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Abstract— A noise spectral estimation method, which is used in
spectral suppression noise cancellers, is proposed for highly non-
stationary noise environments. Speech and non-speech frames are
detected by using the entropy-based voice activity detector (VAD).
An adaptive normalization parameter and a variable threshold
are newly introduced for the VAD. They are very useful for
rapid change in the noise spectrum and power. Furthermore,
a recursive averaging method is applied to estimating the noise
spectrum in the non-speech frames. In this method, an adaptive
smoothing parameter is proposed, based on speech presence
probability. Simulations are carried out by using many kinds
of noises, including white, babble, car, pink, factory and tank,
which are changed from one to the other. The segmental SNR
is improved by 2.0 ∼ 3.8dB, and noise spectral estimation error
is improved by 3.2 ∼ 4.7dB for the white noise and the babble
noise, which are changed from one to the other.

I. INTRODUCTION

A spectral suppression technique is a hopeful approach to
noise cancellers used in a mobile phone [1]. In this approach, it
is very important to estimate a spectral gain, used to suppress
the noise spectrum. Several methods, including MMSE STSA
[2], MMSE LSA [3] and Joint MAP [4], have been proposed.
Furthermore, performance of the spectral suppression tech-
nique is highly dependent on accuracy of the noise spectral
estimation [5],[6]. There exist many kinds of noises. In highly
non-stationary noise environments, power and spectrum of
the noises can be dynamically changed. The noise spectral
estimation should adapt this kind of changes quickly. Several
noise spectral estimation methods have been proposed for non-
stationary noise environments [7]∼[12].

In this paper, a noise spectral estimation method, which
uses voice activity detection (VAD) and recursive spectral
estimation, is proposed. An adaptive normalization parameter
is proposed in the VAD. Furthermore, an adaptive smoothing
parameter is proposed in the recursive averaging method, in
order to estimate the noise spectrum in non-speech frames.
Computer simulations by using speech signal and many kinds
of noises will be shown.

II. SPECTRAL SUPPRESSION NOISE CANCELLER

Figure 1 shows a blockdiagram of the spectral suppression
noise canceller. Spectra of speech and noise are assumed to be
statistically independent. Let s(m), n(m) and x(m) be noise

Fig. 1. Blockdiagram of spectral suppression noise canceller.

free speech, noise and noisy speech, respectively.

x(m) = s(m) + n(m) (1)

The Fourier transform of x(m), s(m) and n(m) in the lth
frame and at the kth frequency bin are expressed by

X(l, k) = S(l, k) + N(l, k) (2)

The prior SNR ξ(l, k), a ratio of the clean speech power to
the noise power, and the posterior SNR γ(l, k), a ratio of the
noisy speech power to the noise power, are defined by

ξ(l, k) =
E[|S(l, k)|2]
E[|N(l, k)|2] (3)

γ(l, k) =
|X(l, k)|2

E[|N(l, k)|2] (4)

Actually, the noisy speech signal x(n) is only available. The
prior SNR ξ(l, k) is estimated as follows [2]:

ξ̂(l, k) = αγ(l − 1, k)G2(l − 1, k)

+ (1 − α)P [γ(l, k) − 1] (5)

where 0 < α < 1 and P [x] satisfies

P [x] =

{

x, x > 0
0, otherwise

(6)

The posterior SNR γ(l, k) can be estimated by using the
noise spectrum estimation N̄(l, k) as follows:

γ̂(l, k) =
|X(l, k)|2

N̄(l − 1, k)
(7)
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How to estimate N(l, k) is a main issue in this paper. A
spectral gain G(l, k) is estimated by using the prior SNR
ξ̂(l, k) and the posterior SNR γ̂(l, k), and is used to suppress
the noise spectrum included in the noisy speech. In order to
calculate G(l, k), we employ MMSE STSA method [2] and
Joint MAP method [4] in this paper.

III. CONVENTIONAL RAPID ADAPTATION METHOD

In this section, a conventional noise spectral estimation
method proposed for non-stationary noise environments is
briefly descrived [9]-[12]. A voice activity detector (VAD) [7]
is applied in this method.

