X-ray Structure Analysis Online

Crystal Structure of a Linear Carbazole-Coumarin Hybrid Dye

Tomoyoshi Fukagawa,* Noriko Kitamura,* Shigeru Kohtanı,*** Soh-ichi Kıtoh,*** Ko-Ki Kunimoto,*** and Ryoichi Nakagaki ${ }^{*, * * *}$
*Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
**Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
***Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

The crystal structure of 10 H -4-methyl- 2 H -2-oxopyrano[5,6-b]carbazole hydrate was determined by X-ray diffraction. The crystal, $2 \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, belongs to space group $P 2_{1} / a$ with cell dimensions of $a=7.927(6) \AA, b=22.78(1) \AA, c=$ $13.73(1) \AA, \beta=102.31(2)^{\circ}$. The final R value is 0.061 for 4651 reflections $(I>2.00 \sigma(I)$). There are two independent coumarin molecules (A, B) and one water molecule in an asymmetric unit. Molecules A and B are linked through the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and the $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{O}$ (water) $\cdots \mathrm{H}-\mathrm{N}$ hydrogen bondings to form a cyclic hetero dimer.
(Received March 17, 2006; Accepted May 31, 2006; Published on web July 31, 2006)

Coumarin derivatives are of great interest, because they are widely used as laser dyes ${ }^{1}$ and fluorescent brightners. ${ }^{2}$ We have reported on the crystal structure of 4-methyl-4', 5^{\prime} dihydropyrrolocoumarin. ${ }^{3}$ In this work, an X-ray structural analysis of 10H-4-methyl-2H-2-oxopyrano[5,6-b]carbazole hydrate (I, see Figs. 1 and 2) was carried out in order to clarify the effect of extending the π-conjugation to the coumarin moiety on the ground-state molecular structure. This tetracyclic compound is regarded as a carbazole-coumarin hybrid in that a carbazole moiety is condensed with a 2 -pyrone skeleton.
10H-4-Methyl-2H-2-oxopyrano[5,6-b]carbazole
was
synthesized in the following manner: ${ }^{4}$ a mixture of 1.0 g (5.5 mmol) of 2-hydroxycarbazole, 3.5 g (15 mmol) of ethyl acetoacetate and $1.7 \mathrm{~g}(13 \mathrm{mmol})$ of anhydrous ZnCl_{2} was refluxed at $120^{\circ} \mathrm{C}$ in 6 ml of dry ethanol for 8 h . The reaction mixture was poured into cold 0.1 M hydrochloric acid. The crude product was filtered off, dried in vacuo and put on a chromatography column packed with silica gel and eluted with a hexane/ethyl acetate mixture (1/1) (recrystallized from CHCl_{3}): Yield 15%; Mp $277-278^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.55(1 \mathrm{H}, \mathrm{s}), 8.22-8.21(1 \mathrm{H}, \mathrm{d}), 7.57-7.25(4 \mathrm{H}, \mathrm{m})$, $6.18(1 \mathrm{H}, \mathrm{s}), 2.61(3 \mathrm{H}, \mathrm{s}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}=249\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$ 3254, 3088, 1844, 1707, 1645, 1615, 1586, 1571, 1506, 1496, 1478, 1452; UV ($\left.\lambda_{\max } / \mathrm{nm}\left(\varepsilon / 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right) 365$ (2.2), 309 (3.7), 279 (2.5), 229 (4.4); Found: C, 76.93; H, 4.48; N, 5.57%. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2}$: C, $77.09 ; \mathrm{H}, 4.44 ; \mathrm{N}, 5.61 \%$.

Fig. 1 Chemical structure of I.

[^0]Colorless crystals of I suitable for X-ray diffraction analysis were obtained by the slow evaporation of an aqueous acetonitrile solution at room temperature. Data collections were performed at 123 K . All measurements were made on a Rigaku/MSC Mercury CCD diffractometer with graphite monochromated Mo K_{α} radiation $(\lambda=0.7107 \AA)$. The data

