X-ray Structure Analysis Online

Crystal Structure of a Pyrrolyl-Substituted 4-Methylcoumarin

Tomoyoshi Fukagawa,* Noriko Kitamura,* Shigeru Kohtani,*.** Soh-ichi Kitoh,*** Ko-Ki Kunimoto,*** and Ryoichi Nakagaki*.**[†]

*Division of Life Sciences, Graduate School of Natural Science and Technology,

Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

**Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

***Division of Material Sciences, Graduate School of Natural Science and Technology,

Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

The crystal Structure of 7-(1*H*-pyrrol-1-yl)-4-methyl-2*H*-1-benzopyran-2-one was determined by X-ray diffraction. The crystal, $C_{14}H_{11}NO_2$, belongs to space group *C*2/*c* with cell dimensions a = 17.74(1)Å, b = 7.343(3)Å, c = 16.242(6)Å, $\beta = 92.349(9)^{\circ}$. The final *R* value is 0.047 for 2301 reflections ($I > 2.00\sigma(I)$). The coumarin and the pyrrole moieties are almost coplanar. The dihedral angle between the least-squares planes of the aromatic ring and the pyrrolyl group is $3.74(5)^{\circ}$.

(Received March 17, 2006; Accepted June 5, 2006; Published on web July 31, 2006)

7-Aminocoumarin derivatives are highly fluorescent and are used as laser dyes and fluorescent probes.¹⁻³ Substituted 7aminocoumarins form an important class of laser dyes for the blue-green region. In this paper we report on the crystal structure of 7-(1*H*-pyrrol-1-yl)-4-methyl-2*H*-1-benzopyran-2one (I, see Figs. 1 and 2). This compound can be regarded as a modified 7-aminocoumain with a larger π -conjugation.

Compound I was synthesized in the following manner:⁴ a

Fig. 1 Chemical structure of I.

Fig. 2 Molecular structure of I along with the labeling atoms. Thermal ellipsoids of non-H atoms are drawn at the 50% probability level.

[†] To whom correspondence should be addressed.

E-mail: nakagaki@mail.p.kanazawa-u.ac.jp

mixture of 1.0 g (5.7 mmol) of 7-amino-4-methylcoumarin and 0.9 g (6.8 mmol) of 2,5-dimethoxytetrahydrofuran was refluxed at 120°C in 20 ml of acetic acid for 1 h. After a 2% aqueous solution of NaOH was added, the organic layer was extracted with CHCl₃. The combined extract was washed with a saturated solution of NaCl. Followed by drying with anhydrous sodium

Table 1 Crystal and experimental data

Formula: $C_{14}H_{11}NO_2$
Formula weight: 225.25
Crystal system: monoclinic
a = 17.74(1)Å
b = 7.343(3)Å
c = 16.242(6)Å
$\beta = 92.349(9)^{\circ}$
V = 2114(1)Å ³
Space group: $C2/c$ Z = 8
$D_{calc} = 1.415 \text{ g/cm}^3$
$F(0\ 0\ 0) = 944.00$
μ (Mo K_{α}) = 0.95 cm ⁻¹
T = 123 K
$2\theta_{\rm max} = 60.9^{\circ}$ with Mo K_{α} (0.71070 Å)
No. observations = $2301 (I > 2.00\sigma(I))$
No. variables = 198
R, Rw = 0.047, 0.070
Goodness-of-fit = 1.21
$(\Delta/\sigma)_{\rm max} = 0.000$
$(\Delta \rho)_{\rm max} = 0.31 \ {\rm e}^{-/{\rm A}^3}$
$(\Delta \rho)_{\rm min} = -0.24 \ {\rm e}^{-/} {\rm \AA}^3$
Diffractometer: Rigaku/MSC Mercury CCD
Program system: teXsan
Structure determination: direct method (SIR88)
Refinement: full-matrix least-squares

CCDC 607185 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif

Table 2 Atomic coordinates and equivalent isotropic thermal parameters (B_{eq})

atom	x	у	Z	$B_{\rm eq}({ m \AA}^2)$
O(1)	0.04823(5)	0.2625(1)	0.56952(6)	1.48(2)
O(2)	-0.06460(5)	0.3479(1)	0.52155(6)	1.83(2)
N(1)	0.28974(6)	0.1073(1)	0.68802(7)	1.34(2)
C(1)	-0.00635(7)	0.2705(2)	0.50682(8)	1.45(2)
C(2)	0.01039(7)	0.1830(2)	0.42949(8)	1.52(2)
C(3)	0.07643(7)	0.0966(2)	0.41779(7)	1.39(2)
C(4)	0.13284(7)	0.0936(2)	0.48447(8)	1.33(2)
C(5)	0.20418(7)	0.0117(2)	0.48051(8)	1.52(2)
C(6)	0.25596(7)	0.0146(2)	0.54643(8)	1.51(2)
C(7)	0.23736(7)	0.1012(2)	0.62019(8)	1.27(2)
C(8)	0.16671(7)	0.1815(2)	0.62613(8)	1.36(2)
C(9)	0.11622(7)	0.1779(2)	0.55885(8)	1.28(2)
C(10)	0.09128(8)	0.0038(2)	0.33783(8)	1.78(2)
C(11)	0.36241(7)	0.0371(2)	0.69059(8)	1.50(2)
C(12)	0.39304(7)	0.0631(2)	0.76837(8)	1.71(2)
C(13)	0.33816(7)	0.1521(2)	0.81574(8)	1.72(2)
C(14)	0.27557(7)	0.1773(2)	0.76523(8)	1.59(2)