A. Voice Activity Detector (VAD)
The VAD discriminates the speech frames and the non-

speech frames based on the following entropy H(l)

Pr(l, k) =
Xenergy(l, k)

∑2M
k=1

Xenergy(l, k)
(8)

H(l) = −
2M
∑

k=1

Pr(l, k) · log(Pr(l, k)) (9)

Xenergy(l, k) = |X(l, k)|2 (10)

The entropy H(l) has a large value in the non-speech frames
compared to the speech frames. We assume several frames
at the beginning to be the non-speech frames. An average
of the entropy, estimated in these frames, denoted Hav(0)
is used as the threshold, with which the following frames
are discriminated as the speech or the non-speech frames.
Actually, Hav(0) is scaled by a constant c(< 1).

H(l) > cHav(0) → Non-speech frame
H(l) < cHav(0) → Speech frame

H(l) is not accurate and cannot discriminate the non-
speech frame and the speech frame, when the spectra of the
speech and the noise are small and large, respectively. In
order to improve this problem, a positive constant C has been
introduced in Pr(l, k) as follows [8]:

Prc(l, k) =
Xenergy(l, k) + C

∑2M
k=1

Xenergy(l, k) + C
(11)

Hc(l) = −
2M
∑

k=1

Prc(l, k) · log(Prc(l, k)) (12)

B. Noise Spectral Estimation Method
The conventional noise spectral estimation method is briefly

described here [9],[10]. The noisy speech is discriminated into
the non-speech frames or the speech frames by using the VAD.
The noise spectrum is estimated in the non-speech frames by

N̄(l, k) = λ · N̄(l − 1, k) + (1 − λ) · |X(l, k)|2 (13)

On the other hand, in the speech frames, the noise spectrum
is estimated by the following recursive equation.

N̄(l, k) = ρ(l, k) · N̄(l − 1, k)

+ (1 − ρ(l, k)) · |X(l, k)|2 (14)
ρ(l, k) = ad + (1 − ad) · Psp(l, k) (15)

Psp(l, k) is a probability of including the speech in the noisy
speech signal, that is a speech presence probability, and is
given by

Psp(l, k) =
|X(l, k)|2
Pmin(l, k)

(16)

Pmin(l, k) is the minimum of the noisy speech spectrum, as
shown in the following. First, the averaged spectrum of the
noisy speech P (l, k) is obtained by

P (l, k) = ηP (l − 1, k) + (1 − η)|X(l, k)|2 (17)

η is a smoothing factor. Next, Pmin(l, k) is updated by the
following equations.

Pmin(l, k) = γ · Pmin(l − 1, k) +
1 − γ

1 − β
(P (l, k)

−β · P (l − 1, k)), if Pmin(l − 1, k) ≤ P (l, k) (18)
Pmin(l, k) = P (l, k), if Pmin(l − 1, k) > P (l, k) (19)

β and γ are determined by experience.

IV. A NEW NOISE SPECTRAL ESTIMATION METHOD

A. New Adaptive Parameter and Threshold for VAD

In the conventional method, as shown in Eq.(11), Prc(l, k)
is normalized by using a constant C. The constant C is highly
dependent on SNR of the noisy speech signal, and should be
optimized. In this paper, we propose a new adaptive parameter,
which is controlled by the difference between the maximum
and the mean of |X(l, k)| as follows:

Pnew(l, k) =
Xenergy(l, k) + Cnew(l)

∑2M
k=1

Xenergy(l, k) + Cnew(l)
(20)

Cnew(l) = max{|X(l, k)|} − mean{|X(l, k)|} (21)

Hnew(l) = −
2M
∑

k=1

Pnew(l, k) · log(Pnew(l, k)) (22)

Since the highly non-stationary noise environments are con-
sidered, the noise power can be drastically changed. In order
to adapt the noise power change, we also propose an adap-
tive threshold Hav(l) for Hnew(l) in this paper. Hav(l) is
calculated by using the entropy in just before five non-speech
frames. Therefore, Hav(l) can be adjusted to the recent noise
power. Actually, cHav(l), c = 0.95 is used for the threshold.

