\left(\mathbb{R}^{n}\right)$ extends to a bounded operator on L_{w}^{p} and integration by parts implies

$$
\int_{\mathbb{R}^{n}} H_{0}(f)(x) \eta(x) d x=-\int_{\mathbb{R}^{n}} J_{2}(f)(x) \sum_{j=1}^{n} \partial_{j}^{2} \eta(x) d x
$$

for all $\eta \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ if $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Since both sides of the equality above are continuous in $f \in L_{w}^{p}$ for each fixed η and $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in L_{w}^{p}, we get the conclusion.

Proof of Lemma 2.1 for $n \geq 3$. We first prove (2.1) for $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. We can write

$$
S_{2}(g)=g_{\psi}\left(H_{0}(g)\right)
$$

Thus Theorem 1.1 implies

$$
\begin{equation*}
\left\|S_{2}(g)\right\|_{p, w}=\left\|g_{\psi}\left(H_{0}(g)\right)\right\|_{p, w} \simeq\left\|H_{0}(g)\right\|_{p, w} \leq C\|g\|_{p, w} \tag{2.2}
\end{equation*}
$$

Also, by part (2) of Lemma 2.2 and Theorem 1.1

$$
\begin{align*}
\|g\|_{p, w} & =\left\|J_{-2} J_{2}(g)\right\|_{p, w} \leq C\left\|J_{2}(g)\right\|_{p, w}+C\left\|\mathcal{L} J_{2}(g)\right\|_{p, w} \tag{2.3}\\
& \leq C\left\|J_{2}(g)\right\|_{p, w}+C\left\|S_{2}(g)\right\|_{p, w}
\end{align*}
$$

From (2.2) and (2.3), (2.1) follows for $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
Let

$$
S_{2}^{N}(g)(x)=\left(\int_{N^{-1}}^{N}\left|J_{2}(g) * \Phi_{t}(x)-J_{2}(g)(x)+c_{0} t^{2} H_{0}(g) * \Phi_{t}(x)\right|^{2} \frac{d t}{t^{5}}\right)^{1 / 2}
$$

Then $\left\|S_{2}^{N}(g)\right\|_{p, w} \leq C_{N}\|g\|_{p, w}$ for $g \in L_{w}^{p}$. Using this and (2.1) for $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have $\left\|S_{2}^{N}(g)\right\|_{p, w} \leq C\|g\|_{p, w}$ for $g \in L_{w}^{p}$ with a constant C independent of N, since $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in L_{w}^{p}. Thus, letting $N \rightarrow \infty$, we have $\left\|S_{2}(g)\right\|_{p, w} \leq C\|g\|_{p, w}$ for $g \in L_{w}^{p}$. We can take a sequence $\left\{g_{k}\right\}$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ such that $g_{k} \rightarrow g$ in L_{w}^{p} and $J_{2}\left(g_{k}\right) \rightarrow J_{2}(g)$ in L_{w}^{p} as $k \rightarrow \infty$. Then we note that $\left\|S_{2}\left(g_{k}\right)\right\|_{p, w} \rightarrow\left\|S_{2}(g)\right\|_{p, w}$. Thus, letting $k \rightarrow \infty$ in the relation

$$
\left\|S_{2}\left(g_{k}\right)\right\|_{p, w}+\left\|J_{2}\left(g_{k}\right)\right\|_{p, w} \simeq\left\|g_{k}\right\|_{p, w}
$$

which has been already shown, we get the conclusion.
The next result will be useful in what follows (see [11] for a proof).
Lemma 2.3. Suppose that f is in L_{w}^{p} on $\mathbb{R}^{n}, n \geq 1$, with $w \in A_{p}, 1<p<\infty$. Let $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$. Then we have
(1) $K_{\alpha} *(f * g)(x)=\left(K_{\alpha} * f\right) * g(x)=\left(K_{\alpha} * g\right) * f(x)$ for every $x \in \mathbb{R}^{n}$;
(2) $\int_{\mathbb{R}^{n}}\left(K_{\alpha} * f\right)(y) g(y) d y=\int_{\mathbb{R}^{n}}\left(K_{\alpha} * g\right)(y) f(y) d y$.

Proof of Theorem 1.4 for $n \geq 3$. If $f \in W_{w}^{2, p}, f=J_{2}(g)$ for some $g \in L_{w}^{p}$. Thus by Lemma 1.3 and Lemma 2.1 we have part (1).

