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By means of N-body simulations, we consider self-gravitating open systems enclosed in a spherical con-
tainer with semipermeable reflecting walls, in order to investigate the thermodynamics of the evaporation
process in self-gravitating N-body systems �such as the escape of stars from globular clusters�. To simulate the
evaporation process, when the energy of a particle exceeds a certain threshold value, the particle passes
through the semipermeable reflecting wall freely. We show that the thermodynamic properties of the evapora-
tion process, such as the dependence of the temperature on energy, agree well with those of stellar polytropes,
if the system is in an approximate virial equilibrium state. However, in a lower-energy region or for a rapid
evaporation process, the thermodynamic properties deviate from those for the stellar polytrope. Nevertheless,
we found that a negative specific heat occurs even in the lower-energy region or for a rapid evaporation
process.

DOI: 10.1103/PhysRevE.82.021118 PACS number�s�: 05.20.�y, 95.30.Tg, 05.70.�a, 45.50.Jf

I. INTRODUCTION

The statistical mechanics and thermodynamics of long-
range attractive interacting systems exhibit several peculiar
features such as negative specific heat and nonequilibrium
nonextensive statistical mechanics and hence have been ex-
tensively studied �1–11�. It is known that the standard
Boltzmann-Gibbs statistics are not valid in long-range attrac-
tive interacting systems, because of the existence of long-
range potentials, and therefore the statistical mechanics and
thermodynamics of self-gravitating systems have been inves-
tigated by many researchers �12–19� based on generalized
statistics, e.g., Renyi’s �20� and Tsallis’ statistics �21� �see
Ref. �22� and references therein�. For example, Taruya and
Sakagami have shown that an extremum state of Tsallis’ en-
tropy, i.e., a stellar polytrope, has a thermodynamic structure
which implies a thermodynamic instability because of the
negative specific heat �14–16�.

In earlier studies, a system within an adiabatic wall, or the
so-called Antonov problem �23�, was typically investigated to
examine the thermodynamics of self-gravitating N-body sys-
tems such as globular clusters in galaxies. However, dynami-
cal evolution causes stars to escape from globular clusters,
because of the high energy of the stars or tidal forces of
nearby galaxies �24–27�. That is, a mass and energy loss, or
the so-called evaporation process, occurs in the dynamical
evolution of the self-gravitating system. This evaporation
process plays an important role in self-gravitating N-body
systems. The process can drive a globular cluster toward a
configuration with a high-density core �25�, i.e., gravother-
mal catastrophe �23�. We expect that such a mass and energy
loss affects not only the dynamical evolution of the system
but also thermodynamic properties such as the incidence of
negative specific heat.

However, from the viewpoint of thermodynamics, the in-
fluence of mass and energy loss has not been clarified in

self-gravitating N-body systems. �The energy loss has been
discussed in a few studies, e.g., Posch and Thirring �11�, and
the present authors �28� have investigated the energy loss in
long-range attractive interacting systems, using a circular or
spherical container.� Moreover, it is not yet clear whether the
stellar polytrope �14–16� can be applied to a nonequilibrium
process with mass and energy loss, i.e., an evaporation pro-
cess. In this context, we investigate the thermodynamic prop-
erties of the evaporation process in self-gravitating systems
by N-body simulations. �Of course, the thermodynamic prop-
erties discussed here are not in a thermodynamic equilibrium
state, since self-gravitating systems are not in the exact equi-
librium state. Accordingly, strictly speaking, a concept of
specific heat should not be valid in the self-gravitating sys-
tem. However, we apply such equilibrium concepts to a qua-
siequilibrium or nonequilibrium state and discuss the ther-
modynamic properties like in earlier studies.�

In this study, we consider a self-gravitating N-body open
system enclosed in a spherical container with semipermeable
reflecting walls. To mimic the evaporation process, when the
energy of a particle exceeds a certain threshold value, the
particle passes through the wall freely. We focus on the re-
lationship between energy and temperature in the spherical
wall, to examine the thermodynamic properties of the open
system. We also discuss whether the stellar polytrope can be
applied to a nonequilibrium process with mass and energy
loss, i.e., the evaporation process.

