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Active Vibration Control for Flexible
Structures Using a Wave-Absorbing
Control Method*

Koji MIZUTANI**, Chikayoshi YATOMI***
and Koicht INQUE****

This paper proposes active vibration control of flexible structures using wave-
absorbing method. The method is based on the active restraint of the formation of
standing waves which are created in continuous vibration. The Euler-Bernoulli beam
is used as the control object. Considering the general solution of the wave equation,
we obtain an active control method which eliminates the reflection waves atthe
boundary. The effectiveness of the restraint of the resonance is shown in frequency
domains. We then apply the method to impulse responses which have wide frequency
domains. Consequently, we show that the vibration of the beam is effectively and

quickly controlled before the standing waves are formed.

Key Words :

1. Introduction

There are many reports!” on vibration control
methods for flexible structures. The mathematical
models of flexible structures are expressed, in general,
by partial differential equations.
dealt with as distributed parameter systems, but often
the modal expansion method is used, which approxi-
mates the distributed parameter system by a system
of finite dimensions. Recently, however, the limita-
tions of the modal expansion method in controlling

Some cases® are

high dimension modes are being reached due to the
requirements of large structures and high precision
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control devices.

Therefore, we propose a new wave-absorbing
control method for a wide frequency band. This
method regards the vibration as superposed propaga-
tion waves, changes the reflection characteristics of
the travelling waves at the control position and tries
to absorb their energy. It designs the compensator
without the spillover which is ordinarily generated by
the modal expansion method, because the partial
differential equation of the mathematical model is not
approximated by a system of finite dimensions. This
concept was first applied to a control problem by von
Flotow and Schafer™® ®. Their method was to change
the reflection coefficient matrix between the incoming
wave mode and the outgoing wave mode to a suitable
form. After that, they introduced the H,-optimal
control of power flow from the system®. An H>-
optimal control of power flow is then discussed by
MacMartin and Hall™®, for design of a compensator
for general structures. Von Flotow’s method is
expanded by Fujii and co workers®® to the non-
colocate case. They proposed a method for obtaining
the 7/ norm of the reflection coefficient matrix, and
applied it to the problem of the impulse response!'®.
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Tanaka and co-workersV-% examined the forma-
tion process of vibration modes and proposed the
active sink method which inactivated every vibration
mode of the structures.

Considering that the standing waves generated in
the structure play an important role in continuous
vibration, we control the formation of the standing
waves actively using the wave-absorbing method.
First, we obtain the sine-wave general solution for the
governing equation of the structure. Then we derive
the forward and backward wave solutions for forma-
tion of the standing waves, and construct a controller
which absorbs the incoming waves and eliminates the
outgoing waves at the control position.

This paper uses the Euler-Bernoulli beam as the
control object which generates elastic bending waves
with a dispersive property. The wave-absorbing
control is first applied to the restraint of resonance in
frequency domains. Then, in the case of concentrated
impulse load which has many vibration modes, the
restraint of the vibration is confirmed before the
standing waves are formed in the structures. Finally,
as an application of the result, the control method for
arbitrary distributed impulse load is proposed.

2. The Bending Vibration of
the Euler-Bernoulli Beam

A thin rod or a belt-shaped structure undergoing
bending action is generally called a beam. The vibra-
tion of the traverse motion to the neutral axis of the
beam is called “the bending vibration of the beam”.
Its basic governing equations are, based on different
assumptions, classified into several types such as
Euler-Bernoulli, Rayleigh, Timoshenko and so on.
This paper deals with the most simple model called
the Euler-Bernoulli beam.

The basic assumptions of the Euler-Bernoulli
beam are that the material of the beam is homogene-
ous : the deflections are perfectly elastic and small;
and the stress is proportional to the strain; the local
rotational moment and the inertial force from the
shear deformation are neglected. The governing
equation is then given by

Eau'(r t)+ 4011(1 f)_q (1)
or’

where r denotes the coordinate along the neutral axis
of the beam, ¢ the time, w(x, t) the lateral deflection
(cf. Fig. 1), EI the bending rigidity, pA the linear
density and the distributed force. Here we assume
that the length, the width, the thickness, the bending
rigidity, and ¢ the linear density of the beam are 3.0 m,
0.1 m, 1.0 mm, 1.3 Nm2, and 0. 8 kg/m, respectively.
If the distributed force is zero, Eq. (1) is homo-
geneous ; then, it has the following general sine-wave
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Fig. 1 Beam model
solution of the angular frequency.
w(x, t)=ae™ e + @e* e’