Suppose $f, g, S(f, g) \in L_{w}^{p}$. Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\int \varphi=1$ and put $f^{\epsilon}=f * \varphi_{\epsilon}$, $g^{\epsilon}=g * \varphi_{\epsilon}, h^{\epsilon}=f * J_{-2}\left(\varphi_{\epsilon}\right)$. We note that $f^{\epsilon}=J_{2}\left(h^{\epsilon}\right)$ by Lemma 2.3, $f^{\epsilon}, g^{\epsilon}, h^{\epsilon} \in$ L_{w}^{p} and $\mathcal{L}\left(f^{\epsilon}\right)=H_{0}\left(h^{\epsilon}\right)$ by Lemma 1.3. Also, $g^{\epsilon} \rightarrow g, f^{\epsilon} \rightarrow f$ in L_{w}^{p}.

By Minkowski's inequality we have

$$
\begin{equation*}
S\left(f^{\epsilon}, g^{\epsilon}\right)(x) \leq C M(S(f, g))(x) \tag{2.4}
\end{equation*}
$$

Thus, since

$$
\left(\int_{0}^{\infty}\left|c_{0} H_{0}\left(h^{\epsilon}\right) * \Phi_{t}(x)-c_{0} g^{\epsilon} * \Phi_{t}(x)\right|^{2} \frac{d t}{t}\right)^{1 / 2} \leq S_{2}\left(h^{\epsilon}\right)(x)+S\left(f^{\epsilon}, g^{\epsilon}\right)(x)
$$

we see that the quantity on the left hand side belongs to L_{w}^{p} by (2.4) and Lemma 2.1. Thus

$$
0=\lim _{t \rightarrow 0}\left|H_{0}\left(h^{\epsilon}\right) * \Phi_{t}(x)-g^{\epsilon} * \Phi_{t}(x)\right|=\left|H_{0}\left(h^{\epsilon}\right)(x)-g^{\epsilon}(x)\right|,
$$

which implies

$$
\begin{gather*}
H_{0}\left(h^{\epsilon}\right)(x)=g^{\epsilon}(x), \tag{2.5}\\
S_{2}\left(h^{\epsilon}\right)(x)=S\left(f^{\epsilon}, g^{\epsilon}\right)(x),
\end{gather*}
$$

for almost every $x \in \mathbb{R}^{n}$, and hence

$$
\left\|S_{2}\left(h^{\epsilon}\right)\right\|_{p, w} \leq C
$$

with a constant C independent of $\epsilon>0$ by (2.4). Thus we have $\left\|h^{\epsilon}\right\|_{p, w} \simeq\left\|f^{\epsilon}\right\|_{p, w}+$ $\left\|S_{2}\left(h^{\epsilon}\right)\right\|_{p, w} \leq C$ by Lemma 2.1.

So, we have a sequence $\left\{h^{\epsilon_{k}}\right\}$ and $h \in L_{w}^{p}$ such that $h^{\epsilon_{k}} \rightarrow h$ weakly in L_{w}^{p}. For $\eta \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, by (2.5), Lemma 1.3 and Lemma 2.3 we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} H_{0}(h) \eta d x & =\int_{\mathbb{R}^{n}} J_{2}(h) \mathcal{L}(\eta) d x=\int_{\mathbb{R}^{n}} h J_{2}(\mathcal{L}(\eta)) d x \\
& =\lim _{k} \int_{\mathbb{R}^{n}} h^{\epsilon_{k}} J_{2}(\mathcal{L}(\eta)) d x=\lim _{k} \int_{\mathbb{R}^{n}} J_{2}\left(h^{\epsilon_{k}}\right) \mathcal{L}(\eta) d x \\
& =\lim _{k} \int_{\mathbb{R}^{n}} H_{0}\left(h^{\epsilon_{k}}\right) \eta d x=\lim _{k} \int_{\mathbb{R}^{n}} g^{\epsilon_{k}} \eta d x=\int_{\mathbb{R}^{n}} g \eta d x .
\end{aligned}
$$

Thus $H_{0}(h)=g$. Also,

$$
\int_{\mathbb{R}^{n}} H_{0}(h) \eta d x=\lim _{k} \int_{\mathbb{R}^{n}} J_{2}\left(h^{\epsilon_{k}}\right) \mathcal{L}(\eta) d x=\lim _{k} \int_{\mathbb{R}^{n}} f^{\epsilon_{k}} \mathcal{L}(\eta) d x=\int_{\mathbb{R}^{n}} f \mathcal{L}(\eta) d x .
$$

So we have $H_{0}(h)=g=\mathcal{L}(f)$. Similarly, we see that $f=J_{2}(h)$. This proves part (2).

