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Abstract The page migration problem is to compute dynamic allocation of a page on a network
for a given sequence of nodes issuing requests for the page. The goal is to minimize the total
communication costs of services for requests and of migrations of the page. We did not know
any deterministic online algorithm with competitive ratio less than 4 for networks other than
trees, uniform networks, and Cartesian products of those networks so far. In this paper we give a
2 + v/2(~~ 3.4142)-competitive deterministic algorithm on rings (with edge weights) for the setting
that the page size is 1. We can also derive algorithms for trees of rings and tori with the same
competitive ratio and with the same setting. Moreover, we show an improved lower bound of 3.1639
for general networks and a lower bound of 3.1213 for rings. Our lower bound for rings is the first
result which gives an explicit lower bound greater than 3 for rings, together with an explicit proof.

1 Introduction

The ‘problem of computing efficient dynamic allo-
cation of data objects stored in nodes of a net-
work in response to requests issued by nodes for
accessing the data objects commonly arises in net-
work applications such as memory management in
a shared memory multiprocessor system and Peer-
to-Peer applications on the Internet. This problem
is generally called the data management problem
and has been extensively studied so far. Since it is
not feasible to know the future accesses in advance,
online algorithms for the problem are practical and
interesting.

In this paper we focus on one of the traditional
settings of the data management problem, called
the page migration problem, in which only one copy
of a data object, or a page, is.allowed. The objec-
tive function to be minimized is the total sum of
the service cost for each request, which is the dis-
tance between server-and client nodes, and of the

management cost for each data migration, which
is the migration distance multiplied by the data
size. There have been studied more general set-
tings such as k-page migration [3], file allocation
problem, e.g., [1][4][9], and data management on
dynamic networks, e.g, [2][5][6].

For general networks, a 3-competitive random-
ized algorithm against an adaptive online adver-
sary was given by Westbrook [10]. The algorithm

is tight since Bartal, Fiat, and Rabani [4] showed

that no randomized algorithm has competitive ra-
tio less than 3 against an adaptive online adversary
for one link networks. A randomized algorithm
with competitive ratio against an oblivious adver-
sary which tends to &%@ ~ 2.6180 as the page size
D grows large was given also in [10]. Optimal ran-
domized algorithms for trees and product of trees,
including grids and hypercubes, and for uniform
networks with competitive ratio 2 + % against an
oblivious adversary were given by Chrobak, Lar-
more, Reingold, and Westbrook [8] and by Lund,
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Reingold, Westbrook, and Yan [9], respectively.
The tightness of the competitive ratio of 2 + %
against an oblivious adversary was shown also in
[8] by proving that no randomized algorithm has
competitive ratio less than 2+ 35 against an obliv-
ious adversary for one link networks.

As for deterministic page migration, Bartal,
Charikar, and Indyk [3] gave a 4.086-competitive

deterministic algorithm for general networks. It is.

mentioned in [10] that a naive deterministic algo-
rithm which moves the page to the requesting node
after each request is 2D + 2-competitive, which is
better than the result of [3] when D = 1. Black
and Sleator [7] gave a 3-competitive deterministic
algorithm for trees, uniform networks, and prod-
ucts of those networks, including grids and hyper-
cubes. Besides, a 3-competitive deterministic algo-
rithm on arbitrary 3-node networks for the setting
of D = 1 was given in [8]. The tightness of the com-
petitive ratio of 3 for deterministic algorithms was
first shown in [7] by proving that no deterministic
algorithm has competitive ratio less than 3 for one

link networks. For lower bounds of deterministic

algorithms for networks other than. one link net-
works, a lower bound of -2—? =~ 3.1481 for general
networks was given in [8]. It was also mentioned
in [8] that the lower bound for rings is greater than
3, but neither explicit value nor written proof was
given.

In this paper we consider the deterministic data
migration on rings. We give a 2 + v/2(~ 3.4142)-
competitive deterministic algorithm on rings for
D = 1. The setting of D = 1 is often called
uniform model. We can also derive algorithms for
trees of rings and tori with the same competitive
ratio for the uniform model. Moreover, we show
an improved lower bound of 3.1639 for general net-
works and a lower bound of 3.1213 for rings. Our
lower bound for rings is the first result which gives
an _explicit lower bound greater than 3 for rings,
together with an explicit proof.