B. A New Noise Spectral Estimation Method
1) Non-Speech Frames: The proposed noise spectral esti-

mation method is based on the recursive equation as shown
in Eq.(14). How to control the smoothing parameter is very
important. The conventional smoothing parameter ρ(l, k) given
by Eq.(15) is not useful for non-stationary noise environments.
In this paper, we propose a new smoothing parameter, which
is adjusted based on Psp(l, k) given by Eq.(16). The proposed
noise spectral estimation is given by

N̄(l, k) = ρnew(l, k) · N̄(l − 1, k)

+ (1 − ρnew(l, k)) · |X(l, k)|2 (23)

ρnew(l, k) =
1

1 + exp(−r · (Psp(l, k) − t · Tp(l, k)))
(24)



t is a constant. Tp(l, k) is an adaptive threshold in the lth
frame, and is calculated in the speech frames as follows:

Tp(l, k) =
|X(l, k)|2mean

N̄mean(l − 1, k)
(25)

|X(l, k)|2mean = E[|X(i, k)|2] (26)
N̄mean(l − 1, k) = E[N̄(i, k)] (27)

(i ∈ all speech frames, up to lth and (l − 1)th frames)

In the non-stationary noise environments, the noise spectrum
can be changed. The estimation by using Eq.(13) does not
work well. In the proposed method given by Eqs.(23) and
(24), the adaptive threshold Tp(l, k) is introduced for each
frame. The smoothing parameter ρnew(l, k) can be adaptively
controlled based on the probability of including the speech in
the noisy speech signal. As a result, the noise spectrum in the
non-stationary noise environments can be well estimated.

2) Speech Frames: In the conventional method, the re-
cursive estimation was used as shown by Eq.(14). However,
this method does not work well for the non-stationary noise
environments. Estimation accuracy is poor.

In this paper, we apply the weighted noise spectral estima-
tion method [5],[6]. The noisy speech spectrum is weighted
by the weight function W (l, k), which is determined based on
the posterior SNR γ̂(l, k) as shown in Fig.2. The noisy speech
spectrum is suppressed in the high SNR region in order to
suppress over estimation of the noise spectrum. The weighted
spectrum is expressed by

z(l, k) = W (j, k)|X(l, k)|2 (28)

The noise spectrum is estimated by averaging z(l, k) over

Fig. 2. Weight function W (l, k).

several frames. Figure 2 means that in the begining frames
and in the low SNR region, that is γ̂(l, k) < θz , z(l, k) is
included as the noise components. On the other hand, after the
beginning frames and in the high SNR region, that is γ̂(l, k) >
θz , z(l, k) is not included as the noise components, rather the
previous average of z(l, k) is used.

V. SIMULATION AND DISCUSSIONS

A. Evaluation Measures
1) Normalized Estimation Error:

ε(l) = 10 log10

(

∑M
k=0

∣

∣|N(l, k)|2 − |N̄(l, k)|2
∣

∣

∑M
k=0

|N(l, k)|2

)

(29)

ε̄ =
1

L

L
∑

l=1

ε(l) (30)

L is the number of all frames. The smaller value of ε means
the higher acculate estimation.

2) Segmental SNR: SNR at the input and the output is
evaluated by the following segmental SNR.

SNRseg =
10

L

L−1
∑

l=0

log10

∑Nl+N−1

n=Nl
s2(n)

∑Nl+N−1

n=Nl
(s(n) − ŝ(n))2

(31)

N is a length of the interval, where the segmental SNR is
evaluated. The actual length is 12ms.

