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Abstract: This paper focuses on a new proposal system input of impedance control that relates to force reflection (FR)
scheme of teleoperation with time varying in communication lines. To improve the tracking performance and transparency,
the control algorithm uses one more communication channel to transfer the FR information from the master side to the
slave side. Using variable damping values, the contact stability is achieved at the time while the slave robot contacts
with the environment. In this work, the input-to-output stability (IOS) small gain approach is used to show the overall
force-reflecting teleoperation to be input-to-state stable (ISS). Several experimental results show the effectiveness of our
proposed algorithm.
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1. INTRODUCTION

Teleoperation systems allow a person to extend his/her
intelligence and manipulation capability to remove place
and/or hazardous environments through coordinated con-
trol of two robotic arms, i.e., a master hand controller that
is used by a human operator, and a slave robot that manip-
ulates the environment. During the last several decades,
many different teleoperation systems have been devel-
oped with wide applications in different circumstances
such as use in outer space, undersea, in nuclear plants,
in surgical operations, in vehicle steering, etc. and this
field is being pursued by many researchers [1].
In bilateral teleoperation, the master and slave robots

are coupled via communication lines, where the position
and/or force information are transferred. Communication
delays are incurred in the transmission of data between
the master and the slave. It is well known that the delay
in a closed loop system may destabilize and deteriorate
the transparency of the teleoperation system [2], [3].
While accurate tracking is essential for the skillful

control of tasks, it is not enough to achieve the good per-
formance on its own, since position is not the only rela-
tionship that exists between both robots. In fact at the
moment that the slave robot starts its interaction with the
environment, reflecting forces appear and arise. If we do
not notice, this force can be uncontrolled and can become
a danger in several tasks. Consequently, the feedback of
the force is very important and extremely useful, and it
leads to so-called force reflection (FR) in a master-slave
system. The FR scheme tries not only to achieve good
tracking during unconstrained motion, but also to convey
precise information of the forces between the slave robot
and the environment. Therefore the operator can actually
feel these forces on the master robot [4], [5], [6].
Up to now, many surveys concern the teleoperation

control systems. The impedance control was introduced
and improved, such as in [7] - [11]. This control method
based computed torque approach was used in [8], and the
control objective is to make mimic a passive mechanical

tool with a force-reflecting ability. Here, the authors also
used variable damping to improve the tracking perfor-
mance concurrently. The research [9] proposed one con-
trol method based impedance control for comparison of
some controllers in a 2-DOF master-slave system. A new
force reflecting teleoperation methodology with adaptive
impedance control was used in [10] to reduce operator
energy requirements without sacrificing stability. In ad-
dition, to improve the transparency of bilateral teleoper-
ation with communication delays, a force-reflection (FR)
scheme was addressed in [11] and the method is PD
control. In [7] - [11], tracking performance has been
achieved by explicit position feedback/feedforward con-
trol.
The force-reflecting teleoperation was introduced in

[11]. Here the environment force reflected on the mas-
ter side can be altered depending on the force applied by
the human operator. However this alteration is not felt by
the human, so the FR algorithm [11] is not effective for
the transparency. On the other hand, since there is only
the force reflected from the environment, then the control
system of [11] has three channels of communication lines
for teleoperation. This work also addresses the stabilizing
problem of force reflecting teleoperation in the presence
of time varying communication delays.
In this paper, we focus on transparency and track-

ing performance improvement of teleoperation system by
using the impedance control based on some results of
[7], [9]. This method proposes using a new system in-
put, which relates to a new proposed FR algorithm under
time-varying delays in the communication lines. Beside
the reflecting force from environment that transferred to
the master side [11], our work proposes to transfer the
force exerted by the human to the slave side with a sys-
tem of four communication channels for teleoperation.
Also in this paper, based on the proposal in [8], the damp-
ing modulation method that uses distance measurement is
used to achieve contact stability with good transparency
and tracking performance concurrently. In our opinion,
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the sensation of the human operator is important; by us-
ing this proposal with FR algorithm, the human can feel
alteration of the force at the end-effector of the slave
robot in contact tasks. In this work, the input-to-output
stability (IOS) small gain approach [12] - [15] is used to
show the overall FR teleoperation system to be input-to-
state stable (ISS), and several experimental results show
the effectiveness of our proposed algorithm.