The present paper is organized as follows. In Sec. II, we
give a brief review of numerical techniques for simulating an
evaporation process in self-gravitating N-body systems. In
Sec. III, we present the simulation results and discuss the
thermodynamic properties, e.g., the relationship between en-
ergy and temperature. In Sec. III A, we examine the influ-
ence of the initial energy on the evaporation process. In Sec.
III B, we investigate the influence of an energy threshold to
simulate the evaporation process, since the evaporation rate
depends on the energy threshold. Finally, in Sec. IV, we
present our conclusions.*komatsu@t.kanazawa-u.ac.jp
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II. N-BODY SIMULATION TECHNIQUES

In this section, we briefly review the N-body simulation
method used in the present study �28,29�. We first consider a
system consisting of N point particles enclosed in a spherical
container of radius R with adiabatic walls as an initial setup
�Fig. 1�. To mimic an evaporation process, when the total
energy of the ith particle exceeds a certain threshold value,
the particle passes through semipermeable reflecting walls.
That is, we consider mass and energy loss in the container as
a kind of evaporation process. �Hereafter we call this the
evaporation process. The details are given later.� In our simu-
lation, the whole self-gravitating system, i.e., the system in-
side and outside the sphere, evolves as time progresses. To
simulate the whole system, we integrate a set of classical
equations of motion for the particles interacting through the
Plummer softened potential: �=−1 /�r2+r0

2, where r and r0
represent the distance between particles and the softening
parameter, respectively �28,29�. The total energy Ew of the
whole system is defined as

Ew = EKE
w + EPE

w = �
i

N
mivi

2

2
− �

i�j

N
Gmimj

�rij
2 + r0

2
, �1�

where EKE
w , EPE

w , and mi represent kinetic energy, potential
energy and the mass of the ith point particle, respectively. G,
vi, and rij represent the gravitational constant, the speed of
the ith particle and the distance between the ith and jth par-
ticles, respectively. The superscript notation w represents a
value of the whole system. The mass mi of each particle is
set to be m.

In this paper, we focus on the thermodynamic properties
of the system in the sphere, to examine the evaporation pro-
cess. That is, we consider the system in the semipermeable
reflecting wall as an open system. To define the total energy
E in the sphere, we apply Eq. �1� to Ns particles in the
sphere, where Ns represents the number of particles in the
sphere, �ri ,rj�R�. In other words, we consider the influence

of Ns particles in the sphere, to compute the total energy E in
the sphere. The total rescaled energy � in the sphere is de-
fined as

� = �KE + �PE = E
R

GMs
2 = E

R

G�mNs�2 , �2�

where Ms represents the total mass in the sphere and �KE and
�PE represent the rescaled kinetic and potential energies in
the sphere, respectively. In this study, the unit of time is
�R3 / �Gm�. The units are set to be G=R=m=1, to ensure
generality of the system. Therefore, the total rescaled energy
� depends on the temporal energy E and the temporal num-
ber Ns of particles in the sphere. In our units, the temperature

T̂ of the system in the sphere is given by

T̂ =
2

3kB
�KE =

2

3
�KE, �3�

assuming that the kinetic energy corresponds to the tempera-
ture and that Boltzmann’s constant kB is 1 �28�. We have
confirmed that Eqs. �2� and �3� are suitable for examining the
thermodynamic properties of an open system with a semiper-
meable reflecting wall.

In the present study, we consider a small system consist-
ing of N=250 point particles inside and outside a spherical
container of radius R=1. For simulating the N-body system,
the set of equations of motion is integrated using Verlet’s
algorithm. To maintain the accuracy of our simulations, a
time step of �t=10−5 is selected, based on a simulation with
several different time steps �28,29�. In the present simula-
tions, all interparticle forces are calculated directly at each
time step �t. All the results are averaged over 30 simulations
with identically prepared initial setups, to observe the aver-
aged behavior of the system �28�.

For the evaporation process, we consider semipermeable
reflecting walls to simulate mass and energy loss, as shown
in Fig. 1. Such a semiconfined system is suitable for studying
thermodynamic properties based on rescaled parameters, al-
though this evaporation model is only one of the possible
models. When the total energy �i of the ith particle in the
sphere exceeds an energy threshold �esc, the particle freely
passes through the semipermeable reflecting wall as if there
was no wall. In contrast, when �i is equal to or smaller than
�esc, i.e., �i��esc, the spherical wall behaves like an adia-
batic wall �28,29�. That is, the semipermeable reflecting wall
behaves as follows:

behavior of wall = �no wall ��i � �esc� ,

adiabatic wall ��i � �esc� .
� �4�

Note that the particles outside the sphere can pass through
the wall freely. �The whole system, i.e., the system inside
and outside the sphere, evolves as microcanonical ensemble
simulations.� To calculate the rescaled energy �i, the total
energy Ei of the ith particle in the sphere is defined as