By (2.2)

$$
\begin{equation*}
\left\|S_{2}(g)\right\|_{p, w} \simeq\left\|H_{0}(g)\right\|_{p, w} \tag{2.6}
\end{equation*}
$$

for $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Since S_{2} and H_{0} are continuous on L_{w}^{p} and $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is dense in L_{w}^{p}, we have (2.6) for all $g \in L_{w}^{p}$. If $f \in W_{w}^{2, p}$ and $f=J_{2}(h)$ with $h \in L_{w}^{p}, H_{0}(h)=\mathcal{L}(f)$ by Lemma 1.3 and $\left\|S_{2}(h)\right\|_{p, w}=\|S(f)\|_{p, w} \simeq\|\mathcal{L}(f)\|_{p, w}$ from (2.6). Also, by Lemma 2.1, $\|S(f)\|_{p, w}+\|f\|_{p, w} \simeq\|h\|_{p, w}=\|f\|_{p, 2, w}$. This completes the proof of Theorem 1.4 .

3. Proof of Theorem 1.5 for $n \geq 3$

We can prove Theorem 1.5 similarly to the proof of Theorem 1.4. So, only the outline of the proof is given.

Lemma 3.1. Let V and V_{2} be as in (1.15) and (1.16) on $\mathbb{R}^{n}, n \geq 1$, respectively, with Φ as in Theorem 1.5. Suppose that $g \in L_{w}^{p}, w \in A_{p}, 1<p<\infty$. Then

$$
\left\|V\left(J_{2}(g)\right)\right\|_{p, w}+\left\|J_{2}(g)\right\|_{p, w}=\left\|V_{2}(g)\right\|_{p, w}+\left\|J_{2}(g)\right\|_{p, w} \simeq\|g\|_{p, w} .
$$

To prove Lemma 3.1 for $n \geq 3$ we note that

$$
V_{2}(g)=\Delta_{\psi}\left(H_{0}(g)\right)
$$

for $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and apply Theorem 1.2 and Lemma 2.2.
Lemma 1.3 and Lemma 3.1 imply part (1) of Theorem 1.5. To prove part (2) of Theorem 1.5, let $f, g, V(f, g) \in L_{w}^{p}$ and $f^{\epsilon}, g^{\epsilon}, h^{\epsilon}$ be as in the proof of Theorem 1.4. Then

$$
V\left(f^{\epsilon}, g^{\epsilon}\right)(x) \leq C M(V(f, g))(x)
$$

by Minkowski's inequality. Using this and

$$
\left(\sum_{k=-\infty}^{\infty}\left|c_{0} H_{0}\left(h^{\epsilon}\right) * \Phi_{2^{k}}(x)-c_{0} g^{\epsilon} * \Phi_{2^{k}}(x)\right|^{2}\right)^{1 / 2} \leq V_{2}\left(h^{\epsilon}\right)(x)+V\left(f^{\epsilon}, g^{\epsilon}\right)(x)
$$

we can proceed as in the proof of Theorem 1.4 to get the assertion of part (2).

4. Two dimensional case

We consider $L_{\alpha}(x)=\tau(\alpha)|x|^{\alpha-2}$ on \mathbb{R}^{2}. Then we have the following (see [3, p. 151]).

Lemma 4.1. For $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ we have

$$
\begin{aligned}
& \left\langle-\frac{1}{2 \pi} \log \right| x|, \hat{\varphi}\rangle=\int_{\mathbb{R}^{2}}\left(-\frac{1}{2 \pi} \log |x|\right) \hat{\varphi}(x) d x=\lim _{\substack{\alpha \rightarrow 2 \\
\alpha<2}}\left\langle L_{\alpha}-\tau(\alpha), \hat{\varphi}\right\rangle \\
= & \int_{|\xi|<1}(2 \pi|\xi|)^{-2}(\varphi(\xi)-\varphi(0)) d \xi+\int_{|\xi| \geq 1}(2 \pi|\xi|)^{-2} \varphi(\xi) d \xi+\frac{1}{2 \pi} \varphi(0)\left(-\Gamma^{\prime}(1)+\log \pi\right) .
\end{aligned}
$$

It is known that $\Gamma^{\prime}(1)=-\gamma$, where γ denotes Euler's constant.
Proof of Lemma 4.1. Let $\alpha \in(0,2)$. Then

$$
\int_{|\xi|<1}(2 \pi|\xi|)^{-\alpha} d \xi-\tau(\alpha)=\frac{(2 \pi)^{1-\alpha}}{2-\alpha}-\frac{\Gamma\left(1-\frac{1}{2} \alpha\right)}{\Gamma\left(\frac{1}{2} \alpha\right) 2^{\alpha} \pi}=(2 \pi)^{1-\alpha} \frac{G(2)-G(\alpha)}{2-\alpha}
$$

where

$$
G(\alpha)=\frac{\Gamma\left(2-\frac{1}{2} \alpha\right) \pi^{\alpha-2}}{\Gamma\left(\frac{1}{2} \alpha\right)} .
$$