2. PROBLEM FORMULATION

2.1 Dynamics of Teleoperation System
In this paper, we consider a pair of robotic system cou-

pled via communication lines with time-varying delays.
Assuming the absence of friction, other disturbances and
gravity term, the master and slave dynamics with n−
DOF are described as:�

Mm(qm)q̈m +Cm(qm, q̇m)q̇m = τm + JT
mFop

Ms(qs)q̈s +Cs(qs, q̇s)q̇s = τs − JT
s Fe

(1)

where the subscript “m” and “s” denote the master and
slave indexes, respectively, qm, qs ∈ Rn×1 are the joint
angle vectors, q̇m, q̇s ∈ Rn×1 are the joint velocity vec-
tors, q̈m, q̈s ∈ Rn×1 are the joint acceleration vectors,
τm, τs ∈ Rn×1 are the input torque vectors, Fop ∈ Rn×1 is
the operational force vector applied to the master robot
by the human operator, Fe ∈ Rn×1 is the environmen-
tal force vector applied to the environment by the slave
robot, Mm, Ms ∈ Rn×n are the symmetric and positive
definite inertial matrices,Cmq̇m, Csq̇s ∈ Rn×1 are the cen-
tripetal and Coriolis torque vectors, and Jm, Js ∈ Rn×n are
Jacobian matrices.
Considering that position encoders measure manipula-

tor coordinate qi, Cartesian coordinate must be related to
these coordinate. Their derivatives through the Jacobian
matrix Ji(qi) with i = m, s as follows:

zi = hi(qi(t)) ⇒ żi = Ji(qi)q̇i (2)

Following the motion of the master, the slave manip-
ulator interacts with the environment. Here the environ-
ment is assumed to be a dynamic system described by the
equations below in the form of input-to-output stability
properties:�

ẋe = Fenv(xe,zs, żs, t)
Fe = Genv(xe,zs, żs, t)

(3)

where xe ∈ Rz is a state of the environment, we assume
that Fenv(xe,zs, żs, t) is measurable in t, locally Lipschitz
in xe, zs, żs and essentially bounded on any compact set
of xe, zs, żs uniformly in t ≥ 0. Additionally, suppose
|Genv(xe,zs, żs, t)| ≤ a(|xe|+ |zs|+ |żs|+ |b|) (4)
holds for all t ≥ 0, where a, b ≥ 0. The following

assumption is imposed on the environmental dynamics:
Assumption 1: There exists a locally Lipschitz stor-

age function Ve : Rz → R, α1e, α2e ∈ K∞, and α3e > 0
such that: α1e(|xe|) ≤ Ve(xe) ≤ α2e(|xe|) holds for all
xe ∈ Rz, and the time derivative of Ve along trajectories
of (3) satisfies:

V̇e(t) ≤−α3e|xe|2+FT
e se(t)

for almost all t ≥ 0, where:
se(t) = żs(t)− z∗2(t)+Λenv(zs(t)− z∗1(t)) (5)
where Λenv = ΛT

env ∈ Rn×n, and z∗1, z∗2 : R → Rn are some
continuous uniformly bounded functions.

2.2 Control Objectives
We would like to design the control input τm and τs

to achieve a task-space synchronization and the trans-
parency improvement with proposed force reflection al-
gorithm of teleoperation. Let us define the position track-
ing errors of the end-effector as follows:�

em(t) = zm(t)− zs(t −Ts(t))
es(t) = zs(t)− zm(t −Tm(t)) (6)

where zm and zs ∈ Rn×1 are the end-effector position vec-
tors. The control objectives in this paper as follows:
1. The synchronization is achieved as:

ei(t), ėi(t) → 0 as t → ∞, i = m,s (7)

2. The transparency is achieved with z̈i(t) = żi(t) = 0,
i = m, s as:
Fop(t) →−Fe(t) (8)

2.3 Impedance Controller
A precise knowledge about the values of the dynamic

parameters allows the implementation of an inverse dy-
namics algorithm as impedance controller. Here, follow-
ing the proposal in [9], the torque given by the motors can
be split into two terms, the first arising from the teleop-
eration τtel , and the second from the impedance control
τinv. The torque inputs of the system are as follows:

τi = τinvi
+ τtel i

(9)

where the second term is defined as: τtel i = JT
i Ftel i

(i = m, s). If we assume Hi and Bi to be the mass and
damping and they are assumed positive definite diago-
nal matrices; zi is a vector containing the Cartesian co-
ordinates. Fext m/s represents the forces exerted on each
robot which include reflection force information in, and
Ftelm/s represents the forces via teleoperation. Applying
the approach in [7], the target relationship between the
movement of each robot and the force that acts on it is
expressed as follows:�

Hmz̈m +Bmżm = Fext m +Ftelm
Hsz̈s +Bsżs = Ftel s +Fext s

(10)

Concerning (2) we get the further differentiation as:

z̈i = Ji(qi)q̈i(t)+ J̇(qi)q̇2i (11)

Substituting (11) and (2) in to (10) and operating, we
can calculate the acceleration of the system as follows:
�

q̈m = H−1
m J−1m [Fext m +Ftel m −BmJmq̇m]− J−1m J̇mq̇2m

q̈s = H−1
s J−1s [Fext s +Ftel s −BsJsq̇s]− J−1s J̇sq̇2s

(12)