Adiabatic wall

Point-particles

R

Semipermeable reflecting wall

Initial setup Evaporation process

R

i

esci εε >
esci εε <

FIG. 1. �Color online� Setup for the N-body simulation. �Left�
Initial setup; �right� evaporation process. To mimic an evaporation
process, when the total energy �i of the ith particle exceeds an
energy threshold �esc, the particle passes through the semipermeable
reflecting wall freely.
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Ei =
mvi

2

2
− �

j�i�rj�R�

Ns Gm2

�rij
2 + r0

2
. �5�

The total energy Ei of the ith particle is rescaled using Eq.
�2�. Usually, the energy threshold �esc should be 0, since the
particle can escape from the system when its kinetic energy
is larger than the potential energy. The above operation for
the present evaporation process slightly influences the total
angular momentum of the system in the sphere. In fact, it is
known that total angular momentum affects a phase transi-
tion of rotating systems, e.g., double clusters appear at high
angular momenta in a spherical container �30�. Therefore, we
have confirmed that the total angular momentum in the
sphere is sufficiently smaller than that of the phase transition,
during our evaporation process. That is, the phase transition
induced by angular momentum should not occur in the
present evaporation process.

In our simulations, the softening parameter r0 for the
Plummer softened potential is set to be 0.005R. Accordingly,
the collapse and explosion energies for the system with an
adiabatic wall are �coll	−0.339 and �expl	0.267, respec-
tively �31�. This means that if the total rescaled energy � of
the uniform state becomes lower than �coll, the system should
undergo a collapse to a core-halo state. In contrast, if the
energy � becomes higher than �expl, the system should un-
dergo an explosion.

In our units, the crossing time 	c and the relaxation time
	r for the present system are evaluated as 	c	1 /�G
	0.1
and 	r	�0.1N / ln N�	c	0.6, respectively, where 
 repre-
sents the density of the system assuming a uniform density
profile �28�. Accordingly, the collapse time of the present
system is approximately 600, since the collapse time in a
system with N=125–250 particles and r0=0.005R is ap-
proximately 
103	r �32�. �The number Ns of particles in the
sphere decreases to approximately 50 in several simulations
and, therefore, the collapse time of these systems should be
slightly shorter than that for N=250. This is because the
crossing and relaxation times for N=50 are evaluated as 	c
	0.3 and 	r	0.4, respectively.�

For the initial setup, we first prepare the self-gravitating
system at an approximate virial equilibrium state, using adia-
batic walls �28�. That is, all the particles are initially located
in the sphere, as shown in Fig. 1. To obtain the approximate
virial equilibrium state, the microcanonical ensemble simu-
lation is continued over 10 units of time, i.e., for t�=10,
where t� represents the time for the initial setup. We have
confirmed that the obtained system is in the approximate
virial equilibrium state using the virial ratio ��t� of the sys-
tem,

��t� =
2EKE − 4�R3Pwall

�EPE�
, �6�

where Pwall represents the pressure on the container wall by
reflecting particles �28,29�. The virial ratio is 1 if the system
is in the virial equilibrium state with pure gravitational po-
tentials. A simulation of the evaporation process is carried
out, based on the above initial setup. Note that the pressure
on the reflecting wall at time t can be evaluated as

Pwall�t� =

�
t̂=t−t�/2

t̂=t+t�/2

2mvr�t̂�

4�R2t�
=

�
t̂=t−t�/2

t̂=t+t�/2

mvr�t̂�

2�R2t�
, �7�

where vr�t̂� is the summation of the radial components of the
velocities of all particles reflected by the wall, at each time
step t̂ �31�. In general, fluctuations in the instantaneous pres-
sure are larger than those in other macroscopic parameters.
Therefore, in this study, the interval t� in Eq. �7� is set to be
2000�t steps to reduce large fluctuations in the pressure.

We expect that the initial total energy �0 and energy
threshold �esc affect the evaporation process. Hence, we first
examine the influence of the initial total energy. In Sec. III A,
the initial energy �0 is varied between 0.2 and −0.2. There-
fore, the initial system should be in a stable or metastable
state, since the initial energy is between �coll and �expl �31�.
In the above simulation, the energy threshold �esc is set to be
0. In Sec. III B, to examine the influence of the energy
threshold, �esc is varied ranging from 0.0060 to −0.0050. In
this simulation, the initial energy �0 is set to be 0.1.