Table 1 Crystal and experimental data
Formula: $2 \mathrm{C}_{16} \mathrm{H}_{11} \mathrm{NO}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
Formula weight: 516.55
Crystal system: monoclinic
$a=7.927(6) \AA$
$b=22.78(1) \AA$
$c=13.73(1) \AA$
$\beta=102.31(2)^{\circ}$
$V=2423(2) \AA^{3}$
Space group: $P 2_{1} / \mathrm{a} \quad Z=4$
$D_{\text {calc }}=1.416 \mathrm{~g} / \mathrm{cm}^{3}$
$F(000)=1080.00$
$\mu\left(\right.$ Mo $\left.K_{\alpha}\right)=0.96 \mathrm{~cm}^{-1}$
$T=123 \mathrm{~K}$
$2 \theta_{\text {max }}=60.7^{\circ}$ with $\operatorname{Mo} K_{\alpha}(0.7107 \AA)$
No. observations $=4651(I>2.00 \sigma(I))$
No. variables $=368$
$R, R w=0.061,0.076$
Goodness-of-fit $=1.55$
$(\Delta / \sigma)_{\max }=0.000$
$(\Delta \rho)_{\max }=0.68 \mathrm{e}^{-} / \AA^{3}$
$(\Delta \rho)_{\text {min }}=-0.62 \mathrm{e}^{-/ / \AA^{3}}$
Diffractometer: Rigaku/MSC Mercury CCD
Program system: teXsan
Structure determination: direct method (MULTAN88)
Refinement: full-matrix least-squares
CCDC 606661 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Fig. 2 Molecular structure of I along with the labeling atoms. Thermal ellipsoids of non-H atoms are drawn at the 50% probability level.
were corrected for Lorentz-polarization effects. The structure was solved by direct methods and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located by a difference Fourier synthesis and a geometrical calculation, with the H atoms bonded to $N(1), N(2)$, and $\mathrm{O}(5)$ atoms also being refined isotropically. All calculations were performed using the teXsan crystallographic software package.
Table 1 lists the crystal data and the experimental conditions. Figure 2 illustrates an ORTEP diagram of the molecule with the atomic-labeling scheme. The final position parameters are given in Table 2.
There are two independent coumarin molecules (A, B) and one water molecule per asymmetric unit. Molecules A and B are linked through the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ and the $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{O}($ water $) \cdots \mathrm{H}-\mathrm{N}$ hydrogen bondings to form a cyclic hetero dimer. $\left[\mathrm{N}(1) \cdots \mathrm{O}(4) 2.830(2) \AA, \mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(4) 158(2)^{\circ}\right.$; $\mathrm{N}(2) \cdots \mathrm{O}(5) \quad 2.807(2) \AA, \quad \mathrm{N}(2)-\mathrm{H} \cdots \mathrm{O}(5) \quad 163(2)^{\circ} ; \quad \mathrm{O}(5) \cdots \mathrm{O}(2)$ $2.858(3) \AA \AA, \quad \mathrm{O}(5)-\mathrm{H} \cdots \mathrm{O}(2) \quad 161(3)^{\circ} ; \quad \mathrm{O}(5) \cdots \mathrm{O}(2)^{\mathrm{i}} \quad 2.959(2) \AA$, $\mathrm{O}(5)-\mathrm{H} \cdots \mathrm{O}(2)^{\mathrm{i}} 170(3)^{\circ}$; symmetry code i] $\left.x+1 / 2,-y+1 / 2, z\right]$.
Molecule A and B have similar molecular geometries to each other. The carbazole moieties are coplanar with the other molecules. The sum of the bond angles around the $\mathrm{N}(1)$ and $\mathrm{N}(2)$ atoms is 358°. This value indicates that these nitrogen atoms are almost sp^{2}-hybridized. The geometries of the aromatic rings can be compared with that of bicyclic coumarins. ${ }^{5}$ The $\mathrm{C}(6)-\mathrm{C}(7)[1.426(3) \AA$ and the $\mathrm{C}(22)-\mathrm{C}(23)$ [1.428(3) \AA] bonds are clearly longer than the corresponding average value for bicyclic coumarins ($1.397 \AA$). ${ }^{5}$
The angles of $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8) \quad\left[122.0(2)^{\circ}\right]$ and

Table 2 Atomic coordinates and equivalent isotropic thermal parameters ($B_{\text {eq }}$)