Here for simplicity, we assume that:
Assumption 2: The Jacobian (Jm, Js) are invertible,

i.e. they are nonsingular matrices at all times in opera-
tion. They are also called pseudoinverse matrices.
Substituting (12) and (9) into (1) and enclosing the

above assumption, we get:
⎧⎪⎪⎨
⎪⎪⎩

τinvm = MmH−1
m J−1m [Fext m +Ftel m]−MmH−1

m Bmq̇m

−MmJ−1m J̇mq̇2m +Cmq̇m − (JT
mFtel m + JT

mFop)
τinvs = MsH−1

s J−1s [Fext s +Ftel s]−MsH−1
s Bsq̇s

−MsJ−1s J̇sq̇2s +Csq̇s − (JT
s Ftel s − JT

mFe)

(13)

We receive the master slave robot dynamics with
impedance controller by substituting (13) into (1) with
enclosing (9) as:
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⎧
⎪⎪⎨
⎪⎪⎩

Mmq̈m +Cmq̇m = MmH−1
m J−1

m [Fext m +Ftel m]
−MmH−1

m Bmq̇m −MmJ−1
m J̇mq̇2

m +Cmq̇m

Msq̈s +Csq̇s = MsH−1
s J−1

s [Fext s +Ftel s]
−MsH−1

s Bsq̇s −MsJ−1
s J̇sq̇2

s +Csq̇s

(14)

From (14) we get:�
Hm(J̇mq̇2

m + Jmq̈m)+BmJmq̇m = Fext m +Ftelm
Hs(J̇sq̇2

s + Jsq̈s)+BsJsq̇s = Ftel s +Fext s
(15)

Considering (2) and (11) we receive the task space dy-
namics of the teleoperation system as follows:�

Hmz̈m +Bmżm = Fext m +Ftelm
Hsz̈s +Bsżs = Ftel s +Fext s

(16)

In the impedance controller, we propose the exerted
forces of each robot on both sides of the teleoperation
system, in which reflecting forces are also addressed:�

Fext m(t) = Fop(t)− F̃e(t −Ts(t))
Fext s(t) = F̃op(t −Tm(t))−Fe(t)

(17)

where F̃op(t − Tm(t)) and F̃e(t − Ts(t)) are reflecting
forces from master and slave sides of teleoperation, re-
flectively.

We assume Km, Ks ∈ Rn×n to be positive definite di-
agonal gain matrices. The controller of the torque arises
from teleoperation is proposed as follows:�

Ftelm(t) = Km[zs(t −Ts(t))− zm(t)]
Ftel s(t) = Ks[zm(t −Tm(t))− zs(t)]

(18)

where Tm(t) and Ts(t) are time varying delays in the
communication lines. Fig. 1 shows a block diagram of
the control system with impedance based force-reflection
teleoperation, Fig. 2 is a block of master/slave robot dy-
namics with an impedance controller.

2.4 Communication Delay
Let Ti : R→R+, i∈m, s be time-dependent time-delay

in the forward (i = m) and backward (i = s) communica-
tion channels, respectively. If the positions and velocities
of the master and slave are transmitted to each side with
communication delays Tm/s(·), the following signals

ẑm(t) = zm(t −Tm(t)); ˙̂zm(t) = żm(t −Tm(t))

ẑs(t) = zs(t −Ts(t)); ˙̂zs(t) = żs(t −Ts(t)) (19)

are available for the controller on both sides of teleoper-
ation.

On the other hand, a contact force due to the environ-
ment is measured on the slave side and transmitted back
to the master side. Similarly, the force exerted on the
master manipulator also is measured and transmitted for-
ward to the slave side, with communication delay Ts/m(·),
i.e.�

F̂e(t) = F̃e(t −Ts(t))
F̂op(t) = F̃op(t −Tm(t))

(20)

Both Tm(t) and Ts(t) are assumed to be time-varying
and possibly unbounded.

3. FORCE-REFLECTION SCHEME

In this section, we will consider the FR teleopera-
tion system with communication delays as a system of

Master 
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Fig. 2 The master and slave robot dynamics with
impedance controller.

functional-differential equations (FDE). A state of over-
all teleoperation system at time t ∈ R can be chosen as
follows:

xt = (zT
m, żT

m,zT
s , żT

s ,eT
m, ėT

m,eT
s , ėT

s )T (21)

The research [11] introduced a new FR algorithm. The
reflecting force is transferred from the slave side to the
master or operator side. In this strategy, to avoid exces-
sive force pushing against the human operator, the satu-
ration function of FR was used. Note that since the al-
gorithm was proposed to change the FR only when the
human operator does not push against the environmental
force, this alteration is not felt by the human. Therfore
the transparency of the teleoperation system is deterio-
rated. The simulation results of this strategy did not show
the improved transparency of the teleoperation. However,
this algorithm may prevent the teleoperator system from
going into unstable mode.

