X-ray Structure Analysis Online

Crystal Structure of a Pyrrolyl-Substituted 4-Trifluoromethylcoumarin

Tomoyoshi Fukagawa,* Noriko Kitamura,* Shigeru Kohtani,*.** Soh-ichi Kitoh,*** Ko-Ki Kunimoto,*** and Ryoichi Nakagaki*.**[†]

*Division of Life Sciences, Graduate School of Natural Science and Technology,

Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

**Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

***Division of Material Sciences, Graduate School of Natural Science and Technology,

Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Crystal Structure of 7-(1*H*-pyrrol-1-yl)-4-trifluoromethyl-2*H*-1-benzopyran-2-one has been determined by X-ray diffraction. The crystal, $C_{14}H_8NO_2F_3$, belongs to space group $P2_1/n$ with cell dimensions of a = 10.201(6)Å, b = 8.481(8)Å, c = 13.864(8)Å, $\beta = 109.75(2)^{\circ}$. The final *R* value is 0.041 for 2602 reflections ($I > 2.00\sigma(I)$). The coumarin and the pyrrole moieties are almost coplanar. The dihedral angle between the least-squares planes of the aromatic ring and the pyrrolyl group is $6.98(4)^{\circ}$.

(Received March 17, 2006; Accepted May 31, 2006; Published on web July 31, 2006)

Coumarin does not fluoresce, whereas coumarin derivatives substituted at the 7-position with an amino or hydroxy group are highly fluorescent. The latter type of coumarins are widely used as laser dyes, fluorescent probes, and optical brightners.^{1,2} In this paper we report on the crystal structure of 7-(1*H*-pyrrol-1-yl)-4-trifluoromethyl-2*H*-1-benzopyran-2-one (I, see Figs. 1 and 2). This compound can be regarded as a modified 7-aminocoumain with larger π -conjugation.

Compound I was synthesized in the following manner:³ a mixture of 0.7 g (3.0 mmol) of 7-amino-4trifluoromethylcoumarin and 0.5 g (3.8 mmol) of 2,5dimethoxytetrahydrofuran was refluxed at 120°C in 20 ml of acetic acid for 1 h. After a 2% aqueous solution of NaOH was added, the organic layer was extracted with CHCl₃. The combined extracts were washed with a saturated solution of NaCl. After drying with anhydrous sodium sulfate, the crude product was put on a chromatography column packed with silica gel and eluted with a hexane/ethyl acetate mixture (4/1) (recrystallized from a water/methanol mixture and a hexane/ethyl acetate mixture): Yield 21%; Mp 142 - 144°C; MS $m/z = 279 (M^+)$; ¹H-NMR (500 MHz, CDCl₃) δ 7.84 – 7.81 (1H, d), 7.72 - 7.68 (2H, m), 7.54 - 7.50 (2H, t), 6.86 (1H, s), 6.39 -6.38 (2H, t); IR (KBr, cm⁻¹) 3154, 3115, 1882, 1741, 1615, 1564, 1527, 1473; UV (λ_{max} /nm (ϵ /10⁴ M⁻¹ cm⁻¹), C₂H₅OH) 346 (1.8), 240 (1.0), 202 (3.0); Found: C, 60.27; H, 2.88; N, 5.01%.

Fig. 1 Chemical structure of I.

[†] To whom correspondence should be addressed. E-mail: nakagaki@mail.p.kanazawa-u.ac.jp

Calcd for C₁₄H₈ F₃NO₂: C, 60.22; H, 2.88; N, 5.01%.

Pale-yellow crystals of I suitable for X-ray diffraction analysis were obtained by the slow evaporation of a hexane solution at room temperature. Data collections were performed at 123 K. All measurements were made on a Rigaku/MSC Mercury CCD diffractometer with graphite-monochromated Mo K_{α} radiation

Table 1 Crystal and experimental data

Formula: C14H8NO2F3 Formula weight: 279.22 Crystal system: monoclinic a = 10.201(6)Å b = 8.481(8)Å c = 13.864(8)Å $\beta = 109.75(2)^{\circ}$ V = 1128(1)Å³ Space group: $P2_1/n \quad Z = 4$ $D_{calc} = 1.643 \text{ g/cm}^3$ $F(0\ 0\ 0) = 568.00$ μ (Mo K_{α}) = 1.43 cm⁻¹ T = 123 K $2\theta_{\text{max}} = 61.0^{\circ}$ with Mo K_{α} (0.7107 Å) No. observations = $2602 (I > 2.00\sigma(I))$ No. variables = 213R, Rw = 0.041, 0.063Goodness-of-fit = 1.31 $(\Delta/\sigma)_{\rm max} = 0.000$ $(\Delta \rho)_{\rm max} = 0.30 \ {\rm e}^{-/{\rm A}^3}$ $(\Delta \rho)_{\rm min} = -0.19 \ {\rm e}^{-/{\rm Å}^3}$ Diffractometer: Rigaku/MSC Mercury CCD Program system: teXsan Structure determination: direct method (SIR88) Refinement: full-matrix least-squares

CCDC 606660 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Fig. 2 Molecular structure of I along with the labeling atoms. Thermal ellipsoids of non-H atoms are drawn at the 50% probability level.