4 El() zkx()uut e Eg(’-kl(,'iwl, ( 2 )
where the relation between angular frequency and
wave number % is w=ak’ (a=VEIJoA). By settin

g
@= ]Clkx( zwt,
= a,zekxeuul
B]: Ele—zkrezwt‘
and
,82: Bze—kreiwt, ( 3 )

we find that @, A, B and @ represent the bending
wave travelling in the negative direction of the r axis,
the one in the positive direction of the xr axis, the near
field at x=0, and the near field at r=1, respectively.
(Some papers regard a and @ as the waves in the —x
direction, and A and S the waves in the +.x direc-
tion.)

Here, the phase velocity is ¢»=vaw, that is, it has
a dispersive property, and the higher phase velocity is
associated with the higher angular frequency.

3. Formulation of the Wave-Absorbing
Control Method

Bending moment . and shear force v. are used
as the boundary control variables. By assuming that
the bending moment and the shear force are the feed-
back of the velocity component of the slope (=
ow/ox) and the deflection i, respectively, we obtain-

the following :

me= Elu—~- %(;) (4)
~ER (5)

where # and v are the coefficients of the feedback.
(These are convenient forms for discussing Lyapunov
stability ; see Appendix 1.) Here, we have

uw

me=—El5 7, (6)
ve= 8{;’;‘ , (7)
so Eq.(6) and Eq.(7) give
Uy Ty, (8)
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Fw ow _
ar* Vot =0. (9)

Substituting these equations into Eq.(2) gives
(— k2= ko) + (B2 + ikoy)
+ (= B2+ kawp) B+ (k2 — thwp) 3:=0, (10)
(=i —iwv)a+ (B iwv) e
+ (R4 1wv) B+ (= k= iwy) 3=, (11)
In this paper the control position is placed at the
right end of the beam. At the right end the term of 3.
is much smaller than the other terms because of ¢ *
0. If p=klw and v=~F/w, the coefficients of 5
vanish in both of the above equations. Then, we get a
=a=0. That is, the outgoing waves (which travel in
the negative direction) are eliminated. Therefore, Eq.
(4) and Eq.(5) reduce to

me=FEla .1;26()4,2(27?

ve=—FEla**w 12(71; (13)

These results give the right end conditions which
will eliminate the outgoing waves for particular angu-
lar velocity. By use of control variables m. and v, the
formation of the standing wave of angular velocity @
may be restrained.

In the case of the left end control, only the signs
of 1, v have to be altered.

The moving point compliance under controlled
is compared with the one under un-
Figure 2 shows the moving

(12)

conditions
controlled conditions.
point compliance under controlled and uncontrolled
conditions at the right end when the left end is moved.
The dotted and solid lines represent the results under
uncontrolled and the controlled conditions, respective-
ly.

Figure 2 shows restraint of resonance in all fre-
quency domains. Thus, this control method can
restrain the formation of standing waves. Note that it
deals, however, with particular angular velocity vibra-
tion. In the next section, we examine the problem of

@ SOEL\H L A 1L A B R 111 B R AL
o L
< -100 covviad vl vl
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Fig. 2 Moving point compliance
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wide frequency vibration mode.
4. Impulse Response

4.1 Concentrated impulse response

Here we consider the case of a beam which has a
clamped left end and a free right end, which is struck
by a concentrated impulse load (cf. Fig.3). The
control position is placed at the right end, as before.

The control methods of Egs. (12) and (13) cannot
simply be used to control vibrations with several
modes, because they are dispersive and their feedback
coefficients are functions of angular velocity w. It is
impossible to treat in the frequency domains by apply-
ing the Laplace transform because the transmission
function in this case is irregular.

We thus examine the propagation of the bending
wave in the Euler-Bernoulli beam. In this beam a
high-frequency bending wave travels fast. When the
beam is struck by an impulse load, bending waves,
which are stress waves, propagate throughout the
beam, and the form of the waves is then gradually
distorted due to their dispersive characteristics. We
regard these bending waves as being superposed by
several angular frequency waves. When an impulse
load is applied, the wave with infinite frequency theo-
retically reaches the control position first, followed
one after another by the waves with lower fre-
quencies. For example, the wave of angular velocity

w= a[(/]z (14)

should reach the position % which is distant from the
impulse load point at time f after the initial impulse
time.