2 Preliminaries

Graphs G = (V,E) considered here have edge
weights w : E — R*. The distance between two
nodes « and v, denoted by dist(w,v), is the mini-
“mum sum of the weights of the edges of a path con-
necting v and v. We define that an n-node ring is
a graph with the node set {0,...,n — 1} and edge
set {(v,(v+ 1)modn) | 0 < v < n}. We also
model the ring as a closed curve with length L =
> ecr w(e), or a half-closed interval [0, L) whose
end-points 0 and L coincide. We define that for 0 <
p<q<L,Jqp]is [g,L)U[0,p] and has the length

of L — (¢ — p). Each node 0 < v < n corresponds
to a point 7(v) = 3523 w((4,5 + 1)) € [0,L), and
each edge (v,(v+ 1)modn) (0 < v < n) corre-
sponds to [7(v), 7((v + 1) mod n)]. For p € [0, L),
pisp+ % ifp < %, p- % otherwise. We denote
the length of an interval I by I(T).

The page migration problem is, given a graph
G, a node so of G which initially holds a page
of size D, and a sequence c;, ..., c; of nodes
of G which issue requests for accessing the page,
to compute a sequence sj, ..., 8§ of nodes of
G to hold the page so that the cost function
Zf=1 dist(s;_1,¢;) + Ddist(s;—1, s;) is minimized.
We call nodes sg, ..., sg and ¢y, .. ., cx servers and
clients, respectively. An online data migration al-
gorithm determines s; without knowing c;y1, ...,
ci for 1 < ¢ < k. We denote by cost (o) the cost
of a data migration algorithm A for an instance
o = (G, s0,¢1,...,¢). An online data migration
algorithm ALG is p-competitive if there exists a
value a independent of k such that costpc(o) <
pcostopr(o) + a for an optimal offline algorithm
OPT and for any o.

3 Algorithm for Rings

In this section we show the following theorem by
constructing a desired algorithm;:

Theorem 1 There exists a 2+ +/2-competitive de-
terministic data migration algorithm on rings for
uniform model, i.e., D = 1.

3.1 Definition

We describe our algorithm UNIFORM_PAGE.
MIGRATION_ON_RINGS (UPMR). For each edge
of a given ring, UPMR has a counter whose value
is 0, 1, or 2. All the counters are initially set to
0. Let Xo = [r(s0), m(s0)]. After determining s;
(¢ > 1) UPMR preserves the condition that all the -
counters have 0 or 1 and that all the edges with

counters of 1 induce a single interval X; with an

end-point 7(s;) and with length at most % Let

p=2+ V2. UPMR determines s; (1 > 1) after
serving the request from ¢; as follows:

1. Assume without loss of generality that 7 (s;—1) =

0 and X;_; = [0,z] C [0, £].

2. If m(¢;) < £, then increment the counters of
edges in [0, 7(c;)] by 1.

3. If w(e;) > %, then let y be the length of
[0, 7(c:)], ie., m(ci).
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(a) If z < p(y — %), then decrement the
counters of the edges of X;_; by 1, i.e.,
set them to 0, and increment the coun-
ters of the edges in [n(c;), 0] by 1.

) If z > p(y — %), then increment the
counters of the edges in [0, 7(c;)] by 1.

4. Move the page along all the edges with coun-
ters of 2, and set the counters of the edges to
0.

5. Let X; be the interval induced by =(s;) and
all the edges with counters of 1.

3.2 Correctness
UPMR is well-defined by the following lemma.:

Lemma 1 UPMR has the following properties for
t>1:

o After Step 3, n(s;—1) and all the edges with
counters of 2 induce a single interval with an
end-point 7(s;—1).

o After Step 4, w(s;) and all the edges with
counters of 1 induce a single interval with
an’ end-point ©(s;) and with length at most
L

o
Proof We prove the lemma by induction on i. Asa
base case, we can observe that Xo = [(s0), 7(s0)]
satisfies the second property of the lemma. Assume
that the lemma holds for 1—1 (¢ > 1). Thus, before
Step 1, 7(s;—1) and all the edges with counters
of 1 induce a single interval X;_; with an end-
point 7(s;—1) and with length at most -é’- Assume
without loss of generality that n(s;—_;) = 0 and
Xi—l g [07 'g—]

If s; is determined via Step 2, then all the edges
with counters of 2 induce X;_1 N [0, 7(c;)], and all
the edges with counters of 1 induce either X;_; —
[0,7(c;)] or [0,7(c;)] — Xi—1. Then the page is
migrated in Step 4 along X;_1N[0, 7(c;)] and all the
counters of the edges in X;_ N [0, 7(c;)] are set to
0. Since both X;_; — [0, 7(¢;)] and [0, 7(c;)] — Xi—;
have length at most —é’- by induction hypothesis and
the assumption that 7(c;) < %, the lemma holds.