atom	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
O(1)	0.2875(2)	$0.11136(6)$	0.6796 (1)	1.54 (3)
$\mathrm{O}(2)$	$0.3374(2)$	$0.20669(6)$	0.6923(1)	1.88(3)
O(3)	0.6112(2)	-0.07960(6)	0.8025(1)	1.70 (3)
$\mathrm{O}(4)$	0.4680(2)	-0.16269(7)	0.7719(1)	2.34(3)
\bigcirc (5)	0.6910 (2)	$0.19718(7)$	0.7934(1)	$2.12(4)$
$\mathrm{N}(1)$	0.1813(2)	-0.09714(7)	0.6696 (1)	1.62(4)
$\mathrm{N}(2)$	0.9190(2)	0.10431 (8)	0.8600(1)	1.58(4)
C(1)	0.2288(3)	0.16784 (9)	0.6691 (2)	$1.57(4)$
C(2)	0.0474 (3)	0.17721 (9)	0.6321 (2)	1.66 (4)
C(3)	-0.0663(3)	0.13232 (9)	0.6089(2)	1.51 (4)
C(4)	-0.0029(3)	0.07285 (9)	0.6220(2)	1.37 (4)
C(5)	-0.1091(3)	$0.02328(9)$	$0.6009(1)$	1.42 (4)
C(6)	-0.0389(3)	-0.03226(9)	0.6175 (1)	$1.35(4)$
C(7)	0.1419(3)	-0.03839(9)	$0.6567(2)$	1.42(4)
C(8)	0.2512 (3)	0.00966 (9)	0.6751 (2)	1.50 (4)
C(9)	0.1756 (3)	0.06421 (9)	$0.6585(1)$	$1.38(4)$
$\mathrm{C}(10)$	-0.2544(3)	0.14433 (9)	$0.5698(2)$	1.85 (4)
$\mathrm{C}(11)$	$0.0311(3)$	-0.12961(9)	$0.6396(2)$	1.48 (4)
C(12)	$0.0104(3)$	-0.19004(9)	0.6402(2)	1.72(4)
C(13)	-0.1533(3)	-0.21217(9)	0.6025 (2)	1.84(4)
$\mathrm{C}(14)$	-0.2936(3)	-0.17531(10)	0.5670(2)	1.88 (4)
$\mathrm{C}(15)$	-0.2732(3)	-0.11454(9)	0.5693 (2)	1.72(4)
C(16)	-0.1090(3)	-0.09125(9)	$0.6056(2)$	$1.44(4)$
$\mathrm{C}(17)$	0.6091(3)	-0.13986(9)	0.8009(2)	1.72(4)
C (18)	0.7697(3)	-0.16999(9)	0.8326 (2)	1.66 (4)
C(19)	0.9218(3)	-0.14139(9)	0.8627(2)	1.42(4)
C(20)	0.9230(3)	-0.07777(9)	0.8619(1)	$1.35(4)$
C(21)	$1.0734(3)$	-0.04403(9)	0.8882(1)	$1.42(4)$
C(22)	1.0626 (3)	0.01691 (9)	0.8848(1)	1.41(4)
C(23)	0.8976 (3)	0.04443(9)	0.8565(2)	1.51 (4)
C(24)	0.7468(3)	0.01207 (9)	0.8294(2)	1.54(4)
C(25)	$0.7634(3)$	-0.04829(9)	0.8318(2)	1.42(4)
C(26)	$1.0856(3)$	-0.17507(9)	0.8981 (2)	1.71 (4)
C(27)	1.0943 (3)	0.11693 (9)	0.8880(2)	$1.62(4)$
C(28)	1.1754(3)	0.17134 (9)	0.9002(2)	1.86 (4)
C(29)	$1.3538(3)$	$0.17203(10)$	0.9283(2)	2.10 (5)
C(30)	1.4491(3)	0.1200 (1)	0.9431 (2)	2.20 (5)
C(31)	1.3675 (3)	$0.06581(10)$	0.9315(2)	1.86(4)
$\mathrm{C}(32)$	1.1883(3)	0.06400(9)	0.9045 (1)	1.42 (4)

$B_{\mathrm{eq}}=(8 / 3) \pi^{2}\left(U_{11}\left(a a^{*}\right)^{2}+U_{22}\left(b b^{*}\right)^{2}+U_{33}\left(c c^{*}\right)^{2}+2 U_{12} a a^{*} b b^{*} \cos \gamma+\right.$ $\left.2 U_{13} a a^{*} c c^{*} \cos \beta+2 U_{23} b b^{*} c c^{*} \cos \alpha\right)$.
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$ [121.8(2) ${ }^{\circ}$] are slightly larger than the corresponding average value for bicyclic coumarins (120.9 ${ }^{\circ}$). ${ }^{5}$

References

1. K. H. Drexhage, in "Dye Lasers", ed. F. P. Schäfer, 1973, Springer-Verlag, Berlin, Heidelberg, New York, 144.
2. B. M. Krasovitskii and B. M. Bolotin, "Organic Luminescent Materials", 1988, VCH Publisher, Weinheim, 139.
3. N. Kitamura, Y. Toriumi, S. Kohtani, and R. Nakagaki, Anal. Sci., 2005, 21, x101.
4. E. R. Bissell, D. K. Larson, and M. C. Croudace, J. Chem. Eng. Data, 1981, 26, 348.
5. N. Kitamura, S. Kohtani, and R. Nakagaki, J. Photochem., Photobiol., C: Rev., 2005, 6, 168.

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed.
 E-mail: nakagaki@mail.p.kanazawa-u.ac.jp