In our opinion, the sensation felt by the human oper-
ator is important as it allows the human to feel the al-
teration of the force exerted on the environment by the
FR from the slave side. It helps the human to apply an
appropriate force in the real task during teleoperation.
Therefore, we propose one more communication chan-
nel to transfer the force of the operator to the slave side,
then some better results can be obtained in comparison
with the early research [11].

The outputs of the Master + operator and the Slave +
environment interconnection are defined as follows:�

ym = P̄1Fop + P̄2em + P̄3ėm
ys = K̄1Fe + K̄2es + K̄3ės

(22)

where em = zm − ẑs and es = zs − ẑm are the position er-
rors, ėm = żm − ˙̂zs and ės = żs − ˙̂zm are the velocity errors
in the slave and master sides, and K̄1 = K̄T

1 ≥ 0, K̄2 =
K̄T

2 ≥ 0, K̄3 = K̄T
3 ≥ 0 and P̄1 = P̄T

1 ≥ 0, P̄2 = P̄T
2 ≥

0, P̄3 = P̄T
3 ≥ 0 are the gain matrices.

We define the FR signals of both sides as follows:
�

F̃e(t) = ys(t)
F̃op(t) = Pym(t) (23)

The signal F̂e(t) is transmitted to the master side, and
F̂op(t) is transmitted to the slave side with communica-
tion delays Ts(t), Tm(t).
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Concerning (22) and (23), the general formulas of FR
signals are given as:�

F̃e(t) = Kf b(K̄1Fe + K̄2es + K̄3ės)
F̃op(t) = Pf w(P̄1Fop + P̄2em + P̄3ėm) (24)

The block of force reflection scheme is shown in Fig.1.

4. DAMPING VALUE MODULATION

One of the control objectives of teleoperation systems
is to achieve a good tracking performance of the slave
robot during motions in free space, as well as a good
contact stability during motions resulting in contact with
the environment. The damping of both master and slave
may be empirically constructed to provide the desired al-
terations. As much previous research of force reflecting
teleoperation system, when the end-effector of the slave
robot is controlled to contact with a hard environment,
the tracking performance is not good, especially in low
damping cases. Sometimes this makes the system unsta-
ble after a short time of contact although it had a good
tracking performance in free space before.
The desired damping values of master and slave robots

are also the parameters in the control law; they are se-
lected depending on whether the slave is in free space or
in contact with an environment. The variable damping
values in these cases are assumed to be bounded for the
damping modulation that was also introduced in [8].
The master and slave damping matrices are shown as

below:

Bm =
�

b̃vm1 0
0 b̃vm2

�
, Bs =

�
b̃vs1 0
0 b̃vs2

�
(25)

where b̃vm1, b̃vm2, b̃vs1, b̃vs2 are the variable damping val-
ues of master and slave, respectively. These values are
modulated according to the distance of slave end-effector
from a staring point to the other point on the environment
surface (following the ys-axis). Based on the proposal
in [8], if we call zyenv to be y-axis position of the environ-
ment, then variable damping values are defined following
two positions as:
1) zyenv ≤ 0:

b̃vi (zy) =

⎧⎨
⎩

bc, zy > 0
Γ3z3y +Γ2z2y +Γ1zy +Γ0, zymax ≤ zy ≤ 0
b f , zy < zymax

(26)

2) zyenv > 0:

b̃vi (zy) =

⎧⎨
⎩

bc, zy < 0
Γ3z3y +Γ2z2y +Γ1zy +Γ0, 0≤ zy ≤ zymax

b f , zy > zymax

(27)

here i = m/s and zy, zymax are the distances from starting
point to the position of the end-effector of the slave and to
the contact point in the environment, respectively; bc and
b f are lower and upper bound values of damping; The co-
efficients Γi (i = 1÷3) are obtained with the constraints
of: b̃vi(0) = bc and b̃vi(zymax) = b f .

5. STABILITY ANALYSIS

This section deals with the stability of the overall tele-
operation system that includes master and slave subsys-
tems. We defined a state of this system similar to (21).

First, concern the approach in [11], we consider the mas-
ter subsystem in (1) following the Lemma below.