If s; is determined via Step 3a, then all the
edges with counters of 1 induce [7(c;),0] and no
edge has counter of 2. Since [7(c;),0] has length
L—-7(e;) < %, the lemma holds.

If s; is determined via Step 3b, then all the
edges with counters of 2 induce X;_; and all the
edges with counters of 1 induce [0, 7(c;)] = X;—1.
Then the page is migrated in Step 4 along X;_{
and all the counters of the edges in X;_; are set

pL/2
pL/2-dist(p x)

(p-1)dist(px)
N
~dist(p x)
(a) X =[p,z] witho<p<z< L
| o
oL AN P lpax)--—-
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.........
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Figure 1: Plots of ® in terms of q.

to 0. Since [0,7(c;)] — X;—1 has length y — z <
% + % -z < -é‘-, the lemma holds. 0

3.3 Competitiveness
Lemma 2 UPMR is 2 + v/2-competitive.

Proof We prove the lemma by observing the in-
equality

(1)

where p =2+ 2 and ® is a potential function.
Forp,q € [0,L), let I, be [p, q|U[p, 7] if g € [p, 7],
g, p] U [, 7] otherwise, and let IF, = [0, L) — I,
For p,q € [0,L) and an interval X on [0, L), let
f(paqu) = _I(Ip_,q nX) + (P'— l)l(Iz—zl:an) We
define ®(p, ¢, X) = pdist(p, ¢) + f(p, ¢, X), where p
and q are the servers located by UPMR and Orr,
respectively, and X is the interval induced by the
edges with counters of 1. Figure 1 shows plots of
® in terms of ¢. It should be noted that ® consists
of straight lines with slopes —p, 0, or p and that
the values for ¢ = 0 and ¢ — L coincide.

COStUPMR(O‘) +& _<_ pcostopT(Cf),
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Since ® is initially 0, we can obtain (1) by ob-
serving that for each event of

e service and migration by UPMR and service
by OPT, and

¢ migration of OPT
for each request,

Acostypmr + AP < pAcostopr,

2)

where Acost 4 is the cost paid by an algorithm A
for the event, and A® is the increased amount of ®
by the event. For the event of migration of OPT of
length A, (2) is satisfied because Acostypmp = 0,
AP < pA, and Acostopr = A

In the rest of the proof, we consider t,he event
consisting of service and migration by UPMR and
service by OpT. We fix 1 £ ¢ < k and suppose
that y = 7(c;) and p = 7(s;—1). We may assume
without loss of generahty that p =0 and X;_1 =
[p,z] C [0, %

If UPMR determines s; via Step 2 and p <
y < z, then Acostupmr + AP — pAcostopr =

2dist(p, y)+®(y, g, [y, =)~ (P, ¢, [p, =])—pdist(y, 9),
~ which has slope in terms of ¢ as described below:

q p y =z P F T L

Q(ya q, [ya x]) —p 0 P P 0 il 4
—@(p, q, h’) CD]) 0 0 -p 0 0 P
—pdist(y,q) p l=pl—pr|l—-p|l | p
total 0O [|—p|-p] O P p

Thus, when ¢ = y, Acostypmr + AP — pAcostopr
has the maximum value 2dist(p, y)+(p—1)dist(y, =)
—(p —1)dist(p,z) = ~(p - 3)y < 0.

If UPMR determines s; via Step 2 and p < z <
y, then Acostypmr+AP—pAcostopr = dist(p, y)+

djSt(p1 :1:)+q)($’ q, [xv y])—'@(}), q, [p1 $])—pd15t(y7 CI),
which has slope in terms of q as described below: .

q p r y Pp =T § L
q)(x’q)[z,y]) =P 0 P | P 0 =P
-2, [z || O | —p| =2 | O | 2| p
—pdist(y,q) plpl—p|l-—p|—-r]|p
total 0 0| -p| O 0 )
Thus, when q = z, Acostypmr + AP ~ pAcostopr

has the maximum value dist(p, y)+dist(p, z)+(p—
1)dist(z,y) — (p— 1)dist(p, z) — pdist(y, z) = —(p—
3z <0.