We note that
$G^{\prime}(\alpha)=\frac{-\frac{1}{2} \Gamma^{\prime}\left(2-\frac{1}{2} \alpha\right) \Gamma\left(\frac{1}{2} \alpha\right)-\frac{1}{2} \Gamma\left(2-\frac{1}{2} \alpha\right) \Gamma^{\prime}\left(\frac{1}{2} \alpha\right)}{\Gamma\left(\frac{1}{2} \alpha\right)^{2}} \pi^{\alpha-2}-\frac{\Gamma\left(2-\frac{1}{2} \alpha\right)}{\Gamma\left(\frac{1}{2} \alpha\right)} \pi^{\alpha-2} \log \pi$.
Thus

$$
\begin{equation*}
\int_{|\xi|<1}(2 \pi|\xi|)^{-\alpha} d \xi-\tau(\alpha) \rightarrow \frac{-\Gamma^{\prime}(1)+\log \pi}{2 \pi} \quad \text { as } \alpha \rightarrow 2 \text { with } \alpha<2 . \tag{4.1}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
L_{\alpha}(x)-\tau(\alpha)=\frac{2 \Gamma\left(2-\frac{1}{2} \alpha\right)}{\Gamma\left(\frac{1}{2} \alpha\right) 2^{\alpha} \pi} \frac{|x|^{\alpha-2}-1}{2-\alpha} \rightarrow-\frac{1}{2 \pi} \log |x| \quad \text { for } x \in \mathbb{R}^{2} \backslash\{0\} \tag{4.2}
\end{equation*}
$$

as $\alpha \rightarrow 2$ with $\alpha<2$. Also, if $\alpha \in(3 / 2,2)$,

$$
\begin{equation*}
\left|L_{\alpha}(x)-\tau(\alpha)\right| \leq C|x|^{-1} \chi_{B(0,2)}(x)+C|\log | x \mid \| \chi_{\mathbb{R}^{2} \backslash B(0,2)}(x) \tag{4.3}
\end{equation*}
$$

with a constant C independent of α. By (4.1), (4.2), (4.3) and the Lebesgue convergence theorem we have

$$
\begin{aligned}
&\langle \left.-\frac{1}{2 \pi} \log |x|, \hat{\varphi}\right\rangle=\lim _{\substack{\alpha \rightarrow 2 \\
\alpha<2}}\left\langle L_{\alpha}-\tau(\alpha), \hat{\varphi}\right\rangle=\lim _{\substack{\alpha \rightarrow 2 \\
\alpha<2}}\left(\int_{\mathbb{R}^{2}}(2 \pi|\xi|)^{-\alpha} \varphi(\xi) d \xi-\tau(\alpha) \varphi(0)\right) \\
&=\lim _{\substack{\alpha \rightarrow 2 \\
\alpha<2}}\left[\int_{|\xi|<1}(2 \pi|\xi|)^{-\alpha}(\varphi(\xi)-\varphi(0)) d \xi+\int_{|\xi| \geq 1}(2 \pi|\xi|)^{-\alpha} \varphi(\xi) d \xi\right. \\
&\left.+\varphi(0)\left(\int_{|\xi|<1}(2 \pi|\xi|)^{-\alpha} d \xi-\tau(\alpha)\right)\right] \\
&= \int_{|\xi|<1}(2 \pi|\xi|)^{-2}(\varphi(\xi)-\varphi(0)) d \xi+\int_{|\xi| \geq 1}(2 \pi|\xi|)^{-2} \varphi(\xi) d \xi \\
&+\frac{1}{2 \pi} \varphi(0)\left(-\Gamma^{\prime}(1)+\log \pi\right) .
\end{aligned}
$$

Lemma 4.2. Let $L_{2}(x)=-\frac{1}{2 \pi} \log |x|$ on \mathbb{R}^{2}. Let $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{2}\right)$. Suppose that Φ satisfies (1.7), (1.8) and supp $\Phi \subset\{|x| \leq M\}$. Let $\eta(x)=L_{2} * \Phi(x)-L_{2}(x)$. Then $|\eta(x)| \leq C(1+|\log | x| |)$ if $|x| \leq 2 M$ and $|\eta(x)| \leq C|x|^{-3}$ if $|x| \geq 2 M$. Also, $\hat{\eta}(\xi)=(2 \pi|\xi|)^{-2}(\hat{\Phi}(\xi)-1)$.