In the present paper, the simulation time t is usually 10 in
our units, though in several cases, it is 12, 20, or 75. There-
fore, our simulation time should be shorter than the collapse
time of the present system, 
600. In other words, in the
evaporation simulation, we observe an early relaxation pro-
cess before the collapse.

III. RESULTS

A. Influence of the initial energy ε0

To investigate the influence of the initial energy �0, we
first observe the time evolution of the number of particles in
the sphere, for �0=−0.2, −0.1, 0.0, 0.1, and 0.2. In this sub-
section, the energy threshold �esc is set to be 0, that is, when
the kinetic energy of a particle is larger than the potential
energy, the particle can escape from the sphere. �The particle
outside the sphere can return into the sphere freely, in the
present evaporation simulation.� The properties of the open
system in the sphere are discussed in the following.

As shown in Fig. 2, the number Ns of particles in the
sphere decreases rapidly with time t from the initial value of
250. This means that many particles escape from the spheri-
cal container. Thereafter, each curve gradually tends to a
gentle decline. With increasing initial energy, Ns decreases
more rapidly because of high initial kinetic energy. To exam-
ine this closely, we plot the relationship between the initial
evaporation rate and the averaged initial pressure on the wall.
In Fig. 3, the initial evaporation rate �dNs /dt� is given by

�dNs

dt
� = �Ns��t0� − Ns�0�

�t0
� , �8�

where �t0 is set to be 0.2	c�=0.02�. To evaluate the averaged
initial pressure on the wall, the pressure Pwall on the wall is
averaged over 30 simulations and also over t�=9–10 in the
simulation for the initial setup �28�. Moreover, the averaged
initial pressure for each �0 is normalized by the pressure for
�0=0.2. As shown in Fig. 3, the initial evaporation rate in-
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creases approximately linearly with the averaged initial pres-
sure, in the stable or metastable state. That is, the lower the
initial energy, the more moderate the evaporation process.

Using the above Ns and Eq. �2�, we examine typical time
evolutions of the rescaled total and kinetic energies in the
sphere. As shown in Fig. 4, the total energy � and the kinetic
energy �KE decrease with time initially. However, the kinetic
energy gradually increases and the total energy always de-
creases. This indicates that an incidence of negative specific
heat occurs in the present evaporation process, since the ki-
netic energy corresponds to the temperature of the system at
an approximate virial equilibrium state. The above result is
consistent with the behavior appearing in a nonequilibrium
process with nonadiabatic walls discussed in the previous
study �28�. However, we emphasize that the number Ns of
particles in the sphere and the total mass in the sphere are not
fixed in the present evaporation process, unlike in the previ-
ous study.

To examine the thermodynamics of the evaporation pro-

cess, we plot the dependence of the temperature T̂ on the

total energy �, with various initial total energies �0. In Fig. 5,
we display simulations starting from initial energies �0 of
−0.2, −0.1, 0.0, 0.1, and 0.2, represented by the open circles.
Note that, in Figs. 5 and 6, the simulation time for �0=
−0.1 and −0.2 is set to be 12, to observe their properties
appearing in lower-energy regions. The number of particles
in the sphere for �0=−0.2 or −0.1 is approximately 100, at
the final low-energy state, i.e., at t=12.

As shown in Fig. 5, for ��−0.2, the total energy and
temperature in the sphere decrease from the initial values.
Accordingly, the system behaves like an ideal gas with a
positive specific heat. In contrast, for ��−0.2, the tempera-
ture increases with decreasing total energy. It is clearly dem-
onstrated that a negative specific heat occurs in the present
evaporation process, i.e., a nonequilibrium process with mass
and energy loss. Interestingly, each simulation result is likely
to lie on a common curve, except for �0=0.2.

As discussed in Ref. �28�, a quasiequilibrium structure of
stellar polytropes �14–17� is related to a nonequilibrium pro-
cess appearing in a self-gravitating system with an energy

0
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0 2 4 6 8 10
t

Nin (e0=0.20) Nin (e0=0.10)
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t

–0.2 –0.1 0.0 0.1 0.2=0ε
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FIG. 2. �Color online� Time evolution of the number Ns of par-
ticles in the sphere, for various initial energies �0. The energy
threshold �esc is 0.

wallP

dt
dN s
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0.0=0ε

2.0–=0ε

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0
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FIG. 3. Initial evaporation rate �dNs /dt� and averaged initial
pressure on the wall. The horizontal axis represents the normalized
averaged initial pressure on the wall. The error bars indicate the
68% confidence level in terms of the normal error distribution using
30 simulations.