If UPMR determines s; via Step 3a, then
Acostupmr + AP~ pAcostopr = dist(p, y)+B(p, g,

[y’p]) - Q(p, q, h’, SB]) - pdiSt(y,q)’ Ify -T2 %,
then it has slope in terms of q as described below:

q p =z v 7 z y L
ep,q,lyp) | | P | O |=p|-p| O
_Q(p1q, [P,ml) 0 —p} =P ] 0 p P

—pdist(y,q) | —p |-, | o | P | P |—-p
total 0O [—-p]| O 0 ) 0

Thus, when g = p, Acostypmr + AP — pAcostopr
has the maximum value dist(p, y)+(p—1)dist(p, y) -

(p = L)dist(p, ) — pdist(y,p) = —(p— 1)z < 0. If

. Thus, when q = p, Acostypmr + AP —

y—z < £, then Acostupmr + A® — pAcostopr has
slope in terms of q as described below:
q [» 7 =2 5 y =T L
®(pqfypl) | | O] O |- O] O
—@(p, q, [p’ $]) 0 ) 0 -p 0 0 P
—pdist(y,q) | —p| p | p | P |—p|-p
total Il ) 0 0 [-p] O
Thus, when ¢ = z, Acostypmp + AP — pAcostopr

has the maximum value dist(p, y)+ p-g- —dist(p, y)—
(p—1)dist(p, z) — pdist(y, z) = pg —(p—1)z—p(y—
z)=z—ply- %) <0 '

If UPMR determines s; via Step 3b, then
Acostypmr + A® — pAcostopr = dist(p,y) +

diSt(pa .'L')-I-‘I)(.’E, g, [.’L', y])—@(p, q, [P, z])_pdiSt(yr Q),
which has slope in terms of g as described below:

- q P ¥y =z Py T L
q)(x’ q, [m, y]) 0 -pP 0 0 P 0
_‘I)(paQs[P,f”]) 0 0 ) P 0 0 P

—pdist(y,q) | 2| 2 | o | P |- ]| -p
total -p| O 0 ) 0 0

pAcostopr
has the maximum value dist(p, y)+dist(p, :z:)+p—’2¢—
dist(z,y) — (p — l)dist(piw) ~ pdist(y, p) = —(p -
INL-y)-(p=2)z+p7 —(y—z)=(p-2)(y -
L-(p-3=(p-3)FHu-§-2)= (-
3)(ply — ) —=) <O. o

Therefore, the proof of Theorem 1 is com-
pleted.

4 Algorithms for Trees of Rings
and Tori

Any p-competitive data migration algorithm on a
class C of graphs can be extended to a p-competitive
algorithm for Cartesian products of graphsin C [8].
Thus, we can immediately obtain the following the-
orem from Theorem 1:

Theorem‘2 There exists a 2-+\/§ competitive de-
terministic data migration algomthm on tori for
umform model, i.e., D=1.

A tree of rings is a graph obtained from an un-
derlying tree T by replacing each node v of T' with
a cycle C, so that nodes u and v of T are adjacent
if and only if C, and C, share exactly one node.
We can easily extend UPMR to an algorithm for
trees of rings.
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Theorem 3 There ezists a 2+ /2-competitive de-
terministic data migration algorithm on trees of
rings for uniform model, i.e., D = 1.

Proof Our algorithm UPMTR on trees of rings is
defined as follows: Let G = (Vg, Eg) be a tree of
rings with an underlying tree T = (Vr, Er). For
p € Vo and v € V, let p* € Vi be the node
of C, nearest to p. For a given instance o
(G, s0,¢1,...,¢ck), UPMTR performs UPMR on
each cycle C, for the instance o, = (C,, s§,c},. ..,
ct). The correctness of UPMTR can be shown by
observing the following properties for : > 1:

o After Step 3 of UPMR is performed on every
cycle, s;_; and all the edges with counters of
2 induce a single path with an end-point s;_;.

o After Step 4 of UPMR is performed on every
cycle, s; and all the edges with counters of 1
induce a single path with an end-point s;.