Proof. The estimates $|\eta(x)| \leq C(1+|\log | x| |)$ for $|x| \leq 2 M$ and $|\eta(x)| \leq C|x|^{-3}$ for $|x| \geq 2 M$ can be shown as in the proof of Theorem 1.1, since $\Delta L_{2}=0$ on $\mathbb{R}^{2} \backslash\{0\}$.

Let $\Psi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ with $\Psi(0)=1$. Let $\varphi \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ and $\varphi_{(\epsilon)}(\xi)=\varphi(\xi)-\varphi(0) \Psi(\xi / \epsilon)$. Then, since $\varphi_{(\epsilon)}$ belongs to $\mathcal{S}\left(\mathbb{R}^{2}\right)$ and vanishes at the origin, by Lemma 4.1 we have

$$
\begin{aligned}
& \left\langle\eta, \hat{\varphi}_{(\epsilon)}\right\rangle=\int_{\mathbb{R}^{2}}\left(-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \log |x-y| \hat{\varphi}_{(\epsilon)}(x) d x+\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \log |x| \hat{\varphi}_{(\epsilon)}(x) d x\right) \Phi(y) d y \\
& =\int_{\mathbb{R}^{2}}\left(\int_{\mathbb{R}^{2}}(2 \pi|\xi|)^{-2} \varphi_{(\epsilon)}(\xi)\left(e^{-2 \pi i\langle y, \xi\rangle}-1\right) d \xi\right) \Phi(y) d y \\
& =\int_{\mathbb{R}^{2}}(2 \pi|\xi|)^{-2} \varphi_{(\epsilon)}(\xi)(\hat{\Phi}(\xi)-1) d \xi \\
& =\int_{\mathbb{R}^{2}}(2 \pi|\xi|)^{-2} \varphi(\xi)(\hat{\Phi}(\xi)-1) d \xi-\varphi(0) \int_{\mathbb{R}^{2}}(2 \pi|\xi|)^{-2} \Psi(\xi / \epsilon)(\hat{\Phi}(\xi)-1) d \xi .
\end{aligned}
$$

Since $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{2}\right)$, we can see that the last integral tends to 0 as $\epsilon \rightarrow 0$. Also, $\left\langle\eta, \hat{\varphi}_{(\epsilon)}\right\rangle=\langle\eta, \hat{\varphi}\rangle-\varphi(0)\left\langle\eta,(\hat{\Psi})_{\epsilon^{-1}}\right\rangle$ and $\left\langle\eta,(\hat{\Psi})_{\epsilon^{-1}}\right\rangle \rightarrow 0$ as $\epsilon \rightarrow 0$. Collecting results we get

$$
\langle\eta, \hat{\varphi}\rangle=\int_{\mathbb{R}^{2}}(2 \pi|\xi|)^{-2} \varphi(\xi)(\hat{\Phi}(\xi)-1) d \xi
$$

which implies $\hat{\eta}(\xi)=(2 \pi|\xi|)^{-2}(\hat{\Phi}(\xi)-1)$.
Let

$$
\begin{equation*}
\psi(x)=\Phi * L_{2}(x)-L_{2}(x)+c_{0} \Phi(x) \tag{4.4}
\end{equation*}
$$

where $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{2}\right)$ satisfying (1.7) and (1.8) and $c_{0}=b_{0} / 2$. Then, by the proof of Theorem 1.1 for $n \geq 3$ and Lemma 4.2, we can see that ψ satisfies (1.1) and (1), (2), (3) of Theorem A. Thus we have the following.

Theorem 4.3. Let ψ be as in (4.4). Suppose the condition (1.2) holds. Then

$$
\|f\|_{p, w} \simeq\left\|g_{\psi}(f)\right\|_{p, w}, \quad f \in L_{w}^{p}\left(\mathbb{R}^{2}\right)
$$

If ψ is as in (4.4), then by Lemma 4.2 we see that $S_{2}(g)=g_{\psi}\left(H_{0}(g)\right)$ for $g \in$ $\mathcal{S}\left(\mathbb{R}^{2}\right)$. Using this and Theorem 4.3, we can argue similarly to the proof of Theorem 1.4 for $n \geq 3$, so that we see that Theorem 1.4 holds in the case of \mathbb{R}^{2}.