Lemma 1: The closed-loop master subsystem with
state xM = (zT

m, żT
m)T , input uM = (Fop − F̂e) and output

yM = (zT
m, żT

m)T is input-to-state stable (ISS), and also is
input-to-output stable (IOS)
Proof: First, consider an ISS-Lyapunov function can-

didate:

Vm =
1
2

ξ T
m Hmξm (28)

here ξm is defined as:

ξm = (żm −σ2)+Λm(zm −σ1)

where Λm is diagonal matrix gain. We can easily check
that αm(|xM|)≤Vm ≤ ᾱm(|xM|) while αm, ᾱm ∈K∞.The
time derivative of Vm along trajectories of the system is:

V̇m = ξ T
m Hmξ̇m (29)

We consider the FR stabilization algorithm where the
velocity measurements are replaced by the estimates ob-
tained using the so-called “dirty derivative” filters, which
were also introduced in [11] as follows:�

σ̇1 = σ2−Λm(zm −σ1)
σ̇2 = H−1

m [−Bmσ̇1−Km(zm − ẑs)]
(30)

We have:
ξ̇m = z̈m − σ̇2+Λm(żm − σ̇1)

Substituting z̈m from (16) into ξ̇ and then replace them
in (29) while noticing the formulas of Ftelm and Fext m, we
get:

V̇m =ξ T
m Hm

�
H−1

m [−Bm(żm −σ2+Λm(zm −σ1))
+Fext m]+Λmξm

�

=−ξ T
m (Bm −HmΛm)ξm +ξ T

m (Fop − F̂e) (31)

We use Young’s quadratic inequality with |aT b| ≤
(ε/2)|a|2+(1/2ε)|b|2 that holds for all ε > 0, therefore
we can obtain the following relationship:

ξ T
m (Fop − F̂e) ≤ λmin(Λm)

4
|ξm|2+

1
λmin(Λm)

|Fop − F̂e|2 (32)

then we get:

V̇m ≤−ξ T
m (Bm −HmΛm)ξm +

λmin(Λm)
4

|ξm|2

+
1

λmin(Λm)
|Fop − F̂e|2 (33)

Now, let γΛ ∈K be defined as: γΛ = λmin(Λm)/4 then
we can choose Λm = ΛT

m > 0 with bounded Λm < Bm/Hm
to satisfy γΛ(Λm) ≤ 4[Bm −HmΛm].
Applying the results of Sontag and Wang (1995) [15]

(see Appendix) and in [14], the subsystem is input-to-
state stable with the state (zT

m, żT
m)T . Here the output is

similar to the input (y = x), so the subsystem is also input-
to-output stable.
Now, we consider the slave-environment interconnec-

tion with the slave subsystem.
Lemma 2: State of the closed-loop slave subsystem

is assumed as: xS = (z̃T
s ,ξ T

s ,xT
e )T , and input: uS =

((z∗1)
T ,(z∗2)

T ,ςT
1 ,ςT

2 , z̃T
s , F̂T

op)
T . We suppose the environ-

ment dynamics (3) satisfy Assumption 1. Then there exits
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γΛ ∈K such that if λmin(Ks)≥ γΛ(�Λs−Λenv�), then the
slave-environment interconnection is input-to-state sta-
ble.
Proof: First, consider the ISS-Lyapunov function can-

didate:

Vs =
1
2

ξ T
s Hsξs +

1
2

kzz̃
T
s z̃s +Ve (34)

where Ve is introduced in Assumption 1, kz > 0 is a
constant to be determined, z̃s = zs − ς1 is the slave po-
sition error estimation. And one can easily check that
Vs satisfies the inequality αs(|xS|) ≤ Vs ≤ ᾱs(|xS|) while
αs, ᾱs ∈ K∞. Calculating the time derivative of Vs along
the trajectories of the system as:

V̇s = ξ T
s Hsξ̇s + kzz̃

T
s
˙̃zs +V̇e (35)

Similar to the master subsystem, we set:

ξs = (żs − ς2)+Λs(zs − ς1);

ξ̇s = (z̈s − ς̇2)+Λs(żs − ς̇1)

and using the “dirty-derivative” filter as follows:
�

ς̇1 = ς2−Λs(zs − ς1)
ς̇2 = H−1

s [−Bsς̇1−Ks(zs − ẑm)] (36)

where Λs is diagonal matrix gain. We consider (16) to get
z̈s and substitute (36) into ξ̇s while noticing the formula
of Ftel s in (18), we receive:

ξ̇s = H−1
s [−Bs(żs − ς̇1)+Fext s]+Λsξs (37)

Considering the fact that:
˙̃zs = −Λsz̃s +ξs + ς2− ς̇1 (38)

and substituting (37), (38) into (35) and concerning V̇e in
Assumption 1, the formula of Fext s in (17), we get:

V̇s ≤−ξ T
s (Bs −HsΛs)ξs − kzz̃

T
s Λsz̃s −α3e|xe|2

+ F̂T
opξs +FT

e (se −ξs)+ kzz̃
T
s ξs + kzz̃

T
s (ς2− ς̇1) (39)

Modifying the formula of ξs as follows:

ξs =(żs − ς2)+Λenv(zs − ς1)− (Λenv −Λs)(zs − ς1)

Considering the equation (5), we receive:

(se −ξs) =ς2− z∗2+Λenv(ς1− z∗1)� �� �
Ω1

+(Λenv −Λs)� �� �
Ω2

z̃s (40)