These properties can be observed by induction on
i. As a base case, the path of length 0 with the
end-node sq satisfies the second property. The in-
ductive step can be shown by Lemma 1, by the fact
that UPMR increases the counters of the edges of
a path between s}_; and ¢} for v € Vr, and by the
fact that any two cycles in G are connected by a
unique sequence of cycles. ’

By definition, it clearly follows
costupMTR(0) = D v, COStUPMR(Tw).

that
More-

over, since any two cycles of G share at most one -

node, the services and migrations performed by
an algorithm OPT on G can be divided into al-
gorithms A, on each cycle C, with the instance
oy in such a way that A, manages sj,...,s} for
servers $i,...,S; managed by OPT, and it fol-
lows that costopr(o) = ZueVT costa,(0y). There-
fore, we have by Lemma 2 that costypmrr(c) =
szVT COStUPMR (0',,) < ZvEVT{(Z_'_\/E)COStAv (UU)
+ a} = (2 + v2)costopr(o) + | Vir|. O

5 Lower Bound for General
Networks

In this section we show the following theorem:

Theorem 4 There ezists no deterministic p-com-
petitive data migration algorithm for general net-
works if p < 3.1639.

A lower bound of the competitive ratio of % ~
3.1481 for general networks was given in [8] by
showing the following lemmas:

Lemma A For any deterministic online data mi-
gration algorithm ALG, there exists an instance o
such that costaie(o) > Scostopr(c) > 0 and that
both ALG and OPT put the page on the last client

no.

Lemma B For any deterministic online data mi-
gration algorithm ALG, if there exists an instance
o such that costac(o) > peostopr(o) > 0 and that
both ALG and OPT put the page on the last client
in o, then there exists an inslance o’ such that
costays(o’) > peostopr(o’) + a for any o indepen-
dent of the number of the requests in o’.

Lemma A was proved in [8] by giving a 4-node
ring and an adversary’s strategy which satisfy the
conditions of the lemma. We modify the ring and
the strategy of [8] and obtain the following lemma:

Lemma 3 For any deterministic online data mi-
gration algorithm ALG, there exists an instance o
such that costarc(o) > 3.1639costopr(c) > 0 and
that both ALG and OPT put the page on the last
client in o.

Proof We define a 5-node ring R; and a strategy
for an adversary ADV to generate clients on R; as
shown in Fig. 2. We set D = 1 and the initial
server to the node a. The strategy is illustrated
by a tree-like DAG, in which each edge represents
a server determined by an online algorithm ALG,
and each node represents a client chosen by ADV.
An edge with more than one server denotes that
ALG put the page on one of the servers. A client
followed by a plus sign denotes that ADV repeats
the requests from the client until ALG moves the
page to the client. In response to the choices of
the servers of ALG, an online game between ALG
and ADV proceeds along a path from the unique
source node to a sink node on the DAG. Table 1
shows the servers of OPT and the ratio of the costs
of ALG and OPT for each path except the paths
preceded by the nodes aa+, which clearly increase
only the cost of ALG. By Table 1, the cost ratio is
at least 3.1639 whichever path ALG chooses. O

By Lemmas B and 3, we have Theorem 4.

The precise edge weights of R; are obtained
from the conditions that the four cost ratios for
ALG’s servers (ADV’s clients, respectively) aaaac
(abdc+), aaabbe (abdee+), aaabde (abdee+),
aaabeed (abdedd+) are the same and that dist(a, c)
is exactly half of the total weights, maximizing the
cost ratio for ALG’s servers aaaac (ADV’s clients
abdc+).
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3.1639

2555

/@

>3.1639 >3.219 >3.369

a
\./
bode!' a bode\.

>3.261

od &g >3172

>3.1639

(b) ADV’s strategy

Figure 2: Ring R; and ADV’s strategy on Ry

Table 1: An optimal algorithm OPT and the ratios of the costs of OPT and ALG

COStALG/ costopr >

servers of ALG clients of ADV | servers of OPT
aaaac abdc+ abece
aaablae][abe]d abdedd+- abddddd
aaablae][cd][abed)e | abdedee+ aaeeeece
aaablae]|cd]e[abe]d | abdededd+ abddddddd
aaablae][cdle[cdle | abdedede+ aaeeeeeee
aaablbcdle abdee+ aaeeee
aaalcdelb abdb+ abbbb
aalbede]a aba+ aaaq

78.172/24.707 > 3.1639
116.016/36.668 > 3.1639
139.938/43.465 > 3.219
163.86/48.629 > 3.369
175.821/55.426 > 3.172
99.676/31.504 > 3.1639
80.59/24.707 > 3.261
38.172/9.543 > 4

6 Lower Bound for Rings

The proof of Theorem 4 requires sufficiently large
tree-of-rings-like networks due to Lemma B. In this
section we give a lower bound for ring networks.