Also, Theorem B implies the following.
Theorem 4.4. Let ψ be as in (4.4). Suppose the conditions (1.11) and (1.3) hold. Then

$$
\|f\|_{p, w} \simeq\left\|\Delta_{\psi}(f)\right\|_{p, w}, \quad f \in L_{w}^{p}\left(\mathbb{R}^{2}\right)
$$

Lemma 4.2 implies that $V_{2}(g)=\Delta_{\psi}\left(H_{0}(g)\right), g \in \mathcal{S}\left(\mathbb{R}^{2}\right)$. From this and Theorem 4.4 we can see that Theorem 1.5 is valid in the case of \mathbb{R}^{2} by arguing similarly to the proof of Theorem 1.5 for $n \geq 3$.

5. One dimensional case

We recall the following result (see [5]).
Lemma 5.1. Let $1<\alpha \leq 2, \varphi \in \mathcal{S}(\mathbb{R})$. Then

$$
\int_{-\infty}^{\infty}|x|^{\alpha-1} \hat{\varphi}(x) d x=\frac{1-\alpha}{2} \pi^{-\alpha+1 / 2} \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{3-\alpha}{2}\right)} \int_{0}^{\infty} \frac{\varphi(\xi)+\varphi(-\xi)-2 \varphi(0)}{\xi^{\alpha}} d \xi
$$

We give a proof for completeness.
Proof of Lemma 5.1. We prove the lemma when $1<\alpha<2$. The case $\alpha=2$ follows from this by taking the limit as $\alpha \rightarrow 2$ with $\alpha<2$.

We write

$$
\begin{equation*}
\int_{-\infty}^{\infty}|x|^{\alpha-1} \hat{\varphi}(x) d x=\lim _{M \rightarrow \infty} \int_{-M}^{M}|x|^{\alpha-1} \hat{\varphi}(x) d x \tag{5.1}
\end{equation*}
$$

Now, integration by parts implies

$$
\begin{aligned}
\int_{-M}^{M}|x|^{\alpha-1} e^{-2 \pi i\langle x, \xi\rangle} d x & =2 \int_{0}^{M} x^{\alpha-1} \cos (2 \pi x \xi) d x \\
& =\int_{0}^{M} \Theta(\xi, x, M)(\alpha-1) x^{\alpha-2} d x
\end{aligned}
$$

where

$$
\Theta(\xi, x, M)=\frac{\sin (2 \pi M \xi)}{\pi \xi}-\frac{\sin (2 \pi x \xi)}{\pi \xi}
$$

Thus

$$
\begin{aligned}
\int_{-M}^{M}|x|^{\alpha-1} \hat{\varphi}(x) d x & =\int_{0}^{\infty} \int_{0}^{M} \Theta(\xi, x, M)(\varphi(\xi)+\varphi(-\xi))(\alpha-1) x^{\alpha-2} d x d \xi \\
& =\lim _{L \rightarrow \infty} \int_{0}^{L} \int_{0}^{M} \Theta(\xi, x, M)(\varphi(\xi)+\varphi(-\xi))(\alpha-1) x^{\alpha-2} d x d \xi
\end{aligned}
$$

Let $\Psi(\xi)=\varphi(\xi)+\varphi(-\xi)-2 \varphi(0)$. Then we have

$$
\begin{aligned}
& \int_{0}^{L} \int_{0}^{M} \Theta(\xi, x, M)(\varphi(\xi)+\varphi(-\xi)) x^{\alpha-2} d x d \xi \\
& =\int_{0}^{L} \int_{0}^{M} \Theta(\xi, x, M) \Psi(\xi) x^{\alpha-2} d x d \xi+2 \varphi(0) \int_{0}^{L} \int_{0}^{M} \Theta(\xi, x, M) x^{\alpha-2} d x d \xi
\end{aligned}
$$

We easily see that the last integral tends to 0 as $L \rightarrow \infty$, since

$$
\int_{0}^{L} \frac{\sin (2 \pi A \xi)}{\xi} d \xi \rightarrow \frac{\pi}{2} \quad \text { boundedly in } A>0
$$

Therefore

$$
\begin{equation*}
\int_{-M}^{M}|x|^{\alpha-1} \hat{\varphi}(x) d x=\lim _{L \rightarrow \infty} \int_{0}^{L} \int_{0}^{M} \Theta(\xi, x, M) \Psi(\xi)(\alpha-1) x^{\alpha-2} d x d \xi \tag{5.2}
\end{equation*}
$$

By integration,

$$
\int_{0}^{L} \int_{0}^{M} \frac{\sin (2 \pi M \xi)}{\pi \xi} \Psi(\xi)(\alpha-1) x^{\alpha-2} d x d \xi=M^{\alpha-1} \int_{0}^{L} \frac{\sin (2 \pi M \xi)}{\pi \xi} \Psi(\xi) d \xi
$$