$$\begin{split} B_{\rm eq} &= (8/3)\pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + \\ 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha). \end{split}$$

sulfate, the crude product was put on a chromatography column packed with silica gel and eluted with a hexane/ethyl acetate mixture (3/1) (recrystallized from a water/methanol mixture and a hexane/ethyl acetate mixture): Yield 54%; Mp 188 – 189°C; MS *m*/*z* = 225 (M⁺); ¹H-NMR (500 MHz, CDCl₃) δ 7.65 – 7.63 (1H, d), 7.36 – 7.26 (2H, m), 7.17 – 7.16 (2H, t), 6.41 – 6.40 (2H, t), 6.26 (1H, s), 2.45 (3H, s); IR (KBr, cm⁻¹) 3131, 3112, 1829, 1768, 1718, 1612, 1565, 1521, 1476, 1436; UV (λ_{max} /nm (ϵ /10⁴ M⁻¹ cm⁻¹), C₂H₅OH) 329 (1.9), 237 (1.3), 202 (3.5); Found: C, 74.46; H, 4.93; N, 6.30%. Calcd for C₁₄H₁₁NO₂: C, 74.65; H, 4.92; N, 6.24%.

Colorless crystals of I suitable for X-ray diffraction analysis were obtained by the slow evaporation of an ethanol solution at room temperature. Data collections were performed at 123 K. All measurements were made on a Rigaku/MSC Mercury CCD diffractometer with graphite-monochromated Mo K_{α} radiation ($\lambda = 0.71070$ Å). The data were corrected for Lorentz-polarization effects. The structure was solved by direct methods and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were refined using the teXsan crystallographic software package.

Table 1 lists the crystal data and the experimental conditions. Figure 2 illustrates an ORTEP diagram of the molecule along with the atomic-labeling scheme. The final position parameters are given in Table 2, and selected bond lengths, bond angles and torsion angles are listed in Table 3.

Table 3 Selected bond lengths (Å), bond angles (°) and torsion angles (°)

0	()								
C(4	ł)	C(5)		1.405(2)	C(5)	C(6)		1.382(2)
C(6	5)	C(7)		1.408(2)	C(7)	C(8)		1.392(2)
C(8	3)	C(9)		1.385(2)	C(4)	C(9)		1.400(2)
C(1	1)	C(12)		1.368(2)	C(1	2)	C(13)		1.424(2)
C(1	3)	C(14)		1.366(2)	N(1	.)	C(7)		1.413(2)
N(1	l)	C(11)		1.388(2)	N(1	.)	C(14)		1.388(2)
C(5)	C(4)	C(9)	116.8(1)	C(4)	C(5)	C(6	6)	122.0(1)
C(5)	C(6)	C(7)	119.7(1)	C(6)	C(7)	C(8	3)	119.6(1)
C(7)	C(8)	C(9)	119.5(1)	C(4)	C(9)	C(3)	122.5(1)
C(7)	N(1)	C(14)	125.3(1)	C(7)	N(1)	C(11)	126.3(1)
C(11)	N(1)	C(14)	108.2(1)	N(1)	C(7)	C(3)	119.9(1)
N(1)	C(7)	C(6)	120.5(1)					
N(1)	C(7)	C(6)	C(5)	-179.4(1)	N(1)	C(7)	C(8)	C(9)	178.8(1)
N(1)	C(11)	C(12)	C(13)	-0.1(1)	N(1)	C(14)	C(13)	C(12)	-0.1(1)
C(6)	C(7)	N(1)	C(11)	1.5(2)	C(6)	C(7)	N(1)	C(14)	-175.2(1)
C(7)	N(1)	C(11)	C(12)	-177.1(1)	C(7)	N(1)	C(14)	C(13)	177.2(1)
C(8)	C(7)	N(1)	C(11)	-178.5(1)	C(8)	C(7)	N(1)	C(14)	4.8(2)
C(11)	N(1)	C(14)	C(13)	0.1(1)	C(12)	C(11)	N(1)	C(14)	0.0(1)

Estimated standard deviations in the least significant figure are given in parentheses.

The coumarin and the pyrrole moieties are almost coplanar. The dihedral angle between the least-squares planes of the aromatic ring and the pyrrolyl group is $3.74(5)^{\circ}$. The sum of bond angles around N(1) is 359.8° . This value indicates that the nitrogen is sp²-hybridized. The geometry of an aromatic ring in I is similar to that of bicyclic coumarins.⁵ In the crystal lattice, coumarin molecules related by an inversion center are stacked by strong π -interactions with the C(1)…C(3)ⁱ distances of 3.230(2)Å.

[symmetry code: (i) -x, -y, 1 - z]

References

- T. Honda, I. Fujii, N. Hirayama, N. Aoyama, and A. Miike, Acta Cryst., 1996, C52, 899.
- 2. "*Lambdachrome Laser Dyes*", ed. U. Brackmann, **1986**, Lambda Physik, Göttingen, West Germany.
- R. P. Haugland, "Handbook of Fluorescent Probes and Research Chemicals, sixth edition", 1996, Molecular Probes, Eugene, OR, USA.
- 4. R. A. Jones, Australian J. Chem., 1966, 19, 289.
- 5. N. Kitamura, S. Kohtani, and R. Nakagaki, J. Photochem., Photobiol., C: Rev., 2005, 6, 168.