Consider the kinematic model in Fig.3. Among
the waves which reach the control position from the
impulse load point, there exist two kinds of waves,
those coming directly from the impulse point and
those reflected from the lefthand clamped boundary.
Therefore, the relations among the Eqs.(12),(13) and
(14) give the following wave-absorbing control
method for the direct waves from the impulse point :
t a6

me= 11[/ I ol (15)
and
actuator
A z'mpulsle(r,:Il) um,
X
“““““““ —
0 = !
sensor
pd

Fig. 3 Kinematic model for impulse response

JSME International Journal

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers
eyl h ow .
UVe=— EI agt (91‘ N (lb)
and for the reflection waves from the left side:
gyt 00 -
mc—EI/+/l o an
and
gl th oow
ve=—El a’t ot (18)

respectively. Then the control method for both kinds
of waves is assumed as

A
m(-:c‘m(f)% (19.1)
where
en()=El A (19.2)
(I=W(I+1)
and
ve=— c-u(t)@""i (20.1)
ot
where
c(t)=EI 2 (20.2)

The above equations are stable according to
Lyapunov's direct method (see Appendix 1), because
both ¢n(t) and c.(¢) are positive.

Here we apply the above method to the case that
the impulse is loaded at the center of the beam and
analyze numerically using the central difference
method on the time and the space. Because, from Eq.
(20.2), immense control force (shear force) is needed
when the time / is very small, we do not employ Eqs.
(19.2) and (20.2) from the initial time, but we fix the
time f as 1.18x 10 'sec. (Note that 1.18 X107 sec is
the time necessary for the bending wave of the tenth
mode to reach the control position directly when the
boundary condition is clamped-free.) After the time
t, Egs.(19.2) and (20.2) are used. Moreover, in order
to reduce the cost of this active vibration control, the
active control will be stopped at 4#=10.0 and { is fixed
after that. The control method is finally given as

(0<f<1.18%x107H

HZ(-:(‘rrz(/o)O??i
[f<):1.18><10_1], (21)
(L.18x 107" < £ <10.0)

771(::('m([>%‘?

al Al
ve=co( 1) 2L (22)

ot’
(t=10.0)

o= Cm( m%ﬂ

ow
—t

[f1:10.0]. (23)
Figure 4 shows the deflection of the right end as
the result of this method. The dotted and the solid
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Fig. 5 Concentrated impulse response at the right end
(only shear force control)

lines represent the uncontrolled and the controlled
conditions, respectively. Sufficient restraint of the
vibration is obtained.

This wave-absorbing control method is theoreti-
cally given by both Eq.(19) using the moment force
and Eq.(20) using the shear force. But, in practice,
both of these control forces may not always be used
simultaneously. Noting that Eq.(19.2) is a function
proportional to ¢ and that Eq.(20.2) is a function
inversely proportional to f, we find that the shear
force works well as the control force when ¢ is very
small. Specifically, the shear force has the important
effect of restraining the vibration for small /. We
then consider the case when only the shear force is
used for control, that is, the moment force is zero.
Figure 5 shows the deflection for concentrated impulse
load at the right end. Effective restraint is obtained,
although it is slightly inferior to the result in Fig. 4.

4.2 Distributed impulse response

In the former section, the bending vibration was
controlled when the load condition was a concentrated
impulse. Here our method is applied to the case when
the load condition is an arbitrary distributed load.
Again, the control position is the right end.

We regard the distributed load as superposed
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concentrated loads. The function f(x) represents the
distributed load on the interval [xi, x2), which is
divided into » intervals. For a wave which is generat-
ed at a point x-(=(xi+ax2—x)-n/r), the wave
absorbing control method similar to the former sec-
tion is given by

1 1 o0

et ) 29
gy L oow or
ve= [:1(12{ a5t (25)
Summing the above equations about each x- gives
Eme=n Bl Ao 190 (26)
S l—x, [l+x,' ot
[ ow -
Y = l)
7201( Elz[ai a5 - (27)
Then these equations yield
n Kl 1, 1
D A }
o= r=0 24 / nIr [+ xr %{;' (28)
1
n . /
- X El 5
ve= =% Ll %17( (29)
21

When n—co, the righthand sides of Egs.(28) and
(29) reduce to the following using the definition of the

integral.
Me= (m(/) (30.1)
where
Edtkzﬂi?l) Ef Qﬁﬁigg (30.2)
and
(0“‘ (31.1)
where

F () =E1-L ,
Cl)=El g (31.2)

These equations are stable because ¢n(f) and
¢(t) are positive.