Applying integration by parts, we have

$$
\begin{aligned}
& M^{\alpha-1} \int_{0}^{L} \frac{\sin (2 \pi M \xi)}{\pi \xi} \Psi(\xi) d \xi \\
= & -2^{-1} \pi^{-2} M^{\alpha-2} \cos (2 \pi M L) \Psi(L) / L+2^{-1} \pi^{-2} M^{\alpha-2} \int_{0}^{L} \cos (2 \pi M \xi)(\Psi(\xi) / \xi)^{\prime} d \xi
\end{aligned}
$$

We observe that $(\Psi(\xi) / \xi)^{\prime} \in L^{1}(\mathbb{R})$. Thus

$$
\begin{align*}
\lim _{L \rightarrow \infty} \int_{0}^{L} \int_{0}^{M} \frac{\sin (2 \pi M \xi)}{\pi \xi} \Psi(\xi) & (\alpha-1) x^{\alpha-2} d x d \xi \tag{5.3}\\
& =2^{-1} \pi^{-2} M^{\alpha-2} \int_{0}^{\infty} \cos (2 \pi M \xi)(\Psi(\xi) / \xi)^{\prime} d \xi
\end{align*}
$$

We note that the last integral tends to 0 as $M \rightarrow \infty$. On the other hand, since $\Psi(\xi) \xi^{-\alpha}$ is integrable on the interval $(0, \infty)$, by a change of variables we have

$$
\begin{align*}
\lim _{L \rightarrow \infty} \int_{0}^{L} \int_{0}^{M} \frac{\sin (2 \pi x \xi)}{\pi \xi} \Psi(\xi) & (\alpha-1) x^{\alpha-2} d x d \xi \tag{5.4}\\
& =\int_{0}^{\infty} \frac{\Psi(\xi)}{\pi \xi^{\alpha}} \int_{0}^{M \xi}(\alpha-1) x^{\alpha-2} \sin (2 \pi x) d x d \xi
\end{align*}
$$

Here we note that the limit

$$
\lim _{M \rightarrow \infty} \int_{0}^{M}(\alpha-1) x^{\alpha-2} \sin (2 \pi x) d x
$$

exists when $1<\alpha<2$. By (5.2), (5.3) and (5.4), we see that

$$
\lim _{M \rightarrow \infty} \int_{-M}^{M}|x|^{\alpha-1} \hat{\varphi}(x) d x=-(\alpha-1) 2^{-\alpha+1} \pi^{-\alpha} \int_{0}^{\infty} x^{\alpha-2} \sin x d x \int_{0}^{\infty} \frac{\Psi(\xi)}{\xi^{\alpha}} d \xi
$$

By (5.1) and a formula for the value of the integral $\int_{0}^{\infty} x^{\alpha-2} \sin x d x$ (see [14, p. 182]), we get the conclusion.

Remark 5.2. We note that

$$
\frac{1-\alpha}{2} \pi^{-\alpha+1 / 2} \frac{\Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{3-\alpha}{2}\right)}=2(2 \pi)^{-\alpha} \Gamma(\alpha) \cos \left(\frac{\alpha \pi}{2}\right)
$$

in Lemma 5.1.
We can prove the following.
Lemma 5.3. Let $L_{2}(x)=-\frac{1}{2}|x|$ on \mathbb{R}^{1}. Suppose $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{1}\right)$ and $\operatorname{supp} \Phi \subset\{|x| \leq$ $M\}$. Let $\eta(x)=L_{2} * \Phi(x)-L_{2}(x)$. Then $|\eta(x)| \leq C$ if $|x| \leq 2 M$ and $\eta(x)=0$ if $|x| \geq 2 M$. Also, $\hat{\eta}(\xi)=(2 \pi|\xi|)^{-2}(\hat{\Phi}(\xi)-1)$.

The equation $\hat{\eta}(\xi)=(2 \pi|\xi|)^{-2}(\hat{\Phi}(\xi)-1)$ follows from Lemma 5.1 with $\alpha=2$ as in Lemma 4.2. The other assertions of Lemma 5.3 can be shown easily.

Let

$$
\begin{equation*}
\psi(x)=\Phi * L_{2}(x)-L_{2}(x)+c_{0} \Phi(x) \tag{5.5}
\end{equation*}
$$

where $\Phi \in \mathcal{M}^{1}\left(\mathbb{R}^{1}\right)$ and $c_{0}=b_{0} / 2$ with b_{0} as in (1.7). Then, the conditions (1.1) and (1), (2), (3) of Theorem A follow from the proof of Theorem 1.1 for $n \geq 3$ and Lemma 5.3.