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6 8 10

t
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eps_KE_in(e0=0.2)
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t

–0.2 0.0 0.2

ε

KEε
ε KEε

=0ε

0.0 0.2=0ε

–0.2=0ε

,

FIG. 4. �Color online� Time evolution of the total energy � and
kinetic energy �KE in the sphere. The typical results are shown.

FIG. 5. �Color online� Dependence of the temperature T̂ on the
total energy � in the sphere, for various initial energies �0. The
simulation starts from the initial total energy, represented by the
open circle. The simulated system evolves as indicated by the ar-
row. Trajectories of Emden solutions with n=5, 9, and  are indi-
cated for the stellar polytrope.
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loss, under the restriction of constant mass. Therefore, we
expect that the common curve appearing in the evaporation
process is also related to the stellar polytrope, although the
energy and mass vary during the evaporation process. In this
context, we compare the simulation result with the stellar
polytrope. To this end, we first briefly review the stellar poly-
trope �28�. �The stellar polytrope has been discussed exten-
sively using various methods �33�. We employ the recent
works of Taruya and Sakagami �16,17� in those methods.�
According to the works of Taruya and Sakagami �16,17�, the
polytropic relation can be given as

P�r� = Kn
�r��1+1/n, �9�

where Kn, P�r�, and 
�r� are the dimensional constant, iso-
tropic pressure and density at radius r, respectively. The
polytrope index n is given by

n =
1

1 − q
+

1

2
, �10�

where q is the Tsallis entropic parameter. Note that, instead
of standard linear means �12�, normalized q values �16� are
selected as a statistical average �34�. We now consider a
quasiequilibrium structure of the stellar polytropic system
enclosed in a spherical container with adiabatic walls. Taruya

and Sakagami have evaluated the total energy E of a con-
fined stellar system in terms of the total mass Ms, pressure Pe
and density 
e at the boundary re. They also determined a
plausible physical temperature Tphys, using the modified
Clausius relation. Consequently, in our units, the total res-
caled energy and temperature in the sphere can be given as

� =
Ere

GMs
2 =

1

n − 5
�3

2
�1 −

n + 1

ve
� + �n − 2�

ue

ve
� , �11�

T̂ =
reTphys

GMs
2 =

n + 1 − 2ue − ve

�n − 5�ve
, �12�

where ue and ve are homology invariants at the wall, and re
corresponds to R in the present study. The homology invari-
ants are obtained from the Emden solutions �33�. In the
above discussion, the total mass and energy are fixed.

Based on Eqs. �11� and �12�, we plot trajectories of Em-
den solutions for polytrope indices of n=5, 9 and , as
shown in Fig. 5. A polytrope index of n= corresponds to
isothermal spheres or microcanonical ensembles. For n�5,
the stellar polytrope within an adiabatic wall exhibits gra-
vothermal instability. The trajectories for n�5 gradually
change direction and finally spiral around a fixed point be-
cause of pure gravitational potentials �16�. It should be noted
that the softening parameter for the Plummer softened poten-
tial is r0=0.005R in our N-body simulations, while a pure
gravitational potential is assumed for the stellar polytrope.
Accordingly, we have to take into account the influence of
the softening parameter.

As shown in Fig. 5, for ��−0.7, the common �− T̂ curve,

i.e., the �− T̂ curves for �0=−0.2–0.1, agrees well with the
curve for a polytrope index of n
9, except for a part of the
spiral curve. In Ref. �28�, a common curve appearing in the
system with nonadiabatic walls agrees well with the curve
for a polytrope index of n
5 or rather n�5. Therefore, the
present evaporation process is likely to be consistent with the
stellar polytrope. Of course, the common curve moves up-
ward slightly if the pure gravitational potential, i.e., r0=0, is
employed for the simulation �28�. Moreover, the stellar poly-
trope is assumed to be a quasiequilibrium structure under the
restriction of constant energy and mass. However, we expect
that the tendency toward a common curve is related to a kind
of quasiattractor �16,17�. �The common curve appearing in
the present study agrees with the stellar polytrope with n

9, unlike the previous study, for which it agrees with n

5. However, in the evaporation process, we found that the
common curve is consistent with the stellar polytrope with
n�5.�

In contrast, for ��−0.7, the �− T̂ curves for �0=−0.2 and
−0.1 gradually deviate from the curve for a polytrope index

of n
9. That is, the temperature of the �− T̂ curves gradu-
ally tends to be lower than that of the stellar polytrope with

n
9. We have confirmed that the present �− T̂ curves are

consistent with an �− T̂ curve for N=2500, calculated from
one ensemble simulation. To examine the cause of this de-
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FIG. 6. �Color online� Dependence of the virial ratio � on the
total energy � in the sphere, for various initial energies �0. �Top�
�0=0.2, �middle� �0=0.0, and 0.1, �bottom� �0=−0.2 and −0.1. The
simulated system evolves from right to left, as time progresses. The
initial point represents the value at time t=0.01, to calculate the
pressure Pwall on the wall.
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viation, we observe the virial ratio � for various initial ener-
gies. Note that we do not discuss the local virial relation in
the present study �35,36�.

As shown in Fig. 6, the system for �0=0.2 significantly
deviates from 1 or the virial equilibrium state, probably be-

cause of rapid evaporation. This suggests that the �− T̂ curve
for the rapid evaporation process is not on the common curve
since the system is not in the virial equilibrium state. Except
for �0=0.2 and the initial stages, the virial ratio is approxi-
mately 1, when the energy is approximately larger than −0.7,
i.e., ��−0.7. However, the virial ratio gradually deviates
from 1 when the energy is approximately smaller than −0.7,
i.e., ��−0.7. That is, the system gradually tends to move
away from the virial equilibrium state. In fact, the stellar
polytrope assumes not only pure gravitational potentials but
also quasiequilibrium states �16,17�. Accordingly, we con-

clude that the �− T̂ common curve deviates from the stellar
polytrope if the system does not approach the virial equilib-
rium state. Alternatively, the kinetic energy may be unsuit-
able for describing the temperature of the system in such a
situation.

Note that the quasiequilibrium state for the stellar poly-
trope with n�5 does not exist in lower-energy regions, be-
cause of the presence of pure gravitational potentials, i.e.,

r0=0. For example, as shown in Fig. 5, the �− T̂ curve has a
spiral curve for n= or isothermal spheres. On the other
hand, for an isothermal sphere with r0=0.005R, a mean-field

phase diagram or an �− T̂ curve has high- and low-energy
branches terminating at �coll	−0.339 and �expl	0.267 �32�.
That is, for r0=0.005R, the core-halo branch for the isother-
mal sphere exists in lower-energy regions. However, the
evaporation process considered here is rapid and should be
shorter than the collapse time for core-halo states. Therefore,
the present system deviates from the quasiequilibrium state
in the lower-energy region. We will discuss this later, using a
density contrast.

B. Influence of the energy threshold εesc

In the previous subsection, the energy threshold �esc was
set to be 0. In other words, a particle was able to escape from
the open system when the kinetic energy of the particle was
larger than the potential energy. However, it is expected that
the energy threshold affects the present evaporation process.
Therefore, in this subsection, we investigate the influence of
the energy threshold �esc. To this end, the energy threshold
�esc is set to be −0.0050, −0.0025, 0, 0.0025, and 0.0060. For
�esc=0.0025 and 0.0060, the simulation time is 20 and 75,
respectively, while the simulation time is 10 for the other
energy thresholds. In this subsection, the initial energy �0 is
set to be 0.1. We have confirmed that our main result does
not greatly depend on the initial energy, e.g., �0=0.0. Of
course, the lower the initial energy, the more moderate the
evaporation process, as discussed in Sec. III A. It should be
noted that a particle outside the sphere can return into the
sphere freely during our evaporation process.

We first observe the time evolution of the number of par-
ticles in the sphere, to examine the influence of the energy

threshold. �For reference, the result for the system without
semipermeable walls is also plotted in Fig. 7. The initial
condition for the system without walls is set to be the same
as the other simulations, i.e., we first prepare the self-
gravitating system at an approximate virial equilibrium state,
using adiabatic walls. Note that, for the system without

walls, we cannot discuss rescaled parameters, e.g., � or T̂.�
As shown in Fig. 7, the number Ns of particles in the