Using the formulas: zs = z̃s + ς1, żs = ξs −Λsz̃s + ς2;
and noticing the inequality (4), we get:

|Fe| ≤ a(|xe|+ � Λs + I � |z̃s|+ |ξs|+ |ς1|+ |ς2|)+b (41)

Combining (40) and (41), we get the estimate:

|(se −ξs)T Fe| ≤ a|xe||Ω1|+a � Λs + I � |z̃s||Ω1|
+a|ξs||Ω1|+a(|ς1|+ |ς2|)|Ω1|+b|Ω1|
+a|xe| � Ω2 � |z̃s|+a � Λs + I �� Ω2 � |z̃s|2
+a � Ω2 � |ξs||z̃s|+a � Ω2 � (|ς1|+ |ς2|)|z̃s|
+b � Ω2 � |z̃s| (42)

Using the fact that (ς2− ς̇1) = Λs(zs −ς1), and apply-
ing Young’s quadratic inequality form, we can obtain the
following set of bounds:

F̂T
opξs ≤ λmin(Λs)

4 |F̂op|2+ 1
λmin(Λs)

|ξs|2 (43)

kzz̃
T
s ξs ≤ kz(

λmin(Λs )
4 |z̃s|2+ 1

λmin(Λs)
|ξs|2) (44)

kzz̃
T
s Λs(zs − ς1) ≤

kzλmin(Λs)
4 |z̃s|2+ kzΛ2s

λmin(Λs)
|zs − ς1|2 (45)

a|xe||Ω1| ≤ α3e
4 |xe|2+ a2

α3e
|Ω1|2 (46)

a � Λs + I � |z̃s||Ω1| ≤
kzλmin(Λs)

4 |z̃s|2+ a2�Λs+I�2
kzλmin(Λs)

|Ω1|2 (47)

a|ξs||Ω1| ≤ λmin(Ks)
4 |ξs|2+ a2

λmin(Ks)
|Ω1|2 (48)

a|xe| � Ω2 � |z̃s| ≤ α3e
4 |xe|2+ a2

α3e
� Ω2 �2 |z̃s|2 (49)

a � Ω2 � |ξs||z̃s| ≤� Ω2 � (a2|ξs|2+ 1
4 |z̃s|2) (50)

a � Ω2 � (|ς1|+ |ς2|)|z̃s| ≤
� Ω2 � (a2(|ς1|+ |ς2|)2+ 1

4 |z̃s|2) (51)

b � Ω2 � |z̃s| ≤� Ω2 � (b2+ 1
4 |z̃s|2) (52)

Combining (43)-(52) and (39), (42), we get:

V̇s ≤−ξ T
s (Bs −HsΛs)ξs − kzz̃

T
s Λsz̃s − α3e

2
|xe|2

+
� 1+ kz

λmin(Λs)
+a2 � Ω2 �

�
|ξs|2

+
��

a � Λs � +a+
3
4

� � Ω2 � +
a2

α3e
� Ω2 �2

�
|z̃s|2

+
� a2

α3e
+

a2 � Λs + I �2
kzλmin(Λs)

+
a2

λmin(Ks)

�
|Ω1|2

+
�
a(|ς1|+ |ς2|)+b

�|Ω1|+ � Ω2 �
�
(a2(|ς1|+ |ς2|)2

+b2
�
+

λmin(Λs)
4

|F̂op|2+
kzΛ2s

λmin(Λs)
|zs − ς1|2 (53)

Now, let γ1Λ, γ2Λ ∈ K∞ be defined for each s ≥ 0 as
follows:

γ1Λ(s) =

�
a � Λs � +a+(3/4)

�
s+

�
a2/α3e

�
s2

2λmin(Λs)

γ2Λ(s) =
s

λmin(Λs)
+a2γ−11Λ (s)

and consider the small gain γΛ = γ1Λ(s) ◦ γ2Λ(s) ∈ K∞.
Similar to the Lemma 1, we can chooseΛs = ΛT

s > 0 with
boundedΛs < Bs/Hs, andKs = KT

s > 0, kz > 0 satisfying:

λmin(Ks) ≥ γ2Λ(kz) ≥ γΛ(� Λenv −Λs �) (54)

implies that:

V̇s ≤−ξ T
s (Bs −HsΛs)ξs − kzz̃

T
s Λsz̃s − α3e

2
|xe|2

+
� a2

α3e
+

a2 � Λs + I �2
kzλmin(Λs)

+
a2

λmin(Ks)

�
|Ω1|2

+
�
a(|ς1|+ |ς2|)+b

�|Ω1|+ � Ω2 �
�
(a2(|ς1|+ |ς2|)2

+b2
�
+

λmin(Λs)
4

|F̂op|2+
kzΛ2s

λmin(Λs)
|zs − ς1|2 (55)

Similar to the master subsystem, the results in [15]
of Sontag and Wang are used (see Appendix). Then
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the slave subsystem is input-to-state stable with state
(z̃T

s , ξ T
s , xT

e )T .
Based on the Lemma 1 and Lemma 2, the follow-

ing theorem concerning stability properties of the closed-
loop system is obtained.