We have the following.
Theorem 5.4. Let ψ be as in (5.5). Then

$$
\|f\|_{p, w} \simeq\left\|g_{\psi}(f)\right\|_{p, w}, \quad f \in L_{w}^{p}(\mathbb{R})
$$

To see this from Theorem A, it suffices to show that (1.3) holds for ψ of (5.5). The proof is similar to the one given in Section 1 when Φ is a radial function. So, it suffices to show that ψ is not identically 0 . We prove it by contradiction. Suppose that ψ is identically 0 . Then,

$$
\hat{\Phi}(\xi)\left(1+c_{0}(2 \pi|\xi|)^{2}\right)=1
$$

Since $\hat{\Phi}$ is bounded and is not a constant function, we deduce that $c_{0}>0$. It follows that

$$
\hat{\Phi}\left((2 \pi)^{-1} c_{0}^{-1 / 2} \xi\right)=\frac{1}{1+\xi^{2}}
$$

which is the Fourier transform of the function $\pi e^{-2 \pi|x|}$. This contradicts the fact that Φ is compactly supported.

Let ψ be as in (5.5). Then it follows by Lemma 5.3 that $S_{2}(g)=g_{\psi}\left(H_{0}(g)\right)$ for $g \in \mathcal{S}(\mathbb{R})$. Thus we can see that Theorem 1.4 holds in the case of \mathbb{R}^{1} by applying the relation $S_{2}(g)=g_{\psi}\left(H_{0}(g)\right)$ and Theorem 5.4 if we argue similarly to the proof of Theorem 1.4 for $n \geq 3$.

Also, by Theorem B we have the following.
Theorem 5.5. Let ψ be as in (5.5). Suppose the condition (1.11) holds. Then

$$
\|f\|_{p, w} \simeq\left\|\Delta_{\psi}(f)\right\|_{p, w}, \quad f \in L_{w}^{p}(\mathbb{R})
$$

By Lemma 5.3 we have $V_{2}(g)=\Delta_{\psi}\left(H_{0}(g)\right), g \in \mathcal{S}(\mathbb{R})$. Applying this and Theorem 5.5 and arguing similarly to the proof of Theorem 1.5 for $n \geq 3$, we can see that Theorem 1.5 holds on \mathbb{R}^{1}.

Remark 5.6. When $n=1$, we do not need to assume the conditions (1.2) and (1.3) in Theorems 1.4 and 1.5, respectively, since they follow from the other hypotheses of the theorems, as we have seen above.

References

[1] R. Alabern, J. Mateu and J. Verdera, A new characterization of Sobolev spaces on \mathbb{R}^{n}, Math. Ann. 354 (2012), 589-626.
[2] F. Dai, J. Liu, D. Yang and W. Yuan, Littlewood-Paley characterizations of fractional Sobolev spaces via averages on balls, arXiv:1511.07598 [math.CA].
[3] G. B. Folland, Introduction to Partial Differential Equations, Second edition, Princeton University Press, 1995.
[4] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, New York, Oxford, 1985
[5] I. M. Gel'fand and G. E. Shilov, Generalized Functions: Volume 1, Properties and Operations, Academic Press, New York and London, 1964.
[6] P. Hajłasz, Z. Liu, A Marcinkiewicz integral type characterization of the Sobolev space, arXiv:1405.6127 [math.FA].
[7] J. Marcinkiewicz, Sur quelues integrales de type de Dini, Annales de la Société Polonaise 17 (1938), 42-50.
[8] S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), 199-211.
[9] S. Sato, Multiparameter Marcinkiewicz integrals and a resonance theorem, Bull. Fac. Ed. Kanazawa Univ. Natur. Sci. 48 (1999), 1-21. (http://hdl.handle.net/2297/25017)
[10] S. Sato, Littlewood-Paley operators and Sobolev spaces, Illinois J. Math. 58 (2014), 1025-1039.
[11] S. Sato, Littlewood-Paley equivalence and homogeneous Fourier multipliers, arXiv:1601.03173 [math.CA].
[12] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.
[13] E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
[14] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Second edition, Oxford, Clarendon Press, 1948.

Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan

E-mail address: shuichi@kenroku.kanazawa-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 46E35; Secondary 42B25.
 Key Words and Phrases. Littlewood-Paley functions, Sobolev spaces.
 This research was partially supported by Grant-in-Aid for Scientific Research (C) No. 25400130, Japan Society for the Promotion of Science.