As an example, we examine the response for the
case when the distributed impulse load forms a rectan-
gular wave (the interval of which is [1.35, 1.65]). As
in the former section, control is divided into three
stages.

(0<t<0.1)

Passive (t=0.1),

(0.1<£<10.0)
Active
(£=10.0)

Passive [4%=10.0].

Figure 6 shows the controlled deflection of the
right end compared with the uncontrolled case.
Sufficient restraint of the vibration is obtained.

Since the functions in Egs.(30) and (31) are
related to time / as in the former section, we consider
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again the case when only the shear force is used for
the control. Figure 7 shows that the vibration is again
effectively restrained.

The control method which uses both the moment
and the shear forces requires information about the
position of the impulse load and the time of initial
load in advance. In this way, it will be possible to
know the information before the elastic wave propa-
gates, for instance, by using the light fiber. However,
effective restraint may be obtained using only the
shear force. In this case the only initial time is
required, so it is sufficient to locate a sensor at a
suitable position of the beam and a dashpot for the
shear force where its coefficient ¢.(¢) may be changed
as needed as shown in Fig. 8.
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5. Conclusion

We propose a method of active vibration control
for flexible structures using wave-absorbing control.
It is based on the fact that standing waves generated
in the structure play an important role in continuous
so the formation of standing waves is
actively restrained.

The Euler-Bernoulli beam is employed as the
contol object. The general solution is represented by
a sine-wave which represents the forward and back-
ward waves forming the standing waves. Then the
wave-absorbing control method is obtained by
eliminating the outgoing wave at the control position,
namely, absorbing the incoming wave. To confirm the

vibration,

effectiveness of this control method, the response in
frequency domains is examined. As a result, effective
restraint is obtained in all frequency domains.

Next, this method is applied to the problem of the
impulse load response which has many vibration
modes in a wide frequency range. By taking the
propagation of the impulse wave into consideration in
the dispersive bending vibration, we obtain effective
restraint quickly, before standing waves are formed.

Appendix 1. Consideration of Stability

Stahility is considered under the control method
in Egs.(4) and (5). Here we represent the basic
governing equation of the Euler-Bernoulli beam as
follows :

a N
Wu(l,f)~F u(x, t)

(+>0,0<r<) (A1)
where
wir, t)
u(x, f)—{ owl(x, t) } (A.1.2)
ot
0 1
F _(lggaéi: 0 (A.1.3)

and the external force term is neglected.

The boundary condition is represented as fol-

lows: at x=0

w(0, f)‘ﬂﬂ(gg D (A.2)
and, at x=1, Eqs.(4) and (5)
e fFnyaﬁ (4)
ve=—FEIy ‘”“ (5)
give
Fw(l, t) | Fuwll t) _
or e =0 (A3)
“a(ll /) Ty o (,i f) (A4)
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Then
Fu=0. (A5)
Equations (A.2), (A.3) and (A.4) obviously give
u=0, (A.6)

so the origin (the zero solution) becomes the equilib-
rium point. Here Egs. (A.1), (A.2), (A.3) and (A.4)
are assumed to have a unique solution for the given
initial conditions around the origin.
The following function Eu(|ul) is introduced :
Ezr(tu“

{ nl 2, .,
N
E.(lu]) is clearly a positive-valued function. Then the

time differentation of E.(Jul) along the trajectory of
Eqgs. (A1), (A2), (A3) and (A.4) is given by
E.(|ul)

- Ely (‘}‘“a(,é;w 1:1,((7“% ’)) (A8)

Therefore, if both (EI) p and (EI)v are positive,
E.(lu]) is negative. Since, then, E.(|ul) is found to be
a Lyapunov function, the zero solution of the equilib-
rium point is satisfied with an asymptotic stability.
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