3) Ideal Estimation: In order to evaluate accuracy of the
proposed method, we employ the ideal estimation by using the
true noise spectrum. Let Gtl(l, k) be the spectral gain obtained
by using the true noise spectrum. The ideal noise suppressed
output signal is obtained by

ŝ(n) = IFFT [Gtl(l, k)X(l, k)] (32)

B. Simulation and Discussions

1) Effects of Adaptive Normalization Parameter in VAD:
The adaptive normalization parameter Cnew(l) in the VAD
proposed in Sec.IV-A is evaluated here. Figure 3 shows the
normalized noise spectral estimation error in average ε̄, with
respect to the C value, which is changed from 0 to 50.
Furthermore, many kinds of noises are used, including white,
babble, car, pink, factory and tank. In the first interval from
0 to 10,000 samples, the white noise is used, and in the
second interval, from 10,001 to 30,000 samples, the white
and the non-white noises are used. The input SNRseg is
3dB. As shown in this figure, the optimum value of C, which
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Fig. 3. Normalized noise spectral estimation error in average ε̄, with respect
to C.

gives the minimum estimation error, is different for the noise
property. Cnew(l) can provide small estimation errors, that is
-2.62, -3.69, -3.60, -3.74, -3.58, -3.79 dB for the noises in the
second interval, that is babble, white, car, pink, factory, tank,
respectively. These results are close to the minimum values.

2) Normalized Estimation Error and Segmental SNR: The
babble noise and the white noise are used in the first interval
from 0 to 10,000 samples and the second interval, from
10,001 to 30,000 samples, respectively. The input segmental
SNR is 6dB and -1.4dB in the first and the second intervals,
respectively. The normalized estimation error ε(l) is shown in
Fig.4.
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Fig. 4. Normalized noise spectral estimation error ε(l)
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Fig. 5. Noise spectral estimation for 3kHz component.

A red dashed line indicates the output of the VAD. High and
low levels mean the speech and the non-speech frames, respec-
tively. The green line and the blue line indicate the errors of the
conventional method and the proposed method, respectively.
The error can be well reduced from the conventional method.
Furthermore, the noise spectrum is accurately estimated in the
non-speech frames.

Estimation of the time varying noise spectrum for the 3kHz
component are shown in Fig.5. The horizontal axis is the frame
number. The red dotted line means the true noise spectrum,
the green line is that of the conventional method and the blue
line is that of the proposed method. At around 80th frame,
the noise is changed from the babble noise to the white noise.
The proposed method can estimate the noise spectrum in both
the babble and the white noise environments. Furthermore, the
proposed method can quickly adapt the change of the noise.

The output segmental SNR and the normalized estimation
error for the different input segmental SNR are listed in
Tables I and II. Compared to the conventional rapid adaptation
method, the normalized noise spectral estimation error is
improved by 3.2 ∼ 4.7dB, and the output segmental SNR
is improved by 2.0 ∼ 3.8dB. From these results, the proposed
method can accurately estimate the noise spectra in a variety

of conditions.

TABLE I
SNRseg [DB] OF OUTPUT SIGNAL ŝ(n).

Input SNRseg[dB] 0 3 6 9
MMSE STSA(Ideal) 10.58 12.34 14.32 16.45
MMSE STSA(Conven) 3.147 5.254 6.859 8.057
MMSE STSA(Proposed) 5.314 7.475 9.642 11.89
Joint MAP(Ideal) 10.58 12.36 14.33 16.42
Joint MAP(Conven) 3.180 5.612 7.450 8.904
Joint MAP(Proposed) 5.388 7.595 9.972 12.30

TABLE II
NORMALIZED ESTIMATION ERROR IN AVERAGE ε̄.

Input SNRseg[dB] 0 3 6 9
Conventional -0.4373 -0.6667 0.4369 2.152
Proposed -4.517 -3.864 -3.187 -2.521

VI. CONCLUSIONS

In this paper, a new noise spectral estimation method is
proposed. The speech and the non-speech frames are discrim-
inated by the VAD, in which a new adaptive normalization
parameter and a adaptive threshold are proposed. A recursive
noise estimation method is applied, in which a new adaptive
smoothing parameter is proposed. Through simulations by
using many kinds of the noises, the proposed method can
accurately estimate the spectra of the many kinds of the noises,
in both the speech and non-speech frames. Furthermore, it can
quickly adapt to change of the noises.
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