Theorem 5 There exists no deterministic p-com-
petitive data migration algorithm for rings if p <
3.1213.

Proof We show that for any deterministic online
data migration algorithm ALG, there exists an
instance o with a ring such that costac(o) >
3.1213costopr(0) + o for any o independent of the
number of the clients of . To show this, we define
a 5-node ring Ry as shown in Fig. 3 and a strategy
for an adversary ADV to generate arbitrarily long

sequence of clients on Ry such that c#'s—tﬁ‘-‘%-”-% >

costopr(c) =
3.1213 with an arbitrarily large costopr(c). The
strategy consists of partial strategies S,, Sy, S,
Sg, and S, (Fig. 3). By an argument similar to
the proof of Lemma 3, together with the cost ra-
tios shown in Table 2 for the partial strategies,
for each node v of Ry and any online algorithm
A, there exists a sequence x% of clients such that
costa((Rz,v,x%)) = 3costopr((R2,v,x%)) > 0
and that both A and OPT put the server on the
last client of x%. As done in the proof of Lemma 3,
we omit to consider the sequences beginning with
vu+ in S,.

We set D = 1 and the initial server of o to
the node a. ADV generates clients in phases: The
ith phase (i > 1) is defined as x}} . , where ALG;

" there exists j > 1 with v; €

is the algorithm performed by ALG in the ith
phase, and v; is the node on which ALG and OPT
have the page just before the phase begins. Let
0i = (R2,vi, Xc,)- The theorem is proved by ob-

serving that %’;ﬂﬂg—: > 3.1213. By Table 2,
all the sequences of clients in the partial strate-
gies yield the cost ratios greater than 3.1213 except
for baa+, cbaa+, daa+, and eaa+. Assume that
{b,c,d, e} and x5, €
{baa+, cbaa+, daa+, eaa+}. If there exists no such
7, then the theorem is immediate. Table 3 shows

costaia; (o5 1)-1-co~5tm_q (a5)
that Cos"OPT}C'J’l)"‘COSﬁOFT(U )J 2 3.1213 for every
, ending

possible combination of x's ALG and x4 ALG
with v;+. Therefore, we have the theorem |

The precise edge weights of R, are obtained
from the conditions that the four combined cost ra-
tios for ALG’s servers (ADV’s clients, respectively)
aaaac-cccha (abdc+-chaa+), aaabbe-ecea (abdee+-
eaa+), aaabde-ecea (abdee+-eaa+), aaaeb-bbba
(abdb+-baa+) are the same and that dist(a,c) is
exactly half of the total weights.

7 Concluding Remarks

Our analysis of competitiveness of UPMR is tight:

For repeated pairs of alternate requests issued from
the two nodes at a distance of 23 2;% (e > 0)
from the initial server, UPMR does not move the
page and pays the cost of %;—EL for each pair

of the requests. On the other hand, an optimal
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Figure 3: Ring R; and ADV’s partial strategies on Ry

Table 2: An optimal algorithm OPT and the ratios of the costs of OPT and ALG

servers of ALG

clients of ADV

servers of OPT

costarc/costopr >

aaaac

abdc+

abcce

232.577/72.019 > 3.229

aaablae][abee]ld | abdedd+ abddddd 384.915/118.226 > 3.255
aaablae]d|ae]d abdeded+ abdddddd 546.025/164.433 > 3.320
aaablae]d[bed)e abdedee+ aaeeeeee 499.818/150.558 > 3.319
aaablbed]e abdee+ aaeeee- 326.927/104.351 > 3.132
aaa[cd)|ae]|acde]b | abdabb+ abbbbbb 407.167/120.163 > 3.388
aaalcd][aelblaelb | abdabab+ abbbbbbb 561.836/168.307 > 3.338
aaalcd)[ae]blbed]a | abdabaa+ aaaaaaaa 513.692/152.495 > 3.368
aaa[cd][bed]a abdaa+ aaaaaa 329.179/104.351 > 3.154
aaaeb abdb+ abbbb 230.639/72.019 > 3.202
aalbed)a aba-+ aaaa 192.576/48.144 = 4
aaeb abb+ abbb 174.432/48.144 > 3.623
bblae]b bab+ bbbb 192.576/48.144 =4
bblbed]a baa+ baaa 144.432/48.144 =3
ccladelb chb+ cbbb 71.625/15.969 > 4.485
ccbe cbet+ cece 63.876/15.969 = 4
ceclae]b chab+ chbbb 240.483/64.113 > 3.750
ceclbed)a cbaa+ chaaa 192.339/64.113 =3
ddad dad+ dddd 224.828/56.207 = 4
ddbe dae+ deee 196.37/56.207 > 3.493
dd[cd]a daa+ daaa 168.621/56.207 = 3
ddelacdelb dabb-+ dbbbb 246.609/72.019 > 3.424
ddebd dabd+ ddddd 266.452/80.082 > 3.327
eeae eaet eeee 40/10 =4
eelbede]a eaa+ eaaa 30/10 =3
— 4] —
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Table 3: Combined cost ratios for the (j — 1)st and jth phases