sphere decreases with time. However, we found that Ns for
�esc=−0.0050 slightly increases after a rapid decrease. This
indicates that several particles outside the sphere gradually
return into the sphere, since the particles are within a gravi-
tational sphere because of the negative energy threshold. As
the energy threshold �esc decreases, the number Ns of par-
ticles in the sphere decreases more rapidly, just like the in-
fluence of the initial energy discussed in Sec. III A. That is,
the lower the energy threshold, the more rapidly the particles
can escape from the sphere. We can confirm this from the
relationship between the energy threshold and the initial
evaporation rate �dNs /dt�, as shown in Fig. 8. In the present
evaporation process, the initial evaporation rate for the sys-
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FIG. 7. �Color online� Time evolution of the number Ns of par-
ticles in the sphere, for various energy thresholds �esc. The values
with the curves indicate the energy threshold. The initial energy is
�0=0.1.
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FIG. 8. Initial evaporation rate �dNs /dt� for various energy
thresholds �esc. The horizontal line represents the initial evaporation
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tem without walls approximately corresponds to the rate for
�esc=−0.0050, which is smaller than �esc=0. This is probably
because a spherical adiabatic wall is employed for our initial
setup, i.e., the initial pressure on the wall is not 0 in the
present study.

To examine the thermodynamic properties of the evapo-
ration process, we plot the dependence of the temperature T̂
on the total energy �, with various energy thresholds �esc. In
Figs. 9�a� and 9�b�, each simulation starts from an initial

energy of �0=0.1. As shown in Fig. 9�a�, the �− T̂ curves for
�esc=−0.0025 and −0.0050 deviate from the curve for �esc
=0. This is because the system does not approach the virial
equilibrium state, due to rapid evaporation. However, we

found that a negative specific heat, i.e., d� /dT̂�0, occurs
even in such a rapid evaporation process. The above result is

consistent with the �− T̂ curve for �0=0.2, which is shown in
Fig. 5.

In contrast, as shown in Fig. 9�b�, the result for �esc

=0.0060 agrees well with the �− T̂ curve for the isothermal
sphere �n=�, except for a part of the spiral curve. That is,
the system behaves like the isothermal sphere, since the
evaporation process is sufficiently moderate. With decreasing
energy threshold, the curve gradually shifts toward the com-
mon curve, i.e., the stellar polytrope with n
9. For example,
the simulation results for �esc=0.0025 and 0 agree well with
the curves for the stellar polytropes with n
20 and 
9,
respectively. Therefore, we find that the thermodynamic
properties of the moderate evaporation process are likely re-
lated to those for the stellar polytrope. �The influence of the
energy threshold on the evaporation process is similar to that
of cooling rates on a nonequilibrium process with nonadia-
batic walls discussed in Ref. �28�.�

If the system does not approach the virial equilibrium

state in lower-energy regions, the �− T̂ curve deviates from
the curve for the stellar polytrope, as discussed in Sec. III A.

For instance, for ��−0.5, the �− T̂ curve for �esc=0.0025
deviates from the curve for the stellar polytrope with n


20 �not shown in the figure�. This is probably because the
quasiequilibrium state for uniform states does not exist in
lower-energy regions. Moreover, the simulated system does
not approach the core-halo states, since the present evapora-
tion process is shorter than the collapse time for the core-
halo state.

We now observe typical density profiles for �esc=0 and
−0.0050, to examine local properties in the evaporation pro-
cess. From Fig. 9�a�, we select three density profiles for
which the temporal energy is approximately �=−0.1, −0.3
and −0.5. As shown in Figs. 10�a�–10�c�, the densities for
�esc=−0.0050 are lower than those for �esc=0. This is be-
cause the lower the energy threshold, the more rapidly the
particles escape from the sphere. However, the density pro-
files for �esc=0 and −0.0050 are similar to each other. As the
energy decreases �i.e., Figs. 10�a� to 10�c��, the density pro-
file for �esc=−0.0050 gradually approaches the profile for
�esc=0, since the evaporation process tends to be moderate.
However, the densities for �esc=−0.0050 are always lower
than those for �esc=0.

In Fig. 10, density profiles for the stellar polytrope are
plotted as well. The line represents the Emden solution with
n=9, which is fitted with the simulation result for �esc=0,
using Eq. �A.7� in Ref. �16�. Consequently, the density pro-
file for the stellar polytrope can be well fitted with the simu-
lation result for �esc=0. This indicates that the density profile
for the moderate evaporation process is consistent with the
profile for the stellar polytrope.