Theorem 1: Consider the force-reflecting teleopera-
tor system (1) and (16) with FR algorithm (24). Sup-
pose the environment dynamics satisfy Assumption 1,
and the communication delays Tm/s(·) satisfy Assump-
tion 3, there exists γΛ(·) ∈ K such that λmin(Ks) ≥ γΛ(�
Λs −Λenv �) implies that: for the FR algorithm (24), the
overall teleoperation system is input-to-state stable (ISS).

Proof: Now we can combine the above presented
results and the consecutive application of the IOS small
gain theorem in [11]. Indeed, denote by γ[uM→yM ](·)∈K
the ISS gain of the closed-loop master subsystem whose
existence is guaranteed by Lemma 1. And also, we let
γ[uS→xS](·) ∈ K be the IOS gain of the closed-loop slave
+ environment subsystem (3). Choose α∗(·) ∈ K∞ such
that the inequality:

α∗ ◦ γ[uS→xS](·)◦ γ[uM→yM ](·)(s) < s (56)

holds for all s > 0. Applying the IOS small gain theo-
rem, the overall teleoperation system is input-to-state sta-
ble for any α ∈ N satisfying α(s) ≤ α∗ for all s ≥ 0.

6. EVALUATION BY CONTROL
EXPERIMENTS

In this section, we verify the efficacy of the proposed
FR teleoperation. The experiments were carried out on
a pair of identical direct-drive planar robots with 2 links
revolute-joints. The inertia matrices and the Coriolis ma-
trices are identified as:

Mi =
�

Mi1 +2Ricos(qi2) Mi2 +Ricos(qi2)
Mi2 +Ricos(qi2) Mi2

�
,

Ci =
�−Risin(qi2)q̇i2 −Risin(qi2)(q̇i1 + q̇i2)

Risin(qi2)q̇i1 0

�

where Mi1 = 0.366 kgm2, Mi2 = 0.0291 kgm2, Ri =
0.0227 kgm2; li1 = li2 = 0.2 m, with i = m, s. The re-
mote environment on the slave side is a hard aluminum
wall and its surface is covered by soft rubber as shown
in Fig. 3. The contact forces between the end-effector of
the slave robot with the environment are shown in Fig. 4.
We also receive joint angle values from encoders in each
joint of the robots, and measure the operational and envi-
ronment reflecting forces by using the force sensors at the
end-effectors of the robots (FSx, FSy). For implementation
of the controllers and communication lines, we utilise a
dSPACE digital control system (dSPACE Inc.). All ex-
periments have been done with the artificial time varying
communication delays as:
Tm(t) = 0.2sin0.3t +0.3 [s]
Ts(t) = 0.2sin0.3t +0.3 [s]

We can see the above communication delays also sat-
isfy Assumption 3 with Tm/s(·) : R → R+. The exper-
iment setup is shown in Fig. 3, here the slave is con-
trolled to contact the surface of environment in (x1, y1)

Slave robot Master robot

Environment        

Fig. 3 Experimental setup.

FS y

Fe y

Fe x

FS x

q1

q2

Fig. 4 Force in the contact task.

from initial position (x0, y0). The initial joint angles of
the robots are chosen to satisfy Assumption 1, then we set
q1 = 450, q2 =−900 and they are equivalent in task space
with x0 = 0.2828 m, y0 = 0.0 m. The contact position is
set as: x1 = 0.2828 m, y1 = −0.16 m. The controller
parameters are selected as follows to guarantee the ISS
conditions in Lemma 1 and Lemma 2:

Hm = Hs =
�

2 0
0 2

�
, Bm = Bs =

�
b̃vm/s1 0

0 b̃vm/s2

�
;

Km =
�

45 0
0 45

�
, Ks =

�
95 0
0 95

�
;

Λm =
�

0.015 0
0 0.0015

�
, Λs =

�
0.5 0
0 0.8

�

In this control task, the varying damping values are
received from (26) with following parameters:

zymax = 0.12, b̄ f = 45, bc = 10

and some gains of the force reflection scheme are cho-
sen: P̄1 = K̄1 = 0.5, P̄2 = K̄2 = 0.03, K̄3 = 0.002, K̄3 =
0.02, Kf w = 0.5, Kf b = 1.5.

Two kinds of experimental conditions are given as:

Case 1. The slave moves without any contact.
Case 2. The slave moves in contact with the environ-

ment.