A Vi . . . costarg; 4 (05— costala; (05
XX’LGJ' XAJLGIJ'_ , ending with v; + COI:t;pTzéjil;j‘tOStO:r(;i )7) =
baa+ | abdabb+ (407.167 4 144.432)/(120.163 + 48.144) > 3.277
abdabab+ || (561.836 + 144.432)/(168.307 + 48.144) > 3.262
abdb+ or dabb+ (230.639 + 144.432)/(72.019 + 48.144) > 3.1213
abb+ or bab+ (174.432 + 144.432)/(48.144 + 48.144) > 3.311
cbb+ (71.625 + 144.432)/(15.969 + 48.144) > 3.369
.| cbab+ (240.483 + 144.432)/(64.113 4 48.144) > 3.428
cbaa+ | abdc+ (232.577 + 192.339)/(72.019 + 64.113) > 3.1213
chet+ (63.876 + 192.339)/(15.969 + 64.113) > 3.199
daa+ | abdedd+ (384.915 + 168.621)/(118.226 + 56.207) > 3.173
abdeded+ (546.025 + 168.621)/(164.433 + 56.207) > 3.238
dad+ (224.828 + 168.621)/(56.207 + 56.207) = 3.5
dabd+ (266.452 + 168.621)/(80.082 + 56.207) > 3.192
eaa+ | abdedee+t (499.818 + 30)/(150.558 + 10) > 3.299
abdee+ (326.927 + 30)/(104.351 + 10) > 3.1213
dae+ (196.37 + 30)/(56.207 + 10) > 3.419
eae+ (40+30)/(10 4+ 10) = 3.5
algorithm moves the page exactly once to one of J. Computer and System Sciences, 51(3):341-358,
the nodes for the first request and pays the cost of 1995.
L- 23_,, 2;€L = '3‘:_%5[' for each succeeding pair of  [5] M. Bienkowski, M. Dynia, and M. Korzeniowski.
the requests. As the number of requests increases, Improved algorithms for dynamic page migra-
the cost ratio tends to ziljz—e ~ 2 4 v/2 for small tion. In STACS 2005, 22nd Annual Symposium

te on Theoretical Aspects of Computer Science, vol-

An online algorithm ALG is said to be strictly um;%?&%ﬂé’egtu:;] N(r’ti,s :ln C;Bn&uter Seience,
p-competitive if costarg(o) < peostopr(c) for any pag _ PrInger-Verag, L
o. UPMR (and UPMTR) is strictly 2 + v2- (6] M: Blefako?vskl and F Meyer auf der Heide. Page
competitive since ® defined here is a non-negative ;mgr?.mna;nsdynmc netw‘;rlkst'h In gmcl ;W:Jin'
function and is initially 0, and since (2) holds for tfor:: ;;nCompyZI;i sg:;r;:; p:ge:";_lfamgg >
each request. Lemma 3 implies that our lower ’ .
bound of 3.1639 for general networks is also a lower 7] D- L. Black and D. D. Sleator. Competitive al-

: oo - s e gorithms for replication and migration problems.
gzglil;)gfrzt;?;ﬁ ::)grr:;e;tlve ratio for deterministic Technical Report CMU-CS-89-201, Department

) -of Co ter Sci , C ie Mellon University,
We do not know any lower bound greater than c1>989.mpu o Science, Lamegle Melon Vniverslly

3 for deterministic page migration on unweighted 8§ M. Chrobak, L. L. L N. Reingold. and
. . . . ro N . . armore, . eingolda, an
graphs, i.e., graphs with edges of equal weights. J. Westbrook. Page migration algorithms using
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