As discussed above, the moderate evaporation process is
likely related to the stellar polytrope. Therefore, for a closer
comparison with the stellar polytrope, we observe the rela-
tionship between the density contrast D=
c /
e and the nega-
tive of the total energy ��=−�� �16,17�. Here 
c and 
e rep-
resent the densities at the center and wall, respectively. To
obtain the density contrast for the evaporation process, the
density profile calculated from the Emden solution is fitted
with the corresponding density profile of our simulations, as
shown in Fig. 10. Based on the fitted curves, we evaluated
the density contrast for the evaporation process. In Fig. 11,
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FIG. 9. �Color online� Dependence of the temperature T̂ on the total energy � in the sphere, for various energy thresholds �esc. �a� Rapid
evaporation ��esc�0�; �b� moderate evaporation ��esc�0�. The simulation starts from an initial energy �0 of 0.1, which is represented by the
open circle. Trajectories of the Emden solutions with n=5, 9, 20, and  are indicated for the stellar polytrope. For n=9, a part of the spiral
curve is not shown in this figure.
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typical density contrasts for the moderate evaporation pro-
cess ��esc�0� are plotted as symbols. Note that the symbols
in this figure represent evolutionary states. In other words,
the states for the evaporation process evolve as indicated by
the arrow.

We first focus on the density contrast for energy thresh-
olds �esc of 0 ���, 0.0025 ��� and 0.0060 ���, as shown in
Fig. 11. The result for �esc=0.0060 agrees well with the
curve for the stellar polytrope with n=, since the evapora-
tion process is sufficiently moderate. Similarly, the results for
�esc=0.0025 and 0 agree well with the curves for n
20 and
n
9, respectively. As the energy threshold decreases, the
system for the evaporation process deviates from that for the
isothermal sphere �n=� and approaches a certain system,
which is likely related to the stellar polytrope with n�5.

Finally, we observe the density contrast for an energy
threshold of �esc=0. That is, we examine the density contrast
for initial energies of �0=0.1 ��� and −0.1 ���, as shown in
Fig. 11. For ��0.6 �i.e., ��−0.6�, the results for �0=0.1 and
−0.1 agree well with the D−� curves for n
9. This result is

consistent with the �− T̂ curve shown in Fig. 5. Note that the

energy region discussed here should be slightly higher than
that in Fig. 5 ���−0.7�. In contrast, for ��0.6 �i.e., ��
−0.6�, the simulation results start deviating from the stellar
polytrope with n
9. This suggests that the evaporation pro-
cess evolves rapidly, before the system has a sufficient high-
density core. In the present simulation, we have confirmed
that the system deviates from the virial equilibrium state in
such a lower-energy region, as discussed in Fig. 6.

These results indicate that the stellar polytrope can be
applied to the present evaporation process, when the system
is in the approximate virial equilibrium state. However, the
stellar polytrope is not suitable for describing the evapora-
tion process, if the evaporation process is too rapid or if the
energy of the system is too low before collapse.

IV. CONCLUSIONS

We considered a small N-body open system enclosed in a
spherical container with semipermeable reflecting walls, to
examine the thermodynamics of an evaporation process in
self-gravitating systems. To mimic the evaporation process,
when the energy of a particle exceeded a certain energy
threshold, the particle could pass through the wall freely.
Through the N-body simulation, we have clearly demon-
strated that an incidence of negative specific heat occurs
even in the present evaporation process or a nonequilibrium
process with mass and energy loss. The dependence of the

temperature on energy, i.e., the �− T̂ curve, is on a certain
common curve in the evaporation process for various initial

energies. The common curve is consistent with an �− T̂ curve
for the stellar polytrope with n�5, when the system is in an
approximate virial equilibrium state and not in a lower-
energy region.

Moreover, we examined the influence of the energy
threshold on the evaporation process. We found that the ther-
modynamic properties agree well with those for the stellar
polytrope, if the evaporation process is moderate. That is, the
stellar polytrope is likely to be valid in the moderate evapo-
ration process, although a fixed energy and mass are assumed
for the stellar polytrope. However, in a rapid evaporation
process or a lower-energy region, the simulated evaporation
process deviates from the stellar polytrope, since the system
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should not approach the virial equilibrium state sufficiently.
Nevertheless, the negative specific heat occurs in the evapo-
ration process under such conditions. In other words, we
have shown that peculiar thermodynamic properties appear

in strong nonequilibrium phenomena through the evapora-
tion simulation. The present study opens up a new theoretical
approach for examining strong nonequilibrium phenomena
appearing in self-gravitating systems.
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