 $(\lambda = 0.7107 \text{ Å})$. The data were corrected for Lorentzpolarization effects. The structure was solved by direct methods and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located by a difference Fourier synthesis, and their positional and isotropic displacement parameters were refined. All calculations were performed using the teXsan crystallographic software package.

Table 1 lists the crystal data and experimental conditions. Figure 2 illustrates an ORTEP diagram of the molecule with the atomic-labeling scheme. The final position parameters are given in Table 2.

In the crystal lattice, coumarin molecules related by an inversion center are stacked by strong π -interactions with the C(7)···C(14)ⁱ distances of 3.357(2)Å. Stacks of molecules are further interconnected by the F(2)···F(3)ⁱⁱ short contacts of 2.911(1)Å. [symmetry code: (i) –*x* + 1, –*y* + 2, –*z*; (ii) –*x* + 1/2, *y* + 1/2, –*z* + 1/2] The coumarin and the pyrrole moieties are almost coplanar. The dihedral angle between the least-squares planes of the aromatic ring and the pyrrolyl group is 6.98(4)°. The sum of the bond angles around N(1) is 359.89°. This value indicates that the nitrogen is sp²-hybridized. The geometry of an aromatic ring in I is similar to that of bicyclic coumarins.⁴ The N(1)-C(11) and N(1)-C(14) bonds in I are 1.386(2) and 1.389(1)Å, respectively. These bonds are significantly shorter

Table 2 Atomic coordinates and equivalent isotropic thermal parameters (B_{eq})

Atom	x	у	Z.	$B_{\rm eq}({ m \AA}^2)$
F(1)	0.12106(8)	0.33429(10)	0.13915(6)	2.18(2)
F(2)	0.21001(9)	0.55592(9)	0.20548(6)	2.27(2)
F(3)	0.34309(8)	0.35575(9)	0.21239(6)	2.07(2)
O(1)	0.26307(8)	0.58926(10)	-0.13179(6)	1.43(2)
O(2)	0.09446(9)	0.4272(1)	-0.21773(7)	1.88(2)
N(1)	0.66948(10)	0.8968(1)	0.03056(7)	1.27(2)
C(1)	0.1650(1)	0.4762(1)	-0.13460(9)	1.43(2)
C(2)	0.1542(1)	0.4273(1)	-0.03687(9)	1.51(2)
C(3)	0.2437(1)	0.4821(1)	0.05210(9)	1.34(2)
C(4)	0.3545(1)	0.5898(1)	0.05393(8)	1.23(2)
C(5)	0.4595(1)	0.6459(1)	0.14162(9)	1.44(2)
C(6)	0.5619(1)	0.7460(1)	0.13423(9)	1.41(2)
C(7)	0.5633(1)	0.7961(1)	0.03776(8)	1.21(2)
C(8)	0.4597(1)	0.7435(1)	-0.05061(8)	1.29(2)
C(9)	0.3589(1)	0.6411(1)	-0.04114(8)	1.23(2)
C(10)	0.2294(1)	0.4313(1)	0.15255(9)	1.61(2)
C(11)	0.7846(1)	0.9463(1)	0.11138(9)	1.67(2)
C(12)	0.8669(1)	1.0341(2)	0.07235(10)	1.87(2)
C(13)	0.8011(1)	1.0399(1)	-0.03605(9)	1.69(2)
C(14)	0.6808(1)	0.9550(1)	-0.05996(9)	1.46(2)

$$\begin{split} B_{\rm eq} &= (8/3)\pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + \\ 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha). \end{split}$$

than the corresponding bond [1.40 Å] in *N*-methylpyrrole.⁵ This finding suggests a π -conjugation between the pyrrole and coumarin rings.

References

- K. H. Drexhage, in "Dye Lasers", ed. F. P. Schäfer, 1973, Springer-Verlag, Berlin, Heidelberg, New York, 144.
- B. M. Krasovitskii and B. M. Bolotin, "Organic Luminescent Materials", 1988, VCH Publisher, Weinheim, 139.
- 3. R. A. Jones, Australian J. Chem., 1966, 19, 289.
- 4. N. Kitamura, S. Kohtani, and R. Nakagaki, J. Photochem., Photobiol., C: Rev., 2005, 6, 168.
- 5. L. V. Vilkov, P. A. Akishin, and V. M. Presnyakova, *Zh. Strukt. Khim.*, **1962**, *3*, 5.