The Figs. 5-10 show the results with two cases of ex-
perimental conditions. Figs. 5-7 show the results of Case
1. We can see from Fig. 5, the free movement of slave
robot is achieved accurately the movement of the mas-
ter robot. In this case there is only the force exerted on
the master by the human operator. Since the end-effector
of the slave robot does not contact with the environment,
obviously there is not the reflecting force from there.

Figs. 8-10 show the results of the second case. From
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Fig. 8 we can see that after moving in free space (0-
18[sec]), the slave robot contacts with the environment
(18-35[sec]), the reflecting force appears and increases
while the human pushes an increasing force on the master
robot. As shown in Fig. 9, this contact force is faithfully
reflected to the master side. The human operator can per-
ceive the environment through the reflection force, how-
ever in this case the position error is larger than the error
in free movement case of slave robot. When the slave
robot departs from the environment and the human does
not exert more force on the master (35-50[sec]), the posi-
tion error becomes smaller.
In Fig. 7 and Fig. 10, the varying damping values of

the master and the slave robots are shown in 2 cases; the
environment position is set with zyenv ≤ 0; these values
depend on the distance (following the ys-axis) from the
starting point (x0,y0) to the current position of the end-
effector of the slave robot. We can set the upper and lower
bound values of damping, they depend on the distance
from the starting point to the surface of the environment.
The overall system guarantees the ISS and achieves con-
tact stability and also good transparency while the damp-
ing values satisfy the conditions from (33). In the ex-
perimental task, when the end-effector of the slave robot
contacts with the surface of the environment, the damp-
ing achieves the upper bound value (see Fig. 10) to keep
the contact stability.

7. CONCLUSION

In this paper, we proposed an impedance control input
based on a new force reflection (FR) algorithm for bilat-
eral teleoperation with time varying delays. In this pro-
posed strategies, besides using the new FR scheme we
used varying damping to improve contact stability and
transparency of teleoperation with the effective tracking
performance in comparison with the previous research.
To analyze stability, the input-to-output stability (IOS)
small gain theorem was used to show the overall FR tele-
operation system to be input-to-state stable (ISS). Finally,
several experimental results showed the effectiveness of
our proposed methods.
Our future work entails that the control method will

be improved more in harder environment contact without
destabilization and deterioration of the transparency.
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APPENDIX

Consider the following general system:

ẋ = f (x, y) (57)

here f ∈ Rn×Rm → Rn is continuously differentiable and
satisfies f (0,0) = 0.

Definition 1: The system (57) is (globally) input-to-
state stable (ISS) if there exist aK L -function β : R≥0×
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Fig. 5 Position data in free space (Case 1).
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Fig. 6 Force data in free space (Case 1).
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Fig. 7 Varying damping values in free space (Case 1).

R≥0 → R and a K -function γ such that for each input
u ∈ Lm

∞ and each ξ ∈ Rn, it holds that:

|x(t,ξ ,u)| ≤ β (|ξ |, t)+ γ(�u�) (58)

for each t ≥ 0.
Definition 2: A smooth function V : Rn → R>0 is

called ISS-Lyapunov function for system (57) if there ex-
its K∞-function α1,α2 and K -function α3 and χ , such
that:

α1(|ξ |) ≤V (ξ ) ≤ α2(|ξ |) (59)

for any ξ ∈ Rn and

∂V
∂ t

+
∂V
∂x

f (t,ξ ,u) ≤−α3(|ξ |) (60)

for any ξ ∈ Rn and any u ∈ Rm so that |ξ | ≥ χ(|u|).
Remark 1: A smooth function V is an ISS-Lyapunov

function for (57) if and only if there exits αi ∈ K∞ (1 ≤
i ≤ 4) such that (57) holds, and

∂V
∂ t

+
∂V
∂x

f (t,ξ ,u) ≤−α3(|ξ |)+α4(|u|) (61)
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Fig. 8 Position data in contact with environment(Case 2).
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Fig. 9 Force data in contact with environment (Case 2).
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Fig. 10 Varying damping values in contact with environ-
ment (Case 2).

This provides a “dissipation” type of characterization
for the ISS property. Clearly (61) implies (60). Assume
now that (60) holds with some α3 ∈ K∞ and χ ∈ K . Let
α4(r) = max{0, α̂4(r)} where α̂4(r) = max{(∂V/∂ t +
∂V/∂x) f (t,ξ ,u)+α3(χ(|u|)) : |u| ≤ r,ξ ≤ χ(r)}. Then
α4 is continuous and α4(0) = 0, and one can assume that
α4 is a K -function (majorize it by one if it is not). Note
then that (61) is holds because α4(r)≥ sup|u|=r(∂V/∂ t +
∂V/∂x) f (t,ξ ,u) + α3(|ξ |) (consider the two separate
cases |ξ | ≥ χ(|u|) and |ξ | ≤ χ(